

Search for the Strange Dibaryons with Baryon-Baryon Correlations at STAR

Kehao Zhang (for the STAR Collaboration)

Central China Normal University

Hot Quarks 2025, Hefei, China

In part supported by

2025/05/12

2025/05/12

Outline

- I. Motivation
- **II.** Femtoscopy
- **III. Analysis Details**
- IV. Lednicky-Lyuboshitz Model
- V. Results
 - |S| = 2: $p-\Xi^-$ Correlation
 - |S| = 2: Λ - Λ Correlation
 - |S| = 3: $p-\Omega^-$ Correlation

VI. Summary

Motivation

Dibaryon	

(Strange) Dibaryons have never been found experimentally

-	Particle	Mass	Quark com-	Decay mode
		(MeV)	position	
	f_0	980	$q \bar{q} s \bar{s}$	$\pi\pi$
	a_0	980	q ar q s ar s	$\pi\eta$
	K(1460)	1460	q ar q q ar s	$K\pi\pi$
	$\Lambda(1405)$	1405	$\mathrm{qqqs}ar{q}$	$\pi\Sigma$
	$\Theta^{+}(1530)$	1530	${ m qqqq}{ m s}$	KN
	Н	2245	uuddss	ΛΛ
	$N\Omega$	2573	qqqsss	$\Lambda \Xi$
	[I]	2627	qqssss	$\Lambda \Xi$
	$\Omega\Omega$	3228	SSSSSS	$\Lambda K^- + \Lambda K^-$

Sungtae Cho, et al. (ExHIC), Phys. Rev. C 84, 064910 (2011)

> The possible formation channels:

(|S|=2)Dibaryon $\Leftrightarrow p + \Xi^-$ (|S|=2)Dibaryon $\Leftrightarrow \Lambda + \Lambda$ (|S|=3)Dibaryon $\Leftrightarrow p + \Omega^-$

Hyperon-Nucleon (Y-N) and Hyperon-Hyperon (Y-Y) interactions provide important information to constrain the Equation-of-State and help to understand the inner structure of compact stars *More experimental measurements are needed !*

Femtoscopy

L. Michael, et al. Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

2025/05/12

Femtoscopy

2025/05/12

RHIC-STAR Experiment

Analysis Details

> Dataset:

Isobar collisions (Ru+Ru, Zr+Zr) @ 200 GeV

 \sim 3.9 billion minimum-bias events

Au+Au collisions @ 200 GeV (run11, run14, run16)

 ~ 2.5 billion minimum-bias events

Au+Au collisions @ 3 GeV (run21)

 ~ 2 billion minimum-bias events

> Hyperon reconstruction via Helix-swimming method $\Lambda \rightarrow p + \pi^{-}, BR = 63.9\%$ $\Xi^{-} \rightarrow \Lambda + \pi^{-}, BR = 99.9\%$

Lednicky-Lyuboshitz Model

$$CF(k^*) = \int d^3r^*S(r^*) |\psi(r^*, k^*)|^2 = \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

Formalism with Lednicky-Lyuboshitz (L-L) model:

- □ Only consider s-wave
- **\square** Effective range expansion for $\psi(r^*, k^*)$

□ Static and spherical Gaussian source assumed

R. Lednicky and V. L. Lyuboshitz, Sov. J. Nucl. Phys. 35, 770 (1982)

Bayesian method: https://github.com/chunshen1987/bayesian_analysis Mäntysaari, H., et al., Phys. Lett. B 833 (2022) 137348

2025/05/12

Lednicky-Lyuboshitz Model

$p-\Xi^{-}$ Correlation Function (|S|=2)

- I. Measured $p-\Xi^- \oplus \overline{p}-\overline{\Xi}^+$ CFs at $\sqrt{s_{NN}} = 200$ GeV in Au+Au and Isobar collisions
- II. CFs show enhancement at low k*
- III. Simultaneously fit with L-L function for different centralities in each collision system to extract R_G , f_0 and d_0 by Bayesian method

IV. UrQMD + HAL QCD model is consistent with data

- ◎ Particle phase space provided by UrQMD
- \bigcirc Interaction potential provided by HAL QCD

Y. Kamiya, et al., Phys. Rev. C 105, 014915 (2022)

$p-\Xi^{-}$ Interaction Parameters (|S| = 2)

- Simultaneously fit with L-L function for different centralities in each collision system to extract R_G , f_0 and d_0 by Bayesian method
- II. First experimental constraints of strong interaction parameters in $p-\Xi^-$ pairs in heavy-ion collisions
- III. Extracted spin averaged scattering length: $f_0 = 0.7^{+0.1}_{-0.1}$ fm (stat.+sys.)
 - □ Weakly attractive interaction
 - □ Consistent with HAL QCD prediction

Y. Kamiya, et al., Phys. Rev. C 105, 014915 (2022)

Λ-Λ Correlation Function (|S| = 2)

- Λ - Λ correlation function shows suppression at small k*
- Compared with UrQMD + potential, it is found that the simulation with smaller positive f_0 is in better agreement with data
 - \square Hints at an weakly attractive interaction in Λ - Λ pairs

