Coulomb Dissociation Measurement in Isobar UPC at $\sqrt{s_{NN}} = 200$ GeV

999

with The STAR Experiment

HOT QUARKS

2025

HEFEI, CHINA

Office of Science

Huda Nasrulloh (for STAR Collaboration)

University of Science and Technology of China -hudanasrulloh@mail.ustc.edu.cn-

Hot Quarks 2025, Hefei, May 11-17 2025

Outline

- Introductions
- Detector and data processing
- Approaching method
- Trigger luminosity and cross-section
- Summary and outlook

Electromagnetic Field in Heavy Ion Collisions

b). Single Coulomb dissociation (SCD)

c). Mutual Coulomb dissociation (MCD)

Ultra-Peripheral Collisions (UPC):

- Two ions pass each other $(b > R_1 + R_2)$
- Interaction dominated by relativistic electromagnetic field

□ Photonuclear Interactions:

- One or both ions emit virtual photons absorbed by the other, causing nuclear excitation and breakup
- Neutron emission occurs through a process known as Coulomb Dissociation (CD)

Hot Quarks 2025 | Hefei, May 11-17 2025

Isobaric Nuclei (Ru+Ru & Zr+Zr) Collisions

Ru	Zr	Ru/Zr
A = 96	A = 96	1.00
Z = 44	Z = 40	1.10
N / Z ≈ 1.18	N / Z ≈ 1.40	0.84

Key points:

- $\gamma \propto Z^2$ $(Z^2_{Ru} / Z^2_{Zr}) \approx 1.21$
- (N/Z) $(N/Z)_{Ru} < (N/Z)_{Zr}$

□ Isobaric Nuclei: Ruthenium (A=96, Z=44) and Zirconium (A=96, Z=40)

- Same mass number, different proton number
- Direct comparison of nuclear structures
- Probing the influence of proton number on nuclear properties ($\gamma \propto Z^2$)

STAR-ZDC Detector

□ STAR Experiment and ZDC Detector:

- The STAR experiment at RHIC is equipped with the ZDC detector
- The ZDC detects neutrons emitted in CD events

Data Processing

	ZDC-Mon		Zerobias	
Data set: Run18 RuRu / 7r7r @200 CeV	Collisions Species	Number of Event	Collisions Species	Number of Event
Trigger ·	Ru+Ru	5.113 M	Ru+Ru	4.935 M
ZDC-Mon	Zr+Zr	4.988 M	Zr+Zr	4.843 M

Zerobias

		zdc-mon <u>(history)</u>		37	600017	1.81K	8.81K
Neutron channels:	MCD		zdc-mon <u>(history)</u> > Requirements:	+ZDC- +ZDC- +ZDC- -Laser	TAC E W -protection		
ZDC-Mon -> MCD {1n1n, 1nXn, XnXn}	C ()	ZEROBIAS <u>(history)</u>		60	9300	844.48K	4.18M
ZB -> SCD {1n, Xn}			ZEROBIAS (<u>history</u>)> Requirements	s:-Lase	r-protectior		

0.041

Approaching method

1. Event Filtering:

The BBC detector vetoing hadronic events:

- at least one side $BBC_n \leq 20$ (ZDC-Mon)
- at least one side $BBC_n \le 1$ (Zero-Bias)

BBCn = BBC coincidence tagging of hadrons, allowing neutron emissions to pass through and be detected by the ZDC.

