

High p_T hadron suppression and jet v_2 from STAR

Xianglei Zhu Tsinghua University For the STAR Collaboration

Introduction

Jet quenching: suppression of inclusive particle production relative to a binary scaled p+p result [M. Gyulassy, et al. (1992)]

Jet quenching in A+A collisions has been regarded as one of the most important discoveries at RHIC

New observables or systematic measurements can be performed for detailed tomography study of properties of matter. [X.-N. Wang, PRC63]

 $\sqrt{s_{_{NN}}}$ dependence: High $p_{_{T}}$ hadron suppression at RHIC beam energy scan pathlength dependence: Jet $v_{_2}$ at top RHIC energy

Sangaline, Horvat, Zhang, Ohlson, QM2012

I. Vitev, QM2011

Previous $R_{CP}(R_{AA})$ Measurements at RHIC

- Clear suppression of high p_{T} particles
- Common suppression patten for different particle species
- Consistent with partonic energy loss models
- Key signature of a dense colored medium

R_{AA} Measurements at LHC

- Increased suppression at higher collision energies
- Suppression extends to higher transverse momentum

arXiv:1012.1004v1

R_{CP} Measurements at SPS

- Attempted to measure R_{CP} at $\sqrt{s_{NN}} = 17.3 \text{ GeV}$
- Statistics too limited to make a firm statement about the extent of suppression

October 23, 2012

The RHIC Beam Energy Scan (BES)

Main Goals:

To search for...

I. Critical point
II. Phase transition
III.Turn-off of QGP signatures

$\sqrt{s_{_{NN}}}$ (GeV)	MB Events (10 ⁶)
7.7	4.3
11.5	11.7
19.6	35.8
27	70.4
39	130.4
62.4	67.3

arXiv:1007.2613

The STAR Detector

Charged Particle Spectra

- Spectra for identified charged particles is extracted at each collision energy
- Efficiency and energy loss corrections are applied

Strange Particle Spectra

October 23, 2012

Positive Charge R_{CP}

0-5% / 60-80%

Negative Charge R_{CP}

0-5% / 60-80%

Strange Particle R

- No K⁰_s suppression at lower energies
- Cronin effect takes over partonic rescatterings at lower energies

- Cronin enhancement stronger at high p_T
- Impact on R_{CP} and R_{AA} would be a reduction of apparent suppression

$$R_{AA/pA}(p_T) = \frac{\left\langle N_{coll}^{pA} \right\rangle}{\left\langle N_{coll}^{AA} \right\rangle_{0-5\%}} * \frac{\frac{d^2 N_{AA}^{0-5\%}}{d^2 N_{pA}/dydp_T}}{\frac{d^2 N_{pA}/dydp_T}{d^2 N_{pA}/dydp_T}}$$

p+W reference

Phys. Rev. D 19, 764–778 (1979)

R_{AA/pA} is meant to be qualitative, the Cronin effect scales in a more complicated way.

Unidentified R_{CP}

High p_{T} suppression turns off at lower collision energies.

HIJING Simulation

HIJING qualitatively describes trend between energies without jet quenching enabled.

Discussion

Suppression turns off at lower collision energies

- Possible disappearance of QGP?
- Cronin effect
- Relative contributions of soft physics and hard scattering

Model comparisons are necessary!

Summary for high p_{T} hadron suppression

- Nuclear modification factors have been measured in RHIC beam energy scan
- Smooth transition in behavior between energies
- Clear turn off of suppression ($R_{CP} < 1$) has been observed at 27 GeV and below
 - R_{CP} has varying sensitivity to jet quenching at different collision energies
 - Further studies are ongoing to disentangle effects

What is Jet v_2 ?

In-medium pathlength Pathlength-dependent Energy/number of depends on orientation jet quenching reconstructed jets may to reaction plane depend on orientation to reaction plane. Au+Au 6 b=3-4fm y_{PP} 5 $\langle L(\varphi,b) \rangle (fm)$ x_{PP} 7-8 3 9 - 102 X_{RP} $_{0}$ [X.-N. Wang, PRC 63 (2001) 054902] φ (rad.)

