

Daniel Brandenburg (Shandong University / BNL) \rightