Studies of three-particle correlations and reaction-plane correlators from STAR

Prithwish Tribedy
(for the STAR Collaboration)
\section*{BRODKHFNEN}
NATIONAL LABORATORY

XLVI International Symposium on Multiparticle Dynamics (ISMD2016)
Jeju island, South Korea August 29 - September 2, 2016

Outline

- Introduction
- Measurement of 3-particle correlations from STAR
- Comparison to models \& possible interpretations

Goal is to :

Map out 3D structure of HIC

Constrain η / s with more precision

Provide baseline for CME

Azimuthal correlations in Relativistic Heavy Ion collisions

Conventional measurement \rightarrow two-particle correlations : $\left\langle\cos \left(n\left(\phi_{1}-\phi_{2}\right)\right)\right\rangle$
This measurement \rightarrow three-particle correlations : $\left\langle\cos \left(m \phi_{1}+n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle$

Definition of the observables

- General (3-particle) correlator :

$$
C_{m, n, m+n}=\left\langle\left\langle\cos \left(m \phi_{1}+n \phi_{2}-(m+n) \phi_{3}\right)\right\rangle\right\rangle
$$

- Connection to event-plane correlator (based on flow interpretation)

$$
C_{m, n, m+n}=\left\langle v_{m} v_{n} v_{m+n} \cos \left(m \Psi_{m}+n \Psi_{n}-(m+n) \Psi_{m+n}\right)\right\rangle
$$

Different harmonic of $C_{m, n, m+n} \rightarrow$ sensitive to different physics

$$
C_{112}=\left\langle\cos \left(\left(\phi_{1}^{ \pm}+\phi_{2}^{\mp}-2 \phi_{3}\right)\right)\right\rangle \underset{\text { plane driven by chiral magnetic effect }}{\quad \text { charge separation w.r.to event }}
$$

Why study three-particle correlations ?

Teany, Yan 1010.1876
Bhalerao, Luzum, Ollitrault 1106.4940
Heinz, Qiu 1208.1200
ATLAS 1408.4342

- Two particle correlation w.r.to RP :

More freedom to map out both transverse and longitudinal structure of the fireball

- Connection to flow harmonic \& event-plane correlations :

Non-linear hydrodynamic response more sensitive to viscosity

- Baseline for Chiral Magnetic Effects (CME) :

Essential to understand components driven by initial-state, magnetohydrodynamics

Going beyond conventional measurements of flow harmonics

Motivation-I (3D structure of HIC)

Initial-state fluctuations

fig: 1605.07158

Bozek et al 1011.3354 Jia et al 1403.6077
Pang et al 1511.04131

Breaking of boost-invariance \rightarrow due to longitudinal fluctuations
These effects \rightarrow referred as twist, torque, event-plane decorrelation
3D initial state \rightarrow can be probed by $C_{m, n, m+n} \&$ its $\Delta \eta$ dependence

Motivation-I (3D structure of HIC)

v_{3} is driven by both geometry + fluctuation
Teany, Yan 1010.1876

In-plane fluctuations

Out-of-plane fluctuations
v_{1} drives V_{3} in mid-central collisions \rightarrow can be probed by C_{123}

Motivation-II (Non-linear hydro response)

Better probe for transport properties of QGP

- More sensitivity due to non-linear hydro response

$$
C_{235}=\left\langle v_{2} v_{3} v_{5} \cos \left(2 \Psi_{2}+3 \Psi_{3}-5 \Psi_{5}\right)\right\rangle
$$

Effect of Viscosity less-damping
$\Psi_{5} \rightarrow$ more correlated to $\Psi_{2} \& \Psi_{3}$ due to viscous damping

Non-linear response \rightarrow can be probed by sign change of $C_{m, n, m+n}$

Motivation-III (Towards constraining $\eta / s(T)$)

Viscosity has temperature dependence
$\eta / s(T) \rightarrow$ not yet fully constrained
Models assume parametrization

Measurements at RHIC are essential to constrain $\eta / s(T)$ at low temperatures

RHIC

STAR detector system

This analysis uses inclusive charged particles detected by the Time-Projection Chamber

Data sets used are from year 2004, 2010-12, \& 2014 : $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{\mathrm{S}}_{\mathrm{NN}}=200,62.4,39,27,19.6,14.5,11.5,7.7 \mathrm{GeV}$

Details of the cuts \& methods

- Centrality selection: Uncorrected multiplicity in $|\eta|<0.5$
- Acceptance cuts: $0<\phi<2 \pi,|\eta|<1, \mathrm{p}_{\mathrm{T}}>0.2 \mathrm{GeV} / \mathrm{c}$

We use Q-Cumulant method \& estimate :
$C_{m, n, m+n}=\left\{\frac{\sum_{i, j, k} \omega_{i} \omega_{j} \omega_{k} \cos \left(m \phi_{i}+n \phi_{i}-(m+n) \phi_{k}\right.}{\sum_{i, j, k} \omega_{i} \omega_{j} \omega_{k}}\right\rangle$

TPC acceptance/weight (used in this analysis)

$\omega_{i, j, k} \rightarrow$ Weight estimated in bins of sagitta, $\eta-\phi$ of tracks

Results : $\Delta \eta$ dependence of $\mathrm{C}_{\mathrm{m}, \mathrm{n}, \mathrm{m}+\mathrm{n}}$

Possible scenario:
fluctuations $\rightarrow \eta$-asymmetry, $\Delta \eta$ dependence

Jet correlated to Ψ_{2} plane may also lead to $\Delta \eta$ dependence

Strong $\Delta \eta$ dependence of $C_{123} \rightarrow$ due to η asymmetric of v_{1}
$\mathrm{C}_{224} \rightarrow$ weak dependence, best for comparison to 2D hydro models

