Longitudinal Spin Transfer to Λ and Λ Hyperons Produced in Polarized Proton-Proton Collisions at \sqrt{s} =200 GeV

Ramon Cendejas (UCLA/LBL) for the STAR Collaboration

2012 Fall Meeting of the APS Division of Nuclear Physics

Newport Beach, California October 25, 2012

Motivation

- The quark spin contribution to the proton spin is small [1].
- Polarized fragmentation is not well understood [2].
- Polarized quark fragmentations can be studied by extracting Λ-D_{LL} from polarized proton-proton collisions at RHIC [3].
- Λ hyperon is made up of an up, down and strange quark
- At high p_T , strange quark fragmentation expected to dominate Λ production
- Weak decay parameter is externally measured

 $\frac{dN}{d\cos\theta^*} = \frac{N_{tot}}{2} A(\cos\theta^*) (1 + \alpha_w P_A \cos\theta^*)$

- A($\cos\theta^*$): Acceptance function
- α_w : Weak decay parameter
- P_{Λ} : Λ polarization

D_{LL} : Spin Transfer

$$D_{LL} \equiv \frac{\sigma_{p}^{+}_{p \to \Lambda}^{+}_{X} - \sigma_{p}^{+}_{p \to \Lambda}^{-}_{X}}{\sigma_{p}^{+}_{p \to \Lambda}^{+}_{X} + \sigma_{p}^{+}_{p \to \Lambda}^{-}_{X}}$$

D_{LL} : Extraction Method

$$D_{LL} = \frac{1}{P_{Beam} \cdot \alpha_w \cdot \langle cos(\theta^*) \rangle} \cdot \frac{N^+ - R \cdot N^-}{N^+ + R \cdot N^-}$$

- A easily reconstructed at STAR via weak decay channel
- A polarization is determined by its self-analyzing property
- D_{LL} is expected to be sensitive to polarized fragmentation functions and polarized parton distribution functions

[1] EMC, J. Ashman et al, Nucl. Phys. B 328 (1989) 1
[2] e.g. Z.T. Liang and C. Boros, Phys.Rev.D57:4491-4494,1998
[3] Bo-Qiang Ma et al, Nucl.Phys. A703: 346-364,2002

RHIC Model Predictions

W. Vogelsang, M. Stratmann, D. de Florian, Private Communication D. de Florian, et al., Phys. Rev. Lett. 81, 530 (1998)

- D_{LL} calculations for $(\Lambda + \overline{\Lambda})$
- Models were re-evaluated
 - − √s = 200 GeV
 - Updated fragmentation functions (NLO DSSV)
 - D_{LL} as a function of p_T
- Model spread of 0.07 at $p_T = 6.5 \text{ GeV}$
- Potentially measurable with current data

Up, down, and strange quark polarizations contribute equally to D_{LL}

Based on expectations from the naïve quark model, only polarized strange quarks are allowed contribute to D_{LL}

Besides polarized strange quark contribution, a DIS-like configuration expects a large negative contribution from up and down quark polarization to D_{LL}

- Additional model predictions by Q.H. Xu et al.
- D_{LL} model curves generated independently for Λ and $\overline{\Lambda}$
- Additional models generated for Λ as a function of p_T and momentum fraction z

Q.H. Xu et al., Phys. Rev. D 73, 077503 (2006)

Relativistic Heavy Ion Collider (RHIC)

Year	\sqrt{s} (GeV)	L _{recorded} (pb ⁻¹) (long.)	Polarization (%)(blue / yellow)
2005	200	3.1	52 ± 3 / 48 ± 3
2006	200	6.5	56 ± 4 / 58 ± 3
2009	200	22	57 ± 3 / 57 ± 4

Solenoidal Tracker At RHIC (STAR)

Hyperon Reconstruction

- Observables tuned per $p_{\scriptscriptstyle T}$ interval remove bulk of combinatorial background

Jet Reconstruction

(Identical to 2009 Jet A_{LL} Analysis)

- STAR cannot directly trigger on As
- STAR triggers on electromagnetic energy deposited on the BEMC
- Triggering on high p_T jets allows to study hard scattering events
- Only jet-events are used
 - Standard STAR jet reconstruction
 - Midpoint cone algorithm
 - Cone radius R = 0.7 rad
 - Jet $p_T > 3.5$ GeV
 - Seed $E_T = 0.5 \text{ GeV}$
 - Split Fraction = 0.5
 - Jet Cuts
 - $-0.7 < \eta_{det} < 0.9$
 - 0.01 < NEF < 0.95

G. C. Blazey et al, arXiv:hep-ex/0005012v2 (2000)

Hyperon-Jet Association

- Jet matched to triggered jet patch
- Near-side: Λ resides within jet cone
- Away-Side: Λ resides $\Delta \phi = \pi$ from jet cone
- Away side has similar precision as near side

 $\Delta \phi = \phi_{\Lambda} - \phi_{jet}$ $\Delta \eta = \eta_{\Lambda} - \eta_{jet}$

Systematics

Systematic Checks

- Null measurement of spin-less K_s⁰-D_{LL}
- Null measurements of A_L, A_{Ls}, A_{u.s}

Systematic Contributions

- 4.7% Beam polarization
- 2.0% Weak decay parameter, α_w
- 1.9% Residual transverse polarization
- 5x10⁻³ Relative luminosity
- < 6x10⁻³ Residual background
- 0.013 (smallest p_T interval) Pileup
- 0.027 (largest p_T interval) Trigger bias

Preliminary 2009 Near-Side D_{LL} Results

- Data provides no significant difference between Λ and $\overline{\Lambda}$ D_{LL}
- Additional sample of away-side Λ's with similar precision

Comparison to Vogelsang's Model

Up, down, and strange quark polarizations contribute equally to D_{LL}

Based on expectations from the naïve quark model, only polarized strange quarks are allowed contribute to D_{LL}

Besides polarized strange quark contribution, a DIS-like configuration expects a large negative contribution from up and down quark polarization to D_{LL}

- 2009 data improved by a factor of 5(4) in precision for $\Lambda(\overline{\Lambda}) D_{LL}$ compared to 2005 published results
- 2009 D_{LL} extends in Λp_T up to ~6. 5 GeV
- Data does not yet discriminate between model expectations
- A and $\overline{\Lambda}$ D_{LL} consistent with model curves
- D_{LL} model calculations for $(\Lambda + \overline{\Lambda})$

Summary & Outlook

- Preliminary 2009 D_{LL} results are presented
- D_{LL} extends in Λp_T up to ~6. 5 GeV
- Cross Checks & Systematics:
 - Cross Checks and null tests performed and passed with expected results
 - Complete assessment of systematic uncertainties
- Finalizing 2009 D_{LL} results for publication currently in progress
- Away-side sample will complement the near-side D_{LL} analysis with similar precision