Recent High-p_T and Jet Results from STAR

Li Yi Yale University High p_T Workshop 2017

Outline

- high p_T hadron @BES
- pp jets vs pQCD
- h-jet energy loss
- y-hadron energy 'calibrated'
- Dijets energy imbalance
- z_g substructure

Single Hadron High pT Suppression

Connors, Nattrass, Reed, Salur, arXiv 1706.01974

High p⊤ hadron suppression at RHIC and LHC energies

Single Hadron High p_T Suppression @ BES

feed-down subtracted

STAR, arXiv:1707.01988

proton enhanced at all BES energies

Jets in Vacuum: pp@200 GeV

Well described by NLO pQCD \rightarrow Jets as high precision tool

Background Activity in pp

Underlying event only weakly depends on jet energy

Background Activity in A+A

Challenges: large fluctuating background -> modified JES + smeared JER + **combinatorial jets** *important for low p_T jets*

Experiment methods:

-> constituent cuts, high pT particle match,.. mixed event

Semi-inclusive Jet Measurements

Semi-inclusive Jet Measurements

Energy Shift Out of Cone

Au+Au, Vs_{NN}=200 GeV

 $9.0 < p_{\tau}^{trig} < 30.0 \text{ GeV/c}$

 $A_{iet} > 0.65, R = 0.5$

anti-k_T

30

20

(GeV/c)

R=0.5

orian NLO

10

p^{ch} T,jet

error syst. uncertainty

Spectrum shift → energy transport out-of-cone

System			Au+Au $\sqrt{s_{\rm NN}} = 200 {\rm ~GeV}$	Pb+Pb $\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}$	
$p_{\rm T,jet}^{\rm ch}$ range (GeV/c)			[10,20]	[60, 100]	
			$p_{\rm T}$ -shift of $Y\left(p_{\rm T,jet}^{\rm ch}\right)$ (GeV/c)		
			$peripheral \rightarrow central$	$p+p\rightarrow central$	
R		0.2	$-4.4 \pm 0.2 \pm 1.2$		
		0.3	$-5.0 \pm 0.5 \pm 1.2$		
		0.4	$-5.1 \pm 0.5 \pm 1.2$		
		0.5	$-2.8 \pm 0.2 \pm 1.5$	-8 ± 2	

ALICE, JHEP 09 (2015) 170

R=0.5: smaller shift at RHIC than LHC \rightarrow lower energy loss at RHIC but larger $\Delta p_T / p_T^{jet}$ at RHIC

 $(1/N_{trig}) d^2 N_{jets} / (dp_{T,jet}^{ch} dn_{jet}) (GeV/c)^{-1}$

10⁻⁶

10⁻¹

0

<u>-</u>З

1

Energy Shift Out of Cone

Au+Au, √s_{NN}=200 GeV

 $9.0 < p_{\tau}^{trig} < 30.0 \text{ GeV/c}$

 $A_{iot} > 0.65, R = 0.5$

anti-k_T

30

20

GeV/c)

R=0.5

Florian NLO

syst. uncertainty

stat. error

Spectrum shift → energy transport out-of-cone

System			Au+Au $\sqrt{s_{\rm NN}} = 200 {\rm ~GeV}$	Pb+Pb $\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}$	
$p_{\rm T,jet}^{\rm ch}$ range (GeV/c)			[10, 20]	[60, 100]	
			$p_{\rm T}$ -shift of $Y\left(p_{\rm T,jet}^{\rm ch}\right)$ (GeV/c)		
			$peripheral \rightarrow central$	$p+p\rightarrow central$	
R		0.2	$-4.4 \pm 0.2 \pm 1.2$		
	0.3		$-5.0 \pm 0.5 \pm 1.2$		
		0.4	$-5.1 \pm 0.5 \pm 1.2$		
		0.5	$-2.8 \pm 0.2 \pm 1.5$	-8 ± 2	

ALICE, JHEP 09 (2015) 170

R=0.5: smaller shift at RHIC than LHC → lower energy loss at RHIC but larger $\Delta p_T / p_T^{jet}$ at RHIC