Measurement of p_{T} dependence of $C_{m, n, m+n}$

Different p_{T} regime \rightarrow sensitivity to different physics

High pt \& peripheral events \rightarrow momentum conservation from jets

Correlations in central events look completely different from peripheral

Centrality dependence of $\mathrm{C}_{\mathrm{m}, \mathrm{n}, \mathrm{m}+\mathrm{n}}$

Magnitude follows initial state but sign depends on final state effects

Centrality dependence of higher order $\mathrm{C}_{\mathrm{m}, \mathrm{n}, \mathrm{m}+\mathrm{n}}$

Sign change from Glauber expectations
non-linear
hydro
response

Indication of strong non-linear hydro response, sensitivity to $\eta / s(T)$
$2+1 \mathrm{D}$ hydro models describe trends but under predicts the data

Energy dependence of $\mathrm{C}_{\mathrm{m}, \mathrm{n}, \mathrm{m}+\mathrm{n}}$

Monotonic dependence with C_{123} changing sign
Results will improve modeling of heavy ion collisions at low energy

Tomography of particle flow

Combining all results together can give us a picture of collisions

$$
\begin{aligned}
& \left\langle\cos \left(1 \phi_{1}+1 \phi_{3}-2 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}+1 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(1 \phi_{1}+2 \phi_{3}-3 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}-3 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{1}+2 \phi_{3}-4 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(2 \phi_{1}^{\prime}-4 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{3}+3 \phi_{1}-5 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(3 \phi_{1}^{\prime}-5 \phi_{2}^{\prime}\right)\right\rangle
\end{aligned}
$$

	$\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}\right)[\mathrm{rad}]$				
	$(0,0)$	$(0, \pi)$	$\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},-\frac{\pi}{2}\right)$	$\pm\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$
$C_{1,1,2} / v_{2}$	+1	-1	-1	+1	-1
$C_{1,2,3} / v_{2}$	+1	-1	-1	+1	$+\frac{1}{2}$
$C_{2,2,4} / v_{2}$	+1	+1	-1	-1	+1
$C_{2,3,5} / v_{2}$	+1	-1	-1	+1	$+\frac{1}{2}$

Signs of $\mathrm{C}_{\mathrm{m}, \mathrm{n}, \mathrm{m}+\mathrm{n}}$ restrict allowed values of angles w.r.t Ψ_{2}

Tomography of particle flow

Combining all results together can give us a picture of collisions

$$
\begin{aligned}
& \left.\left\langle\cos \left(1 \phi_{1}+1 \phi_{3}-2 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}+1 \phi_{2}^{\prime}\right)\right\rangle\right) \\
& \left\langle\cos \left(1 \phi_{1}+2 \phi_{3}-3 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}-3 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{1}+2 \phi_{3}-4 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(2 \phi_{1}^{\prime}-4 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{3}+3 \phi_{1}-5 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(3 \phi_{1}^{\prime}-5 \phi_{2}^{\prime}\right)\right\rangle
\end{aligned}
$$

Tomography of particle flow

Combining all results together can give us a picture of collisions

$$
\begin{aligned}
& \left\langle\cos \left(1 \phi_{1}+1 \phi_{3}-2 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}+1 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(1 \phi_{1}+2 \phi_{3}-3 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}-3 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{1}+2 \phi_{3}-4 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(2 \phi_{1}^{\prime}-4 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{3}+3 \phi_{1}-5 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(3 \phi_{1}^{\prime}-5 \phi_{2}^{\prime}\right)\right\rangle
\end{aligned}
$$

Tomography of particle flow

Combining all results together can give us a picture of collisions

$$
\begin{aligned}
& \left\langle\cos \left(1 \phi_{1}+1 \phi_{3}-2 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}+1 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(1 \phi_{1}+2 \phi_{3}-3 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}-3 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{1}+2 \phi_{3}-4 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(2 \phi_{1}^{\prime}-4 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{3}+3 \phi_{1}-5 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(3 \phi_{1}^{\prime}-5 \phi_{2}^{\prime}\right)\right\rangle
\end{aligned}
$$

Tomography of particle flow

Combining all results together can give us a picture of collisions

$$
\begin{aligned}
& \left\langle\cos \left(1 \phi_{1}+1 \phi_{3}-2 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}+1 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(1 \phi_{1}+2 \phi_{3}-3 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(1 \phi_{1}^{\prime}-3 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{1}+2 \phi_{3}-4 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(2 \phi_{1}^{\prime}-4 \phi_{2}^{\prime}\right)\right\rangle \\
& \left\langle\cos \left(2 \phi_{3}+3 \phi_{1}-5 \phi_{2}\right)\right\rangle / v_{2} \approx\left\langle\cos \left(3 \phi_{1}^{\prime}-5 \phi_{2}^{\prime}\right)\right\rangle
\end{aligned}
$$

Summary

Measurement of charge inclusive three particle correlations :

- Goes beyond conventional measurements of flow
- Potential for constraining $\eta / s(T)$
- Indicates presence of non-linear hydrodynamic response
- Constrains modeling of 3D-initial state and hydro evolution

Outlook

PID, charge dependence of $C_{m, n, m+n}$
Measurement of $C_{m, n, m+n}$ over wider rapidity range with STAR upgrade

Backup

Motivation-IV (Insights beyond flow-I)

p_{T} dependence of $C_{m, n, m+n}$

Momentum conservation

Flux tube shadowing Squeeze-out
hot-spot / flux tube
high-pt

Qian et al 1305.4673
low-pt
fig credit: R. Longacre

Motivation-IV (Insights beyond flow-II)

$\Delta \eta$ dependence of $\mathrm{C}_{\mathrm{m}, \mathrm{n}, \mathrm{m}+\mathrm{n}}$

Jets/mini-jets correlated to reaction plane

