Soft Physics from STAR

Hiroshi Masui for the STAR collaboration

Lawrence Berkeley National Laboratory

2011 RHIC/AGS users meeting HI Workshop II, Jun/20/2011

Hiroshi Masui 2011 RHIC/AGS users meeting, BNL, Jun

STAR physics goals

 Study structure of QCD phase diagram in heavy ion collisions

- pQCD in hot and dense medium
- Medium properties, Equation Of State
- RHIC Beam Energy Scan
 - Search for the QCD Critical point

STAR experiment

• Large acceptance

STAR 🛠

- Full azimuth, good pseudo-rapidity coverage (TPC $|\eta|$ <1, TOF $|\eta|$ <0.9)
- High Level online tracking Trigger (HLT)

Hiroshi Masui

2011 RHIC/AGS users meeting, BNL, Jun

by Maria & Alex Schmah

Discovery of anti-⁴He

Hiroshi Masui

STAR 🛧

L. Xue, QM2011

Nature 473, 353-356, (19 May 2011) doi:10.1038/nature10079

• TPC+TOF+HLT

- Particle identification by dE/dx (TPC) + flight-time (TOF)
- A clean separation for anti-³He and anti-⁴He
- Total 18 counts of anti-⁴He
 - 2 from 2007
 - 16 from 2010

2011 RHIC/AGS users meeting, BNL, Jun

Invariant yields for anti-⁴He

Invariant yields for anti-⁴He

STAR 🛧

consistent with exponential trend expected from both thermal and coalescence models

. . .

$$\frac{dN}{d(\phi - \Psi_{\rm RP})} \propto 1 + 2v_1 \cos\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2a_1 \sin\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2v_2 \cos\left(2\phi - 2\Psi_{\rm RP}\right)$$

$$+ 2v_3\cos\left(3\phi - 3\Psi_{\rm RP}\right)$$

$$\frac{dN}{d(\phi - \Psi_{\rm RP})} \propto 1 + 2v_1 \cos\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2a_1 \sin(\phi - \Psi_{\rm RP})$$

Partonic d.o.f, thermalization ? $+ 2 v_2 \cos{(2\phi-2\Psi_{\rm RP})}$

. . .

$$+ 2v_3\cos\left(3\phi - 3\Psi_{\rm RP}\right)$$

$$+ 2a_1 \sin(\phi - \Psi_{\rm RP})$$

Partonic d.o.f, thermalization ? + $2v_2\cos\left(2\phi-2\Psi_{\rm RP}\right)$

. . .

$$+ 2v_3\cos\left(3\phi - 3\Psi_{\rm RP}\right)$$

$$\begin{array}{ll} \displaystyle \frac{dN}{d(\phi-\Psi_{\rm RP})} \propto 1 \\ \\ \hline \text{Softening of} & + 2v_1\cos\left(\phi-\Psi_{\rm RP}\right) \\ \hline \text{\textit{EOS}}\,? \end{array}$$

$$+ 2a_1 \sin \left(\phi - \Psi_{\rm RP} \right)$$
 Chi effe

Chiral magnetic effect ?

Partonic d.o.f, thermalization ? + $2v_2\cos\left(2\phi-2\Psi_{\rm RP}\right)$

. . .

$$+2v_3\cos\left(3\phi-3\Psi_{\rm RP}\right)$$

$$\begin{array}{ll} \displaystyle \frac{dN}{d(\phi-\Psi_{\rm RP})} \propto 1 \\ \\ \hline \text{Softening of} & + 2v_1\cos\left(\phi-\Psi_{\rm RP}\right) \\ \hline \text{\textit{EOS}}\,? \end{array}$$

$$+ 2a_1 \sin \left(\phi - \Psi_{\rm RP} \right) \, \mathop{\rm eff}\limits_{\rm eff}$$

Chiral magnetic effect ?

Partonic d.o.f, thermalization ? + $2v_2\cos\left(2\phi-2\Psi_{\rm RP}\right)$

$$+ 2v_3 \cos \left(3\phi - 3\Psi_{\mathrm{RP}} \right)$$
 Initial geometry fluctuations ?

STAR 🖈

$$\label{eq:softening} \begin{split} \frac{dN}{d(\phi-\Psi_{\rm RP})} \propto 1 \\ \\ \hline \text{Softening of} & + 2v_1\cos\left(\phi-\Psi_{\rm RP}\right) \\ \hline \text{EOS ?} \end{split}$$

$$+ 2a_1 \sin(\phi - \Psi_{\rm RP})$$

Chiral magnetic effect ?

Partonic d.o.f, thermalization ? $+ 2 v_2 \cos{(2\phi-2\Psi_{\rm RP})}$

$$+ 2v_3 \cos \left(3\phi - 3\Psi_{\rm RP}\right)$$
 Initial geometry fluctuations ?

STAR 🖈

Dynamical charge separation

$$\frac{dN}{d(\phi - \Psi_{\rm RP})} \propto 1 + 2v_1 \cos\left(\phi - \Psi_{\rm RP}\right)$$

$$+2a_1\sin(\phi-\Psi_{\rm RP})$$

$$+ 2v_2\cos\left(2\phi - 2\Psi_{\rm RP}\right)$$

$$+ 2v_3\cos\left(3\phi - 3\Psi_{\rm RP}\right)$$

- Charge separation due to Chiral magnetic effect
 - Parity (P) odd domain + large magnetic field
- Measured only through 2 or many particle correlation
 - Suffered by *P*-even backgrounds
- Signal is O(10⁻⁴) in |a₁|²

Three particle correlation

Consistent results from ZDC-SMD event plane

STAR 🕁

- Signal is likely a genuine correlation with respect to the reaction plane

In-plane or out-of-plane ?

