STAR overview Prithwish Tribedy for the STAR collaboration (Brookhaven National Laboratory)

Outline

- Small systems:
 - Forward di-hadron correlations Talk by Xiaoxuan Chu (Tue 18:40)
 - Collectivity in ³He+Au, d+Au and p+Au Talk by Shengli Huang (Tue 18:40)
- Initial Stages of A+A: •
- Effect of deformation on $v_n \langle p_\tau \rangle$ correlations and $\langle p_\tau \rangle$ fluctuations Talk by Jiangyong Jia (Thu 16:35) • Longitudinal de-correlations, (anti)-particle v_3 , elliptic flow at high p_{τ} Talk by Maria Stefaniak (Tue 18:40) Ultra-peripheral collisions and strong field effects:
 - Photoproduction of J/ψ in d+Au collisions Talk by Xiaofeng Wang (Wed 18:45)
 - Photoproduction of low p_T di-electron in UPC & peripheral A+A Talk by Xiaofeng Wang (Wed 18:45)
 - Probing nuclei with linearly polarized photons Talk by Daniel Brandenburg (Wed 19:25)
 - Search for the Chiral Magnetic Effect Talk by Jie Zhao (Thu 15:55)
- Forward upgrade and STAR beyond 2021+ Talk by Ting Lin (Thu 16:35)

Small Systems

- •
- •

Forward di-hadron correlations Collectivity in ³He+Au, d+Au and p+Au

Forward di-hadron correlations in p+A collisions

Albacete et al., Phys. Rev. D 99, 014002

Suppression of back-to-back π^0 pairs in p+A relative to p+p increases with A & event activity

Talk by Xiaoxuan Chu (Tue 18:40)

$V_{pair}(\Delta \phi)$ $|C(\Delta \phi)| =$ N_{trig}

Area of $C(\Delta \phi)$: p+p > p+Al > p+Au

Width of $C(\Delta \phi)$: p+p ~ p+Al ~ p+Au

GBW model: Stasto et al., Phys. Lett. B, 716(2012) 430-434

Forward di-hadron correlations in p+A collisions

More significant suppression of area at lower p_T and no modification of width Saturation frameworks correctly predict the systematics of area suppression in p+A

Talk by Xiaoxuan Chu (Tue 18:40)

Collectivity in small collision systems ³He+Au p+Au d+Au

 $v_2(^{3}He+Au) \sim v_2(d+Au) > v_2(p+Au)$, ordering consistent with PHENIX results, role of final state is established

Talk by Shengli Huang (Tue 18:40)

Collectivity in small collision systems ³He+Au d+Au p+Au

Consistent results using different methods of non-flow subtraction that increases v₃

STAR results: $v_3(^{3}He+Au) \sim v_3(d+Au) \sim v_3(p+Au)$, using different methods & coverage from PHENIX Cross-experiment task force working to understand the apparent STAR-PHENIX discrepancy

Talk by Shengli Huang (Tue 18:40)

Initial Stages of A+A

- Effect of deformation on $v_n \cdot \langle p_T \rangle$ correlations and $\langle p_T \rangle$ fluctuations
- Longitudinal de-correlations, (anti)-particle v_3 , elliptic flow at high p_T

Nuclear deformation & $v_n \cdot \langle p_T \rangle$ fluctuations

Giacalone, Phys. Rev. Lett. 124, 202301 (2020)

Side-Side U+U Large v_2 & low $\langle p_T \rangle$

Tip-Tip U+U Small v₂ & high $\langle p_{\tau} \rangle$

Au+Au (Baseline)

$$\rho(\boldsymbol{v_n^2}, [\boldsymbol{p_T}]) = \frac{\operatorname{cov}(\boldsymbol{v_n^2}, [\boldsymbol{p_T}])}{\sqrt{\operatorname{Var}(\boldsymbol{v_n^2})_{\mathrm{dyn}} \langle \delta \boldsymbol{p_T} \delta \boldsymbol{p_T} \rangle}}$$

Anti-correlation of v₂ and $\langle p_{\tau} \rangle$ indicates possible sensitivity to deformed shape of Uranium STAR overview, P. Tribedy, IS 2021 9

Talk by Jiangyong Jia (Thu 16:35) Poster by Chunjian Zhang (Mon 19:40)

Nuclear deformation & $\langle p_T \rangle$ fluctuations

 $\delta p_T = p_T - [p_T]$

Higher order fluctuations of $\langle p_{\tau} \rangle$ show difference in central U+U and Au+Au \rightarrow sensitivity to deformation

Орт

Variance

Talk by Jiangyong Jia (Thu 16:35) Poster by Chunjian Zhang (Mon 19:40)

 $\left<\delta p_T \delta p_T \delta p_T \right> \left<\left< p_T \right>\right>$ $\langle \delta p_T \delta p_T \rangle$ Intensive $\langle \delta p_T \delta p_T \rangle^2$ Skewness $\langle \langle p_T \rangle \rangle$

More on flow and de-correlation & 3D initial state

$$r_n(\eta^a, \eta^b) = \frac{V_{n\Delta}(-\eta^a, \eta^b)}{V_{n\Delta}(\eta^a, \eta^b)}$$

RHIC de-correlation results do not follow beam rapidity scaling

Poster by Maowu Nie (Mon 19:40)

Talk by Maria Stefaniak ' (Tue 18:40)

More on flow and de-correlation & 3D initial state

$$r_n(\eta^a, \eta^b) = \frac{V_{n\Delta}(-\eta^a, \eta^b)}{V_{n\Delta}(\eta^a, \eta^b)}$$

RHIC de-correlation results do not follow beam rapidity scaling

Talk by Maria Stefaniak 5 (Tue 18:40)

Ultra-peripheral Collisions & Strong Fields

- Photoproduction of J/ψ in d+Au collisions
- Probing nuclei with linearly polarized photons
- Search for the Chiral Magnetic Effect

• Photoproduction of low p_T di-electron in UPC & peripheral A+A

13

Photoproduction of J/ψ in d+Au UPC

Total cross section is a combination of: 1. Coherent contribution (~exp(-b ltl)) 3. Nucleon dissociative (ep HERA)

Fit to data:

Coherent +

Elastic nucleon + Nucleon disso:

ep H1:

Eur.Phys.J.C 73 (2013) 6, 2466

Talk by Xiaofeng Wang (Wed 18:45)

2. Elastic nucleon (ep HERA & other templates)

The coherent diffractive component extracted constrains gluon distribution inside deuteron

Photoproduction of J/ψ in d+Au UPC

Total cross section is a combination of: 1. Coherent contribution (~exp(-b |t|)) 3. Nucleon dissociative (ep HERA)

Fit to data: Coherent: $\sim \exp(-b |t|)$ Elastic nucleon: ep H1 Nucleon disso: ep H1 Eur.Phys.J.C 73 (2013) 6, 2466

Data at large t (mostly incoherent) favors CGC predictions with sub-nucleon scale and Q_S fluctuations

Talk by Xiaofeng Wang (Wed 18:45)

2. Elastic nucleon (ep HERA & other templates)

Photoproduction of low p_T electron-positron

γγ→e⁺e⁻

(A+A 80-100 %)

*/ | | *

e

Breit-Wheeler Process and vacuum birefringence

 $eB > eB_C \approx m_e^2 \sim 10^8 T$

Constraints on B-field strength & linear polarization of photons

> Excess of low p_T electronpositron production studied in 54.4 GeV peripheral Au +Au collisions

First study of azimuthal angular modulations of in peripheral AA and its energy dependence

Talk by Xiaofeng Wang (Wed 18:45)

STAR Collaboration, arXiv:1910.12400

$\Delta \Phi ([e^+ + e^-], [e^+ - e^-])$

Probing nuclei with linearly polarized photons

Polarized γ+A producing $\rho \rightarrow \pi + \pi$

$\langle \cos(2\Delta\phi) \rangle$ modulation, $\Delta\phi([\pi^+ + \pi^-], [\pi^+ - \pi^-])$

Observation of two-source interference effects, amplitude shows structure & sensitivity to nucleus shape

Search for the Chiral Magnetic Effect

Four equations, four unknowns: $\Delta \gamma^{\rm sig}(\Psi_{\rm ZDC}) + \Delta \gamma^{\rm bkg}(\Psi_{\rm ZDC}) = \Delta \gamma(\Psi_{\rm ZDC})$ $\Delta \gamma^{\rm sig}(\Psi_{\rm TPC}) + \Delta \gamma^{\rm bkg}(\Psi_{\rm TPC}) = \Delta \gamma(\Psi_{\rm TPC})$ $\Delta \gamma^{\rm bkg}(\Psi_{\rm ZDC})/\Delta \gamma^{\rm bkg}(\Psi_{\rm TPC}) = v_2(\Psi_{\rm ZDC})/v_2(\Psi_{\rm TPC})$ $\Delta \gamma^{
m sig}(\Psi_{
m ZDC})/\Delta \gamma^{
m sig}(\Psi_{
m TPC}) = v_2(\Psi_{
m TPC})/v_2(\Psi_{
m ZDC})$

Case of CME from this analysis is $f_{CME}(Ru) > f_{CME}(Zr)$

Talk by Jie Zhao <u>STAR</u> (Thu 15:55)

Forward upgrade and STAR beyond 2021+

Prospects of initial state physics: why STAR and RHIC ?

Wide range of species & energy \rightarrow strength

Au+Au

0+0

Ru+Ru ³He+Au d+Au IP-Glasma initial energy density, τ=0.4 fm, single central event, fig: Chun Shen QM19

At RHIC it is possible to build detectors that can span from mid-rapidity to beam rapidity

Goal: best utilize the remaining few years of RHIC running to better understand initial stages before the EIC era

Prospects of future measurements (A+A) Talk by Ting Lin (Thu 16:35) STAR **Poster by David Kapukchyan (Sun 19:45)**

Anticipated O+O: more insights on collectivity in small collision system Au+Au: 3D initial state, space-time structure of vorticity with hyperon $P_{H}(n)$

Prospects of future measurements (p+p/A) Talk by Ting Lin (Thu 16:35) STAR **Poster by David Kapukchyan (Sun 19:45)**

Direct photon & Drell-Yan measurements with STAR forward upgrade \rightarrow strong constraints on nPDF, High statistics $p+p/A \rightarrow$ more insights on small system collectivity

p+p p+Au

Kinematics of RHIC measurements is close to EIC

Summary & Take Stay Home Interesting systematics of suppression of back-to-back forward di-hadron pairs in p+A relative to p+p Longitudinal de-correlation, (anti-)particle v_3 and high $p_T v_2$ revisited, many new insights First observation of azimuthal angular modulations of di-electron in peripheral Au+Au at 54.4 GeV

- **More from Xiaoxuan Chu**
- STAR observes consistent system independent v₃ in p/d/He+Au with three non-flow subtraction methods More from Shengli Huang
- $v_2 \langle p_T \rangle$ correlation and higher order fluctuations of $\langle p_T \rangle$ hint sensitivity to deformed nuclear geometry More from Jiangyong Jia, Chunjiang Zhang (poster)
 - More from Maria Stefaniak, Niseem Magdy (poster), Maowu Nie (poster)
- Photoproduction of J/ψ in d+Au UPC studied with different template to extract the coherent component More from Xiaofeng Wang
- Observation of two-source interference effects in polarized γ +A collisions, sensitive to colliding nuclei **More from Daniel Brandenburg**
 - More from Xiaofeng Wang
- Isobar results to make decisive test of CME is coming soon, new techniques, prospects beyond isobar More from Jie Zhao
- The STAR Forward Upgrade is progressing very well, initial state physics will be of paramount interest More from Ting Lin, David Kapukchyan (poster)

