# Precision measurements of centrality dependence of elliptic flow for identified hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

**STAR A Collaboration** 

## Hiroshi Masui for the

Lawrence Berkeley National Laboratory

#### <u>Abstract</u>

Elliptic flow v<sub>2</sub> is one of the key observables to study the bulk properties at freeze-out as well as hadron production mechanisms in the ultra relativistic heavy ion collisions. It has been observed that Number of Constituent Quark (NCQ) scaling of  $v_2$  holds among measured identified hadrons at  $\sqrt{s_{NN}}$  = 62.4 and 200 GeV in Au + Au collisions at RHIC. The scaling of v<sub>2</sub> strongly indicates that the collectivity develops at the stage where the partonic degrees of freedom are relevant. Studying the NCQ scaling of v<sub>2</sub> as a function of transverse momentum p<sub>T</sub> and centrality will shed light on the production mechanisms for hadrons in heavy ion collisions. We present the measurements of v<sub>2</sub> as a function of  $p_T$  for identified  $\pi^{\pm}$ ,  $K^{\bullet}_{S}$ , p,  $\overline{p}$ ,  $\Lambda$  and  $\overline{\Lambda}$  in Au + Au collisions at  $\sqrt{s_{NN}} = 200$  GeV from high statistics year 2010 data. The NCQ scaling of  $v_2$  in several different centrality classes is discussed.

### Data sets

- Au+Au at  $\sqrt{s_{NN}}$  = 200 GeV • ~234 M events in 0-80% centrality **Event selection**
- $|v_z| < 30 \text{ cm}$ •  $\sqrt{(v_x^2 + v_y^2)} < 2$ cm •  $|VPD v_z - v_z| < 3$ cm





## Event plane method

#### **TPC** η-sub event plane

- reconstructed in negative (-1 <  $\eta$  < -0.05) and positive (0.05 <  $\eta$  < 1) pseudorapidity  $\eta$  hemispheres
- Additional 0.05  $\eta$  gap between particles and event plane  $\rightarrow$  reduce short

 $v_x$ ,  $v_y$ ,  $v_z$  = vertices from the TPC VPD  $v_z$  = z-vertex from the VPD

**TPC = Time Projection Chambe TOF = Time Of Flight detector** VPD = Vertex Position Detector

#### **Centrality determination**

- Centrality from uncorrected charged particle multiplicity distribution in  $|\eta| < 0.5$ measured in the TPC
  - Applied corrections as a function of time, z-vertex, luminosity
- Trigger inefficiency at peripheral collisions is taken into account by Glauber Monte Carlo simulation with multiplicity fluctuation by negative binomial distribution



A

-0.05 7 0

Β

 $\langle \cos\left(2\Psi_A - 2\Psi_B\right) \rangle \langle \cos\left(2\Psi_C - 2\Psi_A\right) \rangle$ 

 $\langle \cos\left(2\Psi_B - 2\Psi_C\right) \rangle$ 

80

С

0.5

range  $\Delta\eta$  correlation • reconstructed for  $p_T < 2 \text{ GeV/c}$ 

#### **Event plane resolution**

- calculated by three independent event planes
- Systematic uncertainties from the resolution by two subevents
- Correction is done event-by-event by using the average resolution in 5% increment of centrality.



• Measure  $v_2(p_T)$  up to  $p_T = 8 \text{ GeV/c}$ • Mass ordering below  $p_T = 2 \text{ GeV/c}$ , i.e. heavier hadrons have smaller v<sub>2</sub> Meson/baryon splitting in m<sub>T</sub>-m<sub>0</sub>

Results

Summary

above ~ $0.5 \text{ GeV/c}^2$ 

#### **Uncertainties**

- Vertical error bars show statistical error only
- Global systematic uncertainty from event plane resolution (plotted only for  $\pi$ )
- Systematic uncertainties on K<sup>0</sup>s

neg.+pos. • Momentum dependent masses quare  $m^2 + dE/dx$  cut in  $p_T < 1$  GeV/c • 2 dimensional signal extraction from  $n\sigma_{\pi}$  and  $m^2$  (top left figure) in  $p_T > 1 \text{ GeV/c}$ • Relativistic rise of dE/dx in p<sub>T</sub>  $\approx$  2.8 GeV/c (pions)

 Topological reconstruction • Rotational background method to evaluate combinatorial backgrounds



and  $\Lambda$  due to self-correlation subtraction

## Number of Constituent Quark Scaling





#### Hiroshi Masui (<u>HMasui@lbl.gov</u>) / LBNL Quark Matter 2012, August 13-18, 2012

**rrrr**