Q. Wang, QM2011

- Charge separation between same and opposite pairs is larger for larger wedge size
 - Larger charge separation in the vicinity of the in-plane direction

STAR 🖈

Local charge conservation ?

• Consistent with three particle correlation method

STAR 🕁

 Data can be also explained by local charge conservation + elliptic flow

Elliptic flow

$$\frac{dN}{d(\phi - \Psi_{\rm RP})} \propto 1 + 2v_1 \cos\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2a_1 \sin\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2v_2 \cos\left(2\phi - 2\Psi_{\rm RP}\right)$$

$$+ 2v_3\cos\left(3\phi - 3\Psi_{\rm RP}\right)$$

- Initial almond shape → final momentum anisotropy
- Conversion efficiency depends on
 - Density profile, equation of state,
 d.o.f, transport coefficients, ...

Hadron coalescence

- Deuteron and ³He v₂ consistent with dynamical coalescence model
- Consistent with hadron coalescence (d, ³He vs p)

STAR 🕁

also consistent with quark coalescence (nuclei vs mesons)

- ρ^0 meson v₂ scales with n_q = 2 in 1.5 < p_T < 5 Gev/c
 - $n_q = 4 (2\pi \rightarrow 4 \text{ constituent quarks})$ doesn't follow the scaling
 - Dominant ρ^0 productions in early partonic stage
- Systematic error study is on-going

STAR 🖈

Hiroshi Masui 2011 RHIC/AGS users meeting, BNL, Jun

ϕ meson v₂

• High statistics Year10 data

STAR 🖈

- Consistent with published results, smaller statistical error bars
- Centrality dependence, comparison of other strange hadrons are on-going

Higher harmonics

$$\frac{dN}{d(\phi - \Psi_{\rm RP})} \propto 1 + 2v_1 \cos\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2a_1 \sin(\phi - \Psi_{\rm RP})$$

$$+ 2v_2\cos\left(2\phi - 2\Psi_{\rm RP}\right)$$

$$+ 2v_3 \cos\left(3\phi - 3\Psi_{\rm RP}\right)$$

- Higher harmonics $(n \ge 3)$
 - might be sensitive to the initial geometry fluctuations
- Mean odd harmonics should be vanished in symmetric rapidity
- Fluctuations would lead non-zero odd harmonics

Hiroshi Masui

STAR 🖈

lasui 2011 RHIC/AGS users meeting, BNL, Jun

2 particle correlation

- n=3 exhibits effects of initial overlap geometry
- n≥4 show 1/N dependence typical two particle non-flow correlation
 - n=3 at peripheral also shows 1/N dependence, dominated by non-flow ?

4 particle correlation

Q-Cumulants: 200 GeV Au+Au |η|<1.0

P. Sorensen, QM2011

- v_n{4} is consistent with 0 →
 v₃{2} due to non-flow and/or
 V_n ∝ ε_{n,part}, V_n{4} ∝ ε_{std}
 - with gaussian ansatz for fluctuations in reaction plane frame*
- How v₃(p_T) looks like ?

* R.S. Bhalerao and J-Y.Ollitrault, **PLB**641, 260-264 (2006), S. Voloshin et al, **PLB**659, 537-541 (2008)

V₃; p_T dependence

• η gap (η >1 at least) to reduce non-flow effects

STAR 🕁

- $v_3 > v_2$ at central, intermediate p_T , weak centrality dependence of v_3
 - seems to consistent with the scenario of initial geometry fluctuations

Summary

- Discovery of 18 counts of anti-⁴He with **TPC+TOF+HLT**
- consistent with expectations from thermal and coalescence models
- Measurements of dynamical charge separation
 - Signal is likely a genuine correlation with respect to the reaction plane
 - Separation seems to occur in the vicinity of the in-plane direction
 - Most of the signal can be also explained by charge conservation + elliptic flow
- Measurements of second harmonic azimuthal anisotropy
- Light nuclei (d and ³He) v₂ are consistent with dynamical quark coalescence model, seems to scale by hadron & quark coalescence scenario
- $\rho^0 v_2$ shows partonic scaling
- More detailed study for φ and other strange hadron v_2 will be coming soon
- Higher harmonics
 - 4-particle correlation suggests v₃ in $|\eta|$ <1 is non-flow and/or v₃ $\propto \epsilon_{3,part}$
 - Centrality dependence of $v_3(p_T)$ seems to favor initial fluctuation scenario

Back up

Hiroshi Masui QM2011, Annecy, France, May 22-28, 2011

Directed flow

$$\frac{dN}{d(\phi - \Psi_{\rm RP})} \propto 1 + 2v_1 \cos\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2a_1 \sin\left(\phi - \Psi_{\rm RP}\right)$$

$$+ 2v_2\cos\left(2\phi - 2\Psi_{\rm RP}\right)$$

- Sideward motion of particles
- Sign of v₁ is arbitrary
 - Conventionally, define positive v₁ at forward spectators

$$+ 2v_3\cos\left(3\phi - 3\Psi_{\rm RP}\right)$$

STAR 🕁

Rapidity dependence of v₁

- Sensitive to the **EOS** and **thermalization time**
 - Flat or wiggle shape $v_1 \rightarrow$ softening of EOS ? Baryon stopping ?
 - Reduction of longitudinal pressure and/or large tilt of initial geometry ?
 - \rightarrow v₁ for identified hadrons (protons vs mesons)

STAR 🕁

Identified hadron v₁ vs rapidity

- Measured hadrons show flat or negative slope of v₁
 - Similar slope between π and anti-protons

STAR 🛧

Proton v₁ slope

- Negative v₁ slope in 30-80% consistent with π
- Difference of v_1 slope between protons and anti-protons in 5-30%
 - No difference in hydro + tilted source