- "Jet v_2 " \rightarrow correlation between *reconstructed* jets and the reaction plane (or 2nd -order participant plane)
- "Jet v_2 " \neq "Jet flow"

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

1) Angle of reconstructed jet axis

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

1) Angle of reconstructed jet axis 2) Azimuthal angle of event plane $\Psi_{\rm EP} = \frac{1}{2} \tan^{-1} \left(\frac{\sum_i w_i \sin(2\phi_i)}{\sum_i w_i \cos(2\phi_i)} \right)$

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

1) Angle of reconstructed jet axis 2) Azimuthal angle of event plane $\Psi_{\rm EP} = \frac{1}{2} \tan^{-1} \left(\frac{\sum_i w_i \sin(2\phi_i)}{\sum_i w_i \cos(2\phi_i)} \right)$

3) Event plane resolution

Jets at STAR

Run 7 Au+Au $\sqrt{s}_{NN} = 200 \text{ GeV}$ High Tower (HT) Trigger Trigger Jets found with Anti- k_{T} algorithm [1] $(R = 0.4, p_{T}^{track,tower} > 2 \text{ GeV}/c).$ [1] M. Cacciari and G. Salam, Phys. Lett. B 641, 57 (2006)

Online Trigger $E_{T} > 5.4$ GeV in one tower $\Delta \phi \ge \Delta \eta = 0.05 \ge 0.05$ Offline cut: $E_{T} > 5.5 \text{ GeV}$

Artificial Sources of Anisotropy

- Background Fluctuations and the Jet Energy Scale Background particles (with $p_T > 2 \text{ GeV}/c$) with significant v_2 are more likely to be clustered into the jet cone in-plane versus out-of-plane
 - \rightarrow more low-p_T jets reconstructed with a higher p_T
 - \rightarrow increased number of in-plane jets in a fixed reconstructed jet p_T range
- Biased Event Plane

Jet fragments included in event plane calculation \rightarrow event plane pulled towards jet

Background Fluctuations

- Embed p+p HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of p+p jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

 \circ jet p_T calculated before embedding

Background Fluctuations

- Embed p+p HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of p+p jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- \circ jet p_T calculated before embedding
- jet p_T calculated after embedding

Background Fluctuations

- Embed p+p HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of p+p jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- \circ jet p_T calculated before embedding
- jet p_T calculated after embedding
- difference
- Artificial jet v_2 caused by background fluctuations is ~ 4%
- Subtract from measured jet v_2 values.

Jet – Event Plane Bias

Simulation: PYTHIA jets embedded in thermal background

- Calculating the event plane at mid-rapidity leads to significant jet event plane bias!
- Need to determine event plane at forward rapidities to measure jet *v*₂ at mid-rapidity...

STAR Forward Capabilities

Zero Degree Calorimeter – Shower Maximum Detectors \rightarrow Spectator neutrons $|\eta| > 6.3$ Forward Time Projection Chambers \rightarrow Charged particle tracks $2.8 < |\eta| < 3.7$

STAR Forward Capabilities

 $|\eta_{iet}| < 0.6$

Zero Degree Calorimeter – Shower Maximum Detectors \rightarrow Spectator neutrons $|\eta| > 6.3$ $|\Delta \eta| > 5.7$ Forward Time Projection Chambers \rightarrow Charged particle tracks $2.8 < |\eta| < 3.7$

 $|\Delta \eta| > 2.2$

Event Plane Resolution

- Resolution determined from sub-event plane method
- Mixed harmonics: measure v_2 {ZDC-SMD} with respect to Ψ_1

Jet v_2 and Trigger v_2

• Jet v_2 {TPC} > HT v_2 {TPC} \rightarrow Jet – event plane bias is more significant when jets have additional high-p_T fragments