Perform multi-gaussian fit to extract neutron emission distribution

2. Neutron tagging of UPC:

Neutron-tagged events are selected using the ZDC

4. <u>Cross-Section Calculation:</u> Calculate σ_{cd} for each neutron emission channel

Neutron emission extraction Ru (A=96, Z=44)

Multi-gaussian fit

• Gaussian Peaks (n-neutron events):

$$g_i(x,\mu_i,\sigma_i) = \frac{A_i}{\sigma_i\sqrt{2\pi}} \exp\left(-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right) \quad \text{for } i = 1,2,3 \qquad \qquad \mu_2 = 2\mu_1, \quad \sigma_2 = \sqrt{2}\sigma_1 \quad (2\text{n peak}) \\ \mu_3 = 3\mu_1, \quad \sigma_3 = \sqrt{3}\sigma_1 \quad (3\text{n peak})$$

• Exponential Modified Gaussian (>4n):

$$eg(x,\mu_4,\sigma_4) = A_4\left(\frac{\lambda}{2}\right) \exp\left(\frac{\lambda}{2}(2\mu_4 + \lambda\sigma_4^2 - 2x)\right) \left[1 + \operatorname{erf}\left(\frac{x - \mu_4 - \lambda\sigma_4^2}{\sigma_4\sqrt{2}}\right)\right]$$

5/14/2025

Efficiency and purity of 1n event Ru (A=96, Z=44)

The 1n emission probably also contains 2n. Therefore, we calculate efficiency & purity

ZDC-Mon Luminosity

The STAR recorded data was analyzed to obtain *luminosity of the ZDC-mon triggered events* (Laternon)

	Name zdc-mon	Species	Tid	Lum [ub^_1]	Nev [M]	ZDC	_Mon
zdc-mon zdc-mon	200-11011	RuRu RuRu RuRu	600007 600017	0.019 1.480	0.086 6.870	Collision Species	Number of Event
zdc-mon	zdc-mon	ZrZr ZrZr	600007	1.530	7.098	Ru+Ru	5.113M
zdc-mon		ZrZr	600017	1.529	7.094	Zr+Zr	4.988M

•
$$L_{\text{zdcmon}[\text{Ru}]}(\text{Xn},\text{Xn}) = \frac{\sum N(Xn,Xn)_{\text{Ru}} \cdot L_{\text{zdc}_coinc}(\text{Ru})}{\sum N_{\text{zdc}_coinc}(Xn,Xn)_{\text{Ru}}} = \frac{5.113M \cdot 1.499}{6.956M} \approx 1.101 \ \mu b^{-1}$$

•
$$L_{\text{zdcmon}[Zr]}(Xn,Xn) = \frac{\sum N(Xn,Xn)_{Zr} \cdot L_{\text{zdc}_coinc}(Zr)}{\sum N_{\text{zdc}_coinc}(Xn,Xn)_{Zr}} = \frac{4.989M \cdot 1.530}{7.096M} \approx 1.076 \mu b^{-1}$$

5/14/2025

Hot Quarks 2025 | Hefei, May 11-17 2025

ZDC-Coincidence

	Name	Species	Tid	Lum [ub^-1]	Nev [M]
	zdc-mon	RuRu		1.499	6.956
zdc-mon		RuRu	600007	0.019	0.086
zdc-mon		RuRu	600017	1.480	6.870
	zdc-mon	ZrZr		1.530	7.098
zdc-mon		ZrZr	600007	0.001	0.004
zdc-mon		ZrZr	600017	1.529	7.094

The STAR recorded data enables to calculate the *ZDC-coincidence* cross-section, σ_{coinc} , which follow this formula:

$$\sigma_{coinc} = \frac{\sum N_{coinc}}{L}$$

where $\sum N$ is number of event of coincidence, and L is integrated luminosity

5/14/2025

Hot Quarks 2025 | Hefei, May 11-17 2025

ZB Trigger Luminosity Estimation

We estimate luminosity of <u>Zerobias trigger</u> (L_{zb}) with the (Xn,Xn) channel :

Zarobiaa	Ru	Zr	
Zerobias	$\sum N$	$\sum N$	
(Xn,Xn)	13381	13304	

followed by ZDC coincidence cross-section, σ_{coinc} , thus :

•
$$L_{zb[Ru]}(Xn,Xn) = \frac{\sum N(Xn,Xn)}{\sigma_{coinc(Ru)}} = \frac{13381}{4.64} = 2883.83 \ b^{-1}$$

