Studies of three-particle correlations and reaction-plane correlators from STAR

Prithwish Tribedy

(for the STAR Collaboration)

XLVI International Symposium on Multiparticle Dynamics (ISMD2016)

Jeju island, South Korea August 29 - September 2, 2016

Outline

- Introduction
- Measurement of 3-particle correlations from STAR
- Comparison to models & possible interpretations

Goal is to :

Map out 3D structure of HIC

Constrain η /s with more precision

Provide baseline for CME

Azimuthal correlations in Relativistic Heavy Ion collisions

Conventional measurement \rightarrow two-particle correlations : $\langle \cos(n(\phi_1 - \phi_2)) \rangle$

This measurement \rightarrow three-particle correlations : $\langle \cos(m\phi_1 + n\phi_2 - (m+n)\phi_3) \rangle$

Definition of the observables

• General (3-particle) correlator :

$$C_{m,n,m+n} = \langle \langle \cos(m\phi_1 + n\phi_2 - (m+n)\phi_3) \rangle \rangle$$

• Connection to event-plane correlator (based on flow interpretation)

$$C_{m,n,m+n} = \langle v_m v_n v_{m+n} \cos(m\Psi_m + n\Psi_n - (m+n)\Psi_{m+n}) \rangle$$

Different harmonic of $C_{m,n,m+n} \rightarrow$ sensitive to different physics

 $C_{112} = \left\langle \cos((\phi_1^{\pm} + \phi_2^{\mp} - 2\phi_3)) \right\rangle \rightarrow \text{charge separation w.r.to event} \\ \text{plane driven by chiral magnetic effect}$

Why study three-particle correlations ?

Teany, Yan 1010.1876 Bhalerao, Luzum, Ollitrault 1106.4940 Heinz, Qiu 1208.1200 ATLAS 1408.4342

- Two particle correlation w.r.to RP : More freedom to map out both transverse and longitudinal structure of the fireball
- Connection to flow harmonic & event-plane correlations : Non-linear hydrodynamic response more sensitive to viscosity
- Baseline for Chiral Magnetic Effects (CME):
 Essential to understand components driven by initial-state, magnetoby

Essential to understand components driven by initial-state, magnetohydrodynamics

Going beyond conventional measurements of flow harmonics

Motivation-I (3D structure of HIC)

Breaking of **boost-invariance** \rightarrow due to longitudinal fluctuations These effects \rightarrow referred as **twist**, **torque**, event-plane **decorrelation**

3D initial state \rightarrow can be probed by $C_{m,n,m+n}$ & its $\Delta \eta$ dependence

Motivation-I (3D structure of HIC)

 v_3 is driven by both geometry + fluctuation

Teany, Yan 1010.1876

In-plane fluctuations

Out-of-plane fluctuations

 v_1 drives v_3 in mid-central collisions \rightarrow can be probed by C_{123}

Motivation-II (Non-linear hydro response)

Better probe for transport properties of QGP

Teany, Yan 1010.1876 Heinz, Qiu 1208.1200

- More sensitivity due to non-linear hydro response

 $\Psi_5 \rightarrow$ more correlated to $\Psi_2 \& \Psi_3$ due to viscous damping

Non-linear response \rightarrow can be probed by sign change of $C_{m,n,m+n}$

Motivation-III (Towards constraining η/s(T))

Viscosity has temperature dependence

 $\eta/s(T) \rightarrow$ not yet fully constrained

Models assume parametrization

Measurements at RHIC are essential to constrain η/s (T) at low temperatures

Niemi et al 1101.2442 Lacey et al 1305.3341 Niemi et al 1505.02677 Denicol et al 1512.01538

STAR detector system

This analysis uses inclusive charged particles detected by the Time-Projection Chamber

Data sets used are from year 2004, 2010-12, & 2014 : Au+Au collisions at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 14.5, 11.5, 7.7 GeV

Details of the cuts & methods

- Centrality selection: Uncorrected multiplicity in $|\eta| < 0.5$
- Acceptance cuts: $0 < \phi < 2\pi$, $|\eta| < 1$, $p_T > 0.2$ GeV/c

We use Q-Cumulant method & estimate :

$$C_{m,n,m+n} \!\!= \! \left< \!\! \frac{\sum_{i,j,k} \!\! \omega_i \omega_j \omega_k \cos(m\phi_i + n\phi_i - (m+n)\phi_k)}{\sum_{i,j,k} \!\! \omega_i \omega_j \omega_k} \right>$$

 $\omega_{i,j,k} \rightarrow$ Weight estimated in bins of sagitta, η - ϕ of tracks

Results : $\Delta \eta$ dependence of $C_{m,n,m+n}$

Measurement of p_T dependence of C_{m,n,m+n}

Different p_T regime \rightarrow sensitivity to different physics

High p_T & peripheral events \rightarrow momentum conservation from jets

Correlations in central events look completely different from peripheral

Centrality dependence of Cm,n,m+n

C₁₁₂:

- Measures baseline for CME
- Non-zero correlations for central collisions in contrast to the models

C₁₂₃:

Indicates v₁ drives v₃ (in mid-central collisions) as predicted by Teaney & Yan Non zero (negative) for central collisions

Magnitude follows initial state but sign depends on final state effects

Centrality dependence of higher order Cm,n,m+n

Indication of strong non-linear hydro response, sensitivity to η/s(T) 2+1D hydro models describe trends but under predicts the data