Need more precise data to confirm

☐ High statistics Isobar and Au+Au collisions

Potential	<i>f</i> ₀ (fm)	<i>d</i> ₀ (fm)	Chi2/NDF
NSC97a[1]	0.33	12.37	1.53
NF50[2]	0.77	4.27	1.61
ND52[3]	-23.96	2.59	2.24
ND50[3]	10.63	2.04	4.02

P. M. M. Maessen, et al, Phys. Rev. C 40 (1989) 2226
 M. M. Nagels, et al, Phys. Rev. D 20 (1979) 1633
 M. M. Nagels, et al, Phys. Rev. D 15 (1997) 2547

p- Ω^- Correlation Function (|S|=3)

I. Precise measurements of $p-\Omega^- \oplus \overline{p}-\overline{\Omega}^+$ correlation functions in Isobar collisions

- \square CFs show enhancement at low k* -> mainly due to Coulomb attraction interaction
- **C**Fs show depletion at $k^* \sim 30-100 \text{ MeV/c} \rightarrow \text{mainly due to the strong interaction}$
- II. Simultaneously fit with L-L function for 3 centralities to extract R_G , f_0 and d_0 by Bayesian method
- III. CFs obtained by HAL QCD theory with extracted R_G by L-L model is consistent with the data Takumi Iritani, et al. (HAL OCD), Phys. Lett. B792 (2019)

2025/05/12

 Ω^{-}

$p-\Omega^- CF Ratio (|S|=3)$

туре	J ₀ (IM)	\mathbf{u}_0 (IM)	BE (Mev)	X⁻/nai	p-value	
V _I [1]	1.12	1.16		48.2/29	0.014	No Bound
V _{II} [2]	-3.38	1.31	2.15	22.2/29	0.812	Shallow Bound
V _{III} [1]	-1.29	0.65	26.9	58.7/29	0.001	Deeply Bound

- I. By taking CF ratio, Coulomb effect can be largely canceled
- II. CF Ratio shows enhancement at low k* and depletion around k* ~ 100 MeV/c
 - Due to the presence of shallow bound state
- III. The potential V_{II}, with a p-value of0.812, provides a better description ofthe data

[1] Kenji Morita, et al., Phys. Rev. C 94, 031901 (2016)
[2] Kenji Morita, et al., Phys. Rev. C 101, 015201 (2020)

 Ω^{-}

$p-\Omega^{-}$ Interaction Parameters (|S|=3)

	Spin ave.	Quintet	HAL QCD
f_0 (fm)	$-4.9^{+0.5}_{-0.7}$	$-4.3^{+0.4}_{-0.7}$	-3.4
d_0 (fm)	$2.3^{+0.4}_{-0.5}$	$1.5_{-0.7}^{+0.5}$	1.3
BE (MeV)	$1.5^{+1.1}_{-0.6}$	$1.6^{+1.4}_{-0.5}$	2.3

Kenji Morita, et al., Phys. Rev. C 101, 015201 (2020)

- I. First experimental constraints in heavy-ion collisions of strong interaction parameters in $p-\Omega^-$ pair
- II. Extracted negative f_0 ($|f_0| > 2d_0$) by Spin average method and Quintet method
 - First experimental evidence of Strange Dibaryon
- III. Calculate Binding Energy (BE) via Betha formula:

Reduced mass:
$$m_{p\Omega} = \frac{m_p m_{\Omega}}{m_p + m_{\Omega}}$$

$$BE_{p\Omega} = \frac{1}{2m_{p\Omega}d_0^2} \left(1 - \sqrt{1 + \frac{2d_0}{f_0}}\right)^2$$

Calculated BE are consistent with HAL QCD prediction

 Ω^{-}

Strong Interaction Parameters

2025/05/12

Summary

- I. Precision measurements of $\mathbf{p}-\mathbf{\Xi}^- \oplus \mathbf{\bar{p}}-\mathbf{\overline{\Xi}}^+$, Λ - Λ and \mathbf{p} - $\mathbf{\Omega}^- \oplus \mathbf{\bar{p}}-\mathbf{\overline{\Omega}}^+$ correlation function at STAR
- II. Extracted strong interaction parameters using L-L model by Bayesian method
 - □ $\mathbf{p}-\mathbf{\Xi}^- \oplus \mathbf{\bar{p}}-\mathbf{\Xi}^+$ pairs: $f_0 > 0$ -> Weakly attractive interaction
 - $\square \quad \mathbf{p} \cdot \mathbf{\Omega}^- \bigoplus \mathbf{\bar{p}} \cdot \mathbf{\overline{\Omega}}^+ \text{ pairs: } f_0 < 0 \rightarrow \text{ Bound state}$
- III. Extracted Binding Energy BE = $1.6^{+1.4}_{-0.5}$ MeV in **p**- $\Omega^- \oplus \overline{\mathbf{p}}$ - $\overline{\Omega}^+$ pair consistent with HAL QCD prediction

First experimental evidence of Strange Dibaryon

Thank you for your attention!

2025/05/12

Backup-Motivation

Backup- $p-\Omega^-$ **Bound**?

2025/05/12

Backup-Analysis Details

Backup-Bayesian Method

