

UPC2025: The second international workshop on the physics of Ultra Peripheral Collisions

1958

Huda Nasrulloh (for STAR Collaboration) University of Science and Technology of China - hudanasrulloh@mail.ustc.edu.cn -

UPC 2025, Saariselkä, Finland, June 9-13, 2025

- Introduction
- Detector and data processing
- Approaching method
- Coulomb dissociation preliminary result
- Summary and outlook

6/12/2025

Huda | UPC 2025 | Saariselkä, June 9-13 2025

3

Isobaric Nuclei (Ru+Ru & Zr+Zr) Collisions

Ru	Zr	Ru/Zr
A = 96	A = 96	1.00
Z = 44	Z = 40	1.10
N / Z ≈ 1.18	N / Z ≈ 1.40	0.84

Key points:

•
$$\gamma \propto Z^2$$
 • $(Z^2_{Ru} / Z^2_{Zr}) \approx 1.2$

□ Isobaric Nuclei: Ruthenium (A=96, Z=44) and Zirconium (A=96, Z=40)

- Same mass number, different proton number
- Direct comparison of nuclear structures
- Probing the influence of proton number on

nuclear properties ($\mathbf{\gamma} \propto Z^2$)

STAR-ZDC Detector

- □ STAR Experiment and ZDC Detectors:
 - The STAR experiment at RHIC is equipped with the ZDC detectors
 - The ZDC detects neutrons emitted in CD events

Data Processing

Data set:

Run18 Ru+Ru / Zr+Zr collisions at

 $\sqrt{S_{NN}} = 200 \text{ GeV}$ Trigger :

ZDC-Mon

Zerobias Neutron channels:

ZDC-Mon -> MCD {1n1n, 1nXn, XnXn}

ZB -> SCD {0n1n, 0nXn}

ZDC	-Mon	Zerobias			
Collisions Species	Number of Events	Collisions Species	Number of Events		
Ru+Ru	5.113 M	Ru+Ru	4.935 M		
Zr+Zr	4.988 M	Zr+Zr	4.843 M		

SCD

ZEROBIAS (history)		60	9300	844.48K	4.18M
	ZEROBIAS (history)> Requirements	:-Las	er-protectio	on	

8.81K

Approaching method

1. Event Filtering:

ZD(

- The BBC detector vetoing hadronic events:
- at least one side $BBC_n \le 20$ (ZDC-Mon)
- at least one side $BBC_n \le 1$ (Zero-Bias)

BBCn = BBC coincidence tagging of hadrons, allowing neutron emissions to pass through and be detected by the ZDC.

TOF + BEMC

BBC

VPD

ZDC

3. <u>Neutron Emission Extraction</u> Perform multi-gaussian fit to extract neutron emission distribution

2. Neutron tagging of UPC:

Neutron-tagged events are selected using the ZDC

4. <u>Cross-Section Calculation</u>: Calculate σ_{cd} for each neutron emission channel

6/12/2025

Neutron emission extraction Ru (A=96, Z=44)

We extracted neutron emission by using the multi-gaussian fiting function

6/12/2025

Coulomb dissociation cross-section

We calculate Coulomb dissociation cross-section using the formula :

where $\sum N_{n-channel}$ corresponds to each neutron emission channel, for SCD ($\sum N_{[0n1n]}$, $\sum N_{[0nXn]}$) and MCD ($\sum N_{[1n1n]}$, $\sum N_{[1nXn]}$, & $\sum N_{[XnXn]}$), with the luminosity of each trigger (L_{zb} and $L_{zdc-mon}$) taken into account.