Not a cross section measurement
 per trigger instead of per event

 $1/N_{trig}$) $d^2N_{jets}/(dp_{T,jet}^{ch} dn_{jet})$ (GeV/c)⁻¹

<u>-</u>Ъ

10

10⁻²

10-4

10⁻¹

0

Trigger Particle Normalization

$$\frac{1}{N_{trig}^{h,AA}} \frac{dN_{jet}^{AA}}{dp_{T,jet}^{AA}} = \frac{1}{\sigma^{AA \to h+X}} \frac{d\sigma^{AA \to h+jet+X}}{dp_{T,jet}^{AA}}$$

In the case of no nuclear effect

$$\rightarrow \left(\frac{1}{\sigma^{pp \to h+X}} \cdot \frac{d\sigma^{pp \to h+jet+X}}{dp_{T,jet}^{pp}}\right) \times N_{coll}/N_{coll}$$

$$= \frac{1}{N_{trig}^{h,pp}} \frac{dN_{jet}^{pp}}{dp_{T,jet}^{pp}} \xrightarrow{N_{coll}: number of binary nucleon-nucleon collisions}$$

N_{coll} no longer needed for comparison to pp

In p(d)A, various centrality biases depending on phase space selection Bias could also be in peripheral AA

ALICE, arXiv:1706.07612 ALICE, PRC **91**, 064905 Loizides, Morsch, PLB **773** (2017) 408

RHIC Jet in p/d+Au?

Model estimates smaller bias in d+Au@200 GeV than p+Pb@5.02 TeV

STAR's plan with 2B p+Au events from year 2015 Semi-inclusive jet in p+Au to remove N_{coll} complication

Photon Triggered Recoil Jet

Select more quark recoil jets

Avoid surface bias

Calibrate initial parton energy for study of energy loss, substructure modification

γ - hadron

Absolute p_T rather than particle p_T fraction (z_T) more relevant

γ-jet

Background techniques: Mixed event; Off-axis cone

Uncorrelated vs correlated background

'Hard Core' Dijets

locate hard core dijets

reconstruct matched dijets

Dijets Restore Balance with Low p_T

STAR, PRL 119, 062301 (2017)

Momentum balance restored to pp baseline for R = 0.4, after adding particle < 2 GeV/c

Dijet-Hadron Correlations

for hard core matched dijets

Background subtracted with Gaussian+constant fit

No significant difference for jet constituent multiplicity

But jet energy changed — A_J different

→ Extend p_T coverage, study A_J dependence

Jet Substructure: Soft Drop zg

Large-angle soft radiation + background are removed Goal: to search for modification of hardest jet splitting

Dijet Substructure zg

 z_g in hard core matched dijets with $p_{T,cut} > 0.2$ GeV/c

No significant splitting modification on near- or away-side

Probing the jet modification at RHIC

Significantly enhanced understanding of jet modifications at RHIC

- High p_T hadron suppression at BES (arXiv:1707.01988)
- pp in very good agreement with theory (Di-jets, PRD 95 (2017) 71103 (R))
- Unbiased recoil jets highly suppressed due to medium induced broadening
- Total E_{loss} less than at LHC (Hadron-jet correlations, PRC 96 (2017) 24905)
- Lost energy re-emerges at low p_T not z_T (γ-hadron correlations, PLB 760 (2016) 689)
- Di-jet energy imbalance largely recovered within R=0.4 when low $\ensuremath{p_T}$ hadrons included

(Di-jet A_J , *PRL 119 (2017) 062301* - Editor's suggestion)

- z_g unmodified for hard core jets (preliminary release)
- γ-jet, jet in small systems, flavor jet ... (stay tuned)

Jets in Vacuum: pp@200 GeV

STAR, PRC 96, 024905

STAR, PRL 97, 152301 (2006)

Transverse Max Vs. Transverse Min

Leading Jet p_ (GeV)

zg for Hard Core Dijets in p+p at Detector Level

stat. errors only

- Hard-core selection p_T^{Cut}>2 GeV/c shifts jet p_T and may bias toward different splitting pattern
 However, observe rather mild effect!
 - -> However, observe rather mild effect!
- Stat. uncertainty only, no unfolding