Jet v_2 and Trigger v_2

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- Jet v_{2} {TPC EP}
- Jet v_2 {FTPC EP}
- HT trigger v_2 {TPC EP}
- HT trigger v_2 {FTPC EP}
- Jet v_2 {TPC} > HT v_2 {TPC} \rightarrow Jet event plane bias is more significant when jets have additional high-p_T fragments
- Jet v_2 {FTPC} ~ HT v_2 {FTPC} \rightarrow Surface bias / bias towards unmodified jets is largely driven by high-p_T trigger requirement

Jet v_2 and Trigger v_2

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- Jet v_2 {TPC EP}
- Jet v_2 {FTPC EP}
- Jet v_2 {ZDC-SMD EP}
- HT trigger v_2 {TPC EP}
- HT trigger v_2 {FTPC EP}
- HT trigger v_2 {ZDC-SMD EP}
- Jet v_2 {TPC} > HT v_2 {TPC} \rightarrow Jet event plane bias is more significant when jets have additional high-p_T fragments
- Jet v_2 {FTPC} ~ HT v_2 {FTPC} \rightarrow Surface bias / bias towards unmodified jets is largely driven by high-p_T trigger requirement
- HT v_2 {ZDC-SMD EP} > 0

Jet v_2 vs Centrality

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- Jet v_2 {TPC EP}
- Jet v_2 {FTPC EP}
- Jet v_2 {ZDC-SMD EP}

• Jet v_2 {FTPC} is non-zero.

 \rightarrow Pathlength-dependent parton energy loss

- No clear centrality dependence outside statistical uncertainties.
- Caveat: Reconstructed jet energy has slight dependence on centrality

Jet v_2 vs Reconstructed Jet p_T

→ In single-particle v_2 measurements, this difference is attributed to flow in participant plane vs. reaction plane, $v_2(PP) > v_2(RP)$ → Jet energy loss sensitive to geometry in participant frame?

Jet v_2 summary

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet v_2 {FTPC} is observed.

 \rightarrow Indicative of pathlength-dependent parton energy loss.

- Measurements of jet v_2 with respect to the event plane measured at forward rapidities show...
 - \rightarrow The bias towards unmodified jets is largely due to the trigger requirement.
 - \rightarrow Within the kinematic regions studied, jet v_2 increases with p_T and is roughly independent of centrality.
- Can be used to further constrain theories of pathlengthdependent parton energy loss and parton-medium interactions.

Thanks!

October 23, 2012

Backup

October 23, 2012

Particle Identification

Particle identification is performed using simultaneous TOF (m²) and TPC (dE/dx) fits

Event Plane Calculations

• TPC: $0.2 < p_T^{\text{track}} < 2.0, p_T^{\text{-weighting}}$

Corrections: φ -weighting

- FTPC: $0.2 < p_T^{track} < 2.0, p_T^{track}$ weighting Corrections: recentering, shifting
- ZDC-SMD

Corrections: recentering, shifting

Does the recoil jet hit the FTPC?

- For pThat > 10 GeV/c, in 2M events, < 10 partons point towards the η region covered by the FTPC
- For pThat > 15 GeV/c, in 2M events, 0 partons point towards the η region covered by the FTPC

Participant vs. Reaction Plane

• $v_2\{PP\} > v_2\{RP\}$

FIG. 6: (Color online) The values of v_2 from various analysis methods vs centrality. Both the upper lines [3] and the lower line [25] are STAR data.

 X_{RP}

Reco. Jet p_T vs. Centrality

- Embed p+p HT trigger jets into Au+Au minimum bias events
- Reconstructed jet energy of embedded jets: $10 < p_T^{jet} < 15 \text{ GeV/c}$
- Distribution of p+p jet energies (reconstructed before embedding, with $p_T^{cut} = 0.2 \text{ GeV/c}$):

 Reconstructing jets in Au+Au samples slightly higher parton energies in peripheral events than in central (by ~2-5 GeV)

October 23, 2012