ZDC-Mon Luminosity

The STAR recorded data was analyzed to obtain *luminosity of the ZDC-mon triggered events* (*L_{zdemon}*)

	Name	Species	Tid	Lum [ub^_1]	Nev [M]		ZDO	C_Mon
zdc-mon zdc-mon	2uc-mon	RuRu RuRu RuRu	600007 600017	0.019 1.480	0.086 6.870		Collision Species	Number of Events
zdc-mon	zdc-mon	ZrZr	600007	1.530	7.098		Ru+Ru	5.113M
zdc-mon		ZrZr	600017	1.529	7.094		Zr+Zr	4.988M
• L _{zdcm}	_{on[Ru]} (Xn,Xn)	$=\frac{\sum N(Xn)}{\sum N}$	$(Xn)_{ m Ru}$. $(X_{ m cc_coinc})_{ m rec}$	$\frac{L_{zdc_coinc(Ru)}}{(n,Xn)_{Ru}} = \frac{5}{(n,Xn)_{Ru}}$.113M • 1.499 μ 6.956M	$\frac{ab^{-1}}{ab} \approx 1.10$	$1 \ \mu b^{-1}$	
• L _{zdcm}	_{on[Zr]} (Xn,Xn)	$= \frac{\sum N(Xn)}{\sum N_z}$	$(Xn)_{Zr}$	$\frac{L_{\rm zdc_coinc(Zr)}}{n, Xn)_{\rm Zr}} = \frac{4}{2}$	989M • 1.530 μi 7.096M	$\frac{b^{-1}}{2} \approx 1.070$	6 µb ⁻¹	

ZDC-Coincidence

	Name	Species	Tid	Lum [ub^-1]	Nev [M]
	zdc-mon	RuRu		1.499	6.956
zdc-mon		RuRu	600007	0.019	0.086
zdc-mon		RuRu	600017	1.480	6.870
	zdc-mon	ZrZr		1.530	7.098
zdc-mon		ZrZr	600007	0.001	0.004
zdc-mon		ZrZr	600017	1.529	7.094

The STAR recorded data enables to calculate the *ZDC-coincidence* cross-section, σ_{coinc} , which follow this formula:

$$\sigma_{coinc} = \frac{\sum N_{coinc}}{L}$$

where $\sum N$ is number of event of coincidence, and L is integrated luminosity

$$\sigma_{\rm Ru} \approx 4.64 \ b$$

6/12/2025

ZB Trigger Luminosity Estimation

We estimate luminosity of Zerobias trigger (L_{zb}) with the (Xn,Xn) channel :

Zarabiaa	Ru	Zr	
Zerobias	$\sum N$	$\sum N$	
(Xn,Xn)	13381	13304	

followed by ZDC coincidence cross-section, σ_{coinc} , thus :

•
$$L_{zb[Ru]}(Xn,Xn) = \frac{\sum N(Xn,Xn)}{\sigma_{coinc(Ru)}} = \frac{13381}{4.64 \ b} = 2883.83 \ b^{-1}$$

• $L_{zb[Zr]}(Xn,Xn) = \frac{\sum N(Xn,Xn)}{\sigma_{coinc(Zr)}} = \frac{13304}{4.64 \ b} = 2867.85 \ b^{-1}$

Single-Coulomb dissociation (SCD) Cross-section

Mutual-Coulomb dissociation (MCD) Cross-section

6/12/2025

Summary

□ Conclusion

- The first measurement of <u>Coulomb dissociation</u> in STAR Isobar data including the cross-section calculation of both SCD and MCD events
- The (Ru/Zr) ratios (1.60 ± 0.02 for 0n1n SCD) and (2.18 ± 0.02 for 1n1n MCD) demonstrate:
 - > Clear Z-dependence, exceeding Z^2 scaling (Z^2_{Ru} / $Z^2_{Zr} \approx 1.21$)
 - At Low energies, 1n emission results may be explained by Giant Dipole Resonance (GDR) excitations, where cross-section is enhanced for higher proton of Ru-96.
 - Hints at nuclear structure effect of the Isobar
 - The (Ru/Zr) ratios (1.03 ± 0.06 for 0nXn SCD) and (0.88 ± 0.02 for XnXn MCD) are near unity, implying:
 - Both Isobars are geometrically identical (A=96)
 - No Z-dependence which may indicate no significant EM effects

•

To validate the Coulomb dissociation measurements, we will model neutron emission (Giant dipole resonance + Quasi-deuteron + Nucleon resonance + Pomeron) with photon energy up to STAR.

Thank You!

ō

6/12/2025

0

Multi-gaussian fit

$$\underbrace{\text{TotalFit}}_{\text{Xn}} = \underbrace{g_1(x)}_{1n} + \underbrace{g_2(x)}_{2n} + \underbrace{g_3(x)}_{3n} + \underbrace{eg(x)}_{>4n}$$

• Gaussian Peaks (n-neutron events):

$$g_i(x,\mu_i,\sigma_i) = \frac{A_i}{\sigma_i\sqrt{2\pi}} \exp\left(-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right) \quad \text{for } i = 1,2,3 \qquad \begin{array}{l} \mu_2 = 2\mu_1, \quad \sigma_2 = \sqrt{2}\sigma_1 \quad (2\text{n peak}) \\ \mu_3 = 3\mu_1, \quad \sigma_3 = \sqrt{3}\sigma_1 \quad (3\text{n peak}) \end{array}$$

17

• Exponential Modified Gaussian (>4n):

$$eg(x,\mu_4,\sigma_4) = A_4\left(\frac{\lambda}{2}\right) \exp\left(\frac{\lambda}{2}(2\mu_4 + \lambda\sigma_4^2 - 2x)\right) \left[1 + \operatorname{erf}\left(\frac{x - \mu_4 - \lambda\sigma_4^2}{\sigma_4\sqrt{2}}\right)\right]$$

6/12/2025

Preliminary Result

Table 1: Mutual Coulomb dissociation (MCD) cross-section of Isobar data

Neutron	Ru (mb)		Zr (mb)	Ratio (Ru/Zr)
1n1n 14.21	$\pm 0.08 \pm 1.7$	$0 \qquad 6.51 =$	$\pm 0.05 \pm 0.79$	$2.18 \ \pm 0.02 \ \pm 0.21$
1nXn 47.61	± 0.14 ± 5.5	3	$\pm 0.11 \pm 3.80$	$1.43 \pm 0.05 \pm 0.12$
XnXn 168.00	± 0.39 ± 20.9	$5 190.19 ext{ =}$	$\pm 0.42 \pm 23.51$	$0.88 \ \pm 0.02 \ \pm 0.09$

Table 2: Single Coulomb dissociation (SCD) cross-section of Isobar data

Neutron	Ru (ł)	Zr (b)	Ra	tio (Ru/Zr)
0n1n	$2.05 \hspace{0.2cm} \pm \hspace{0.2cm} 0.02 \hspace{0.2cm}$	± 0.20	$1.25 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01 \hspace{0.2cm}$	± 0.13 1.60	$\pm 0.02 \pm 0.04$
0nXn	$4.48 \hspace{0.2cm} \pm \hspace{0.2cm} 0.02 \hspace{0.2cm}$	± 0.45 4	4.36 ± 0.02	± 0.44 1.03	$\pm 0.06 \pm 0.02$
0nXn+Xn0n	$8.96 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04 \hspace{0.2cm}$	± 0.90	8.72 ± 0.04	± 0.89 1.03	$\pm 0.06 \pm 0.02$

1nXn (Ru vs Zr)

6/12/2025

XnXn (Ru vs Zr)

6/12/2025

0nXn (Ru vs Zr)

6/12/2025

Neutron emission extraction Zr (A=96, Z=40)

We extracted neutron emission by fiting function $\underbrace{\text{TotalFit}}_{\text{TotalFit}} = g_1(x) + g_2(x) + g_3(x) + eg(x)$

Huda | UPC 2025 | Saariselkä, June 9-13 2025

Xn

>4n

Efficiency and purity of 1n event Ru (A=96, Z=44)

The 1n emission probably also contains 2n. Therefore, we calculate efficiency & purity

