Multi-strange hadron elliptic flow in $\sqrt{s_{NN}}$ = 200 GeV Au + Au collisions at RHIC-STAR

Hiroshi Masui for the STAR collaboration

2010 Fall meeting of DNP Nov. 2-6, 2010, Santa Fe, New Mexico

Why elliptic flow ?

- One of the most sensitive probes to the partonic EOS in the early stage of heavy ion collisions
 - ✓ Initial geometry overlap (eccentricity ε) → final momentum anisotropy (elliptic flow)
 - ✓ Pressure gradient drives flow
 - Sensitive to the (partonic) equation of state, d. o. f., and transport coefficients

Why multi-strange hadrons ?

Probe for the partonic stage

- ✓ Smaller $\langle \beta_{\perp} \rangle$, larger T_{fo} (~ T_{ch}) and deviation of $\langle p_T \rangle$
- \Rightarrow Radial flow is cumulative \rightarrow less time to develop radial flow
- freeze-out earlier than other light hadrons

Data set, analysis method

- TPC
- ✓ Full azimuth, |η| < 1</p>
- Year 7 data
 - ✓ ~ 60 M minimum bias
 events in |v_z| < 30 cm
 - Vertex Position Detector (|η| ~ 4-5)
 + Zero Degree Calorimeter trigger
 - ✓ Centrality from uncorrected dN_{ch}/dη in |η| < 0.5
 - ✓ Event plane methods
 - TPC event plane due to the limited statistics for multi-strange hadrons
 - ✓ Particle identification
 - dE/dx in the TPC
 - Secondary vertex finder for $\Xi,\,\Omega$

H. Masui / LBNL

Signal extraction

- Clear signal for ϕ and Ω
- ✓ ϕ : Breit-Wigner + linear fit
 - after combinatorial background subtraction by event mixing
- ✓ Ω : Gaussian + 2nd order polynomial fit

_arge v₂ for multi-strange hadrons

- v₂ increases from central to peripheral
- ✓ driven by eccentricity
- The v₂ for multistrange hadrons is as large as other light hadrons
- Systematic error
 - ✓ Non-flow contributions ~ 15-20%
 - from PRC77, 054901 (2008)
- ✓ Other sources ~ 5-10%
 - Background evaluation, track selection criteria

Number of quark scaling of v₂

- NQ scaling works up to p_T/n_q or (m_T-mass)/n_q ~ 1-1.5 GeV/c
 - ✓ Partonic collectivity \rightarrow Deconfinement

φ meson v₂ at low p_T

- Radial flow boosts heavier hadrons to higher p_T
 - ✓ smaller v₂ for heavier hadrons for a given p_T
 - ✓ $v_2(\pi) > v_2(K) > v_2(p)$
- Mass ordering from ideal hydrodynamics
 - \checkmark v₂(p) > v₂(ϕ)
- Data: v₂(φ) ~ v₂(p)
 ✓ Why ?

Effect of hadronic rescattering

- Two different simulations
 - ✓ (c) Pure ideal hydro down to T = 100 MeV
 - ✓ (a), (b) Ideal hydro + hadron cascade JAM

✓ small hadronic cross section + hadronic rescattering effect on v_2

Conclusions

- Multi-strange hadron v_2 have been measured in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV
 - $\checkmark v_2$ increases from central to peripheral collisions
 - ✓ as large as other lighter hadrons
- Number of quark scaling holds in $p_T/n_q < 1.5$ GeV/c
 - ✓ Partonic collectivity
- v₂ of φ mesons is consistent with that of protons within statistical errors in p_T < 1 GeV/c