Recent elliptic flow measurements at RHIC

Hiroshi Masui for the STAR collaboration

Lawrence Berkeley National Laboratory

Moriond QCD and High Energy Interactions, Mar10-17, 2012

H. Masui / LBNL

Outline

- Introduction
- What have we learned in Au + Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$?
- Latest elliptic flow (v₂) results from RHIC Beam Energy Scan
- Conclusions and outlook

Elliptic flow probe to the early collisions dynamics

- Initial spatial anisotropy → final momentum anisotropy
 - degrees of interactions, Equation Of State, degrees of freedom, transport coefficients, ...
- Characterized by v₂ of Fourier expansion of azimuthal particle distribution with respect to the reaction plane

What have we learned ?

STAR QM2009

 $\frac{v_2^h(p_T)}{n_q} \approx v_2^q(p_T/n_q)$

Quark coalescence/recombination D. Molnar and S. A. Voloshin PRL**91**, 092301 (2003) V. Greco, C. M. Ko and P. Levai PRC**68**, 034904 (2003) R. J. Fries, B. Muller, C. Nonaka and S. A. Bass PRC**68**, 044902 (2003)

J. Jia and C. Zhang PRC**75**, 031901(R) (2007)

• Mass ordering at low $p_T \rightarrow$ strong radial expansion

What have we learned ?

STAR QM2009

 $\frac{v_2^h(p_T)}{n_q} \approx v_2^q(p_T/n_q)$

Quark coalescence/recombination D. Molnar and S. A. Voloshin PRL**91**, 092301 (2003) V. Greco, C. M. Ko and P. Levai PRC**68**, 034904 (2003) R. J. Fries, B. Muller, C. Nonaka and S. A. Bass PRC**68**, 044902 (2003)

J. Jia and C. Zhang PRC**75**, 031901(R) (2007)

- Mass ordering at low $p_T \rightarrow$ strong radial expansion
- Number of constituent quark (NCQ) scaling of v₂
- Indication of partonic phase

RHIC Beam Energy Scan

- Two main goals
- Signals of phase boundary
- Critical point search

• How ?

- Disappearance of QGP signals
- Critical point induced fluctuations
- 6 different energies in year 2010 and 2011
 - 7.7, 11.5, 39 and 62.4 GeV (2010)
 - 19.6 and 27 GeV (2011)
 - Took 130 and 200 GeV in previous years

RHIC Beam Energy Scan

- What would be expected from v₂ measurements if hadron phase is dominant ?
- 1. Break down of NCQ scaling
- 2. Small ϕ meson v_2 due to smaller hadronic cross section of ϕ meson than that of other hadrons*

3. ...

* B. Mohanty and N. Xu, J. Phys. G**36**, 064022 (2009)

- Two main goals
 - Signals of phase boundary
 - Critical point search
- How ?
 - Disappearance of QGP signals
 - Critical point induced fluctuations
- 6 different energies in year 2010 and 2011
 - ▶ 7.7, 11.5, 39 and 62.4 GeV (2010)
 - 19.6 and 27 GeV (2011)
 - Took 130 and 200 GeV in previous years

STAR experiment

TOF

BEMC

Magnet

- Time Projection Chamber (TPC)
 - Full azimuth, $|\eta| < 1$
- Full barrel Time-Of-Flight
 - Extend p_T reach for π , K and p, improve S/B for V₀'s

Particle identification at STAR

- dE/dx + TOF: π , K, p and $\phi \rightarrow K^+K^-$ (invariant mass)
- Secondary vertex + invariant mass: K^{0}_{S} , Λ (Ξ , Ω)

STAR 🖈

Charged hadrons

STAR QM2011, CPOD2011

- Similar v_2 for $p_T > 2$ GeV/c from 7.7 GeV to 2.76 TeV
- 20-40% difference in $p_T < 2 \text{ GeV/c}$
 - Different particle compositions ?

STAR 🛧

62.4 GeV: STAR **PRC75**, 054906 (2007) 200 GeV: STAR **PRC77**, 054901 (2008) 2.76 TeV in Pb+Pb: ALICE **PRL105**, 252302 (2010)

H. Masui / LBNL

- Difference of $v_2(p_T)$ between particle and anti-particles
 - Difference increases in lower energies

- Difference of $v_2(p_T)$ between particle and anti-particles
 - Difference increases in lower energies

- Difference of $v_2(p_T)$ between particle and anti-particles
 - Difference increases in lower energies

• Difference of $v_2(p_T)$ between particle and anti-particles

- Difference increases in lower energies
- Significant difference for baryons

Particles vs Anti-particles

- v₂ is different between particles and antiparticles
 - Break down of NCQ scaling
- Relative difference increases with decreasing beam energy
- Dominance of hadronic phase ?
- Baryon transport* ?Hadronic potential** ? ...

Λ at 62.4 GeV: STAR **PRC75**, 054906 (2007)

* J. C. Dunlop et al., **PRC84**, 044914 (2011) ** J. Xu et al., arXiv:1201.3391 [nucl-th]

Conclusions and outlook

Charged hadrons

- Consistent $v_2(p_T)$ from 7.7 GeV to 2.76 TeV for $p_T > 2$ GeV/c
- 20-40% difference for $p_T < 2 \text{ GeV/c} \rightarrow \text{particle compositions}$?
- Hadronic phase might be dominant at lower energies
 - Relative difference of v_2 between particles and anti-particles increase with decreasing the $\sqrt{s_{NN}}$
 - NCQ scaling broken between particles and anti-particles
 - $v_2(\phi)/v_2(p)$ decreases with decreasing beam energies at low p_T
- Results at 19.6, 27 and 62.4 GeV are in preparation

Back up

NCQ scaling test; v₂(p_T)

- Result in p_T/n_{cq} > 1 GeV/c at 39 GeV looks similar to 200 GeV

Scaling test; v₂(m_T-m₀) Particles vs anti-particles

STAR QM2011

H. Masui / LBNL