• $L_{zb[Ru]}(Xn,Xn) = \frac{\sum N(Xn,Xn)}{\sigma_{coinc(Ru)}} = \frac{13304}{4.64} = 2867.85 \ b^{-1}$

•
$$L_{zb[Zr]}(Xn,Xn) = \frac{\sum N(Xn,Xn)}{\sigma_{coinc(Zr)}} = \frac{13304}{4.64} = 2867.85 \ b^{-1}$$

5/14/2025

Coulomb dissociation cross-section

We compute Coulomb dissociation cross-section by formula :

$$\sigma_{cd} = \frac{\sum N_{n-channel}}{L_{trigger}},$$

where $\sum N_{n-channel}$ associated with each neutron emission channels, for SCD ($\sum N_{[0n1n]}$, $\sum N_{[0nXn]}$) and MCD ($\sum N_{[1n1n]}$, $\sum N_{[1nXn]}$, & $\sum N_{[XnXn]}$) include luminosity-trigger as L_{zb} and $L_{zdc-mon}$, respectively.

Preliminary Result

Neutron	Ru (mb)	Zr (mb)	Ratio (Ru/Zr)
1n1n	$14.21 \pm 0.08 \pm 1.70$	$6.51 \pm 0.05 \pm 0.79$	$2.18 \pm 0.02 \pm 0.21$
1nXn	$47.61 \ \pm 0.14 \ \pm 5.53$	$33.23 \pm 0.11 \pm 3.80$	$1.43 \pm 0.05 \pm 0.12$
XnXn	$168.00 \pm 0.39 \pm 20.95$	$190.19 \pm 0.42 \pm 23.51$	$0.88 \pm 0.02 \pm 0.09$

Table 1: Mutual Coulomb dissociation (MCD) cross-section of Isobar data

Table 2: Single Coulomb dissociation (SCD) cross-section of Isobar data

Neutron	Ru (b)	Zr (b)	Ratio (Ru/Zr)
0n1n	$2.05 \ \pm 0.02 \ \pm 0.20$	$1.25 \pm 0.01 \pm 0.13$	$1.60 \pm 0.02 \pm 0.04$
0nXn	$4.48 \pm 0.02 \pm 0.45$	$4.36 \pm 0.02 \pm 0.44$	$1.03 \pm 0.06 \pm 0.02$
0nXn+Xn0n	$8.96 \ \pm 0.04 \ \pm 0.90$	$8.72 \pm 0.04 \pm 0.89$	$1.03 \pm 0.06 \pm 0.02$

Summary

\Box Conclusion

- The first measurement of <u>Coulomb dissociation</u> in STAR Isobar data include the cross-section calculation of both SCD and MCD events
- The ratios <u>1.60 ± 0.02</u> (1n SCD) & <u>2.18 ± 0.02</u> (1n1n MCD) of (Ru/Zr) demonstrate:
 - > Clear Z-dependence, exceeding Z^2 scaling (Z^2_{Ru} / $Z^2_{Zr} \approx 1.21$)
 - At Low-energies, 1n emission results may be explained by Giant Dipole Resonance (GDR) excitations, where cross-section is enhanced for higher proton of Ru-96.
 - Hints at nuclear structure effect of the Isobar
- The ratios 1.03 ± 0.06 (Xn SCD) and 0.88 ± 0.02 (XnXn MCD) of (Ru/Zr) are near unity. It indicates:
 - Both Isobars are geometrically identical (A=96)
 - No Z-dependence which may indicate no significant EM effects

• We will perform model calculation for neutron emission with Giant resonance, Quasi-deuteron, and higher energy pomeron contribution to cover photon energy up to RHIC regime.

Backup

1nXn (Ru vs Zr)

XnXn (Ru vs Zr)

5/14/2025

Hot Quarks 2025 | Hefei, May 11-17 2025

0nXn (Ru vs Zr)

Neutron emission extraction Zr (A=96, Z=40)