N_{part}

Energy dependence of C_{m,n,m+n}

Monotonic dependence with C₁₂₃ changing sign Results will improve modeling of heavy ion collisions at low energy

Combining all results together can give us a picture of collisions

$\langle \cos(1\phi_1$	$+1\phi_{3} -$	$ 2\phi_2)\rangle/v_2$	$\approx \langle co$	$s(1\phi'_1 +$	$1\phi_2')\rangle$
$\langle \cos(1\phi_1$	$+2\phi_{3} -$	$ 3\phi_2)\rangle/v_2$	$\approx \langle co$	$s(1\phi_1'-b_2')$	$\left. 3\phi_2' \right) \rangle$
$\langle \cos(2\phi_1$	$+2\phi_{3} -$	$ 4\phi_2\rangle\rangle/v_2$	$\approx \langle co$	$s(2\phi'_1 - \phi'_1)$	$4\phi_2')\rangle$
$\langle \cos(2\phi_3)$	$+3\phi_{1} -$	$ 5\phi_2)\rangle/v_2$	$\approx \langle co$	$s(3\phi'_1 - \phi'_1)$	$5\phi_2')\rangle$

	(ϕ'_1, ϕ'_2) [rad]						
-	(0, 0)	$(0, \pi)$	$\left(\frac{\pi}{2},\frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},-\frac{\pi}{2}\right)$	$\pm(\frac{\pi}{3}, \frac{2\pi}{3})$		
$C_{1,1,2}/v_2$	+1	-1	-1	+1	-1		
$C_{1,2,3}/v_2$	+1	-1	-1	+1	$+\frac{1}{2}$		
$C_{2,2,4}/v_2$	+1	+1	-1	-1	+1		
$C_{2,3,5}/v_2$	+1	-1	-1	+1	$+\frac{1}{2}$		

Signs of $C_{m,n,m+n}$ restrict allowed values of angles w.r.t Ψ_2

Combining all results together can give us a picture of collisions

$$\langle \cos(1\phi_1 + 1\phi_3 - 2\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' + 1\phi_2') \rangle \langle \cos(1\phi_1 + 2\phi_3 - 3\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' - 3\phi_2') \rangle \langle \cos(2\phi_1 + 2\phi_3 - 4\phi_2) \rangle / v_2 \approx \langle \cos(2\phi_1' - 4\phi_2') \rangle \langle \cos(2\phi_3 + 3\phi_1 - 5\phi_2) \rangle / v_2 \approx \langle \cos(3\phi_1' - 5\phi_2') \rangle$$

Combining all results together can give us a picture of collisions

 $\langle \cos(1\phi_1 + 1\phi_3 - 2\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' + 1\phi_2') \rangle \\ \langle \cos(1\phi_1 + 2\phi_3 - 3\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' - 3\phi_2') \rangle \\ \langle \cos(2\phi_1 + 2\phi_3 - 4\phi_2) \rangle / v_2 \approx \langle \cos(2\phi_1' - 4\phi_2') \rangle \\ \langle \cos(2\phi_3 + 3\phi_1 - 5\phi_2) \rangle / v_2 \approx \langle \cos(3\phi_1' - 5\phi_2') \rangle$

Combining all results together can give us a picture of collisions

$$\langle \cos(1\phi_1 + 1\phi_3 - 2\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' + 1\phi_2') \rangle \langle \cos(1\phi_1 + 2\phi_3 - 3\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' - 3\phi_2') \rangle \langle \cos(2\phi_1 + 2\phi_3 - 4\phi_2) \rangle / v_2 \approx \langle \cos(2\phi_1' - 4\phi_2') \rangle \langle \cos(2\phi_3 + 3\phi_1 - 5\phi_2) \rangle / v_2 \approx \langle \cos(3\phi_1' - 5\phi_2') \rangle$$

Combining all results together can give us a picture of collisions

$$\langle \cos(1\phi_1 + 1\phi_3 - 2\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' + 1\phi_2') \rangle \langle \cos(1\phi_1 + 2\phi_3 - 3\phi_2) \rangle / v_2 \approx \langle \cos(1\phi_1' - 3\phi_2') \rangle \langle \cos(2\phi_1 + 2\phi_3 - 4\phi_2) \rangle / v_2 \approx \langle \cos(2\phi_1' - 4\phi_2') \rangle \langle \cos(2\phi_3 + 3\phi_1 - 5\phi_2) \rangle / v_2 \approx \langle \cos(3\phi_1' - 5\phi_2') \rangle$$

C₁₁₂>0, C₁₂₃<0, C₂₂₄>0, C₂₃₅>0

Summary

Measurement of charge inclusive three particle correlations :

- Goes beyond conventional measurements of flow
- Potential for constraining η/s (T)
- Indicates presence of non-linear hydrodynamic response
- Constrains modeling of 3D-initial state and hydro evolution

Outlook

PID, charge dependence of $C_{m,n,m+n}$

Measurement of $C_{m,n,m+n}$ over wider rapidity range with STAR upgrade

Backup

Motivation-IV (Insights beyond flow-I)

 $p_{\mathsf{T}} \text{ dependence of } C_{m,n,m+n}$

10

Motivation-IV (Insights beyond flow-II)

 $\Delta \eta$ dependence of $C_{m,n,m+n}$

Jets/mini-jets correlated to reaction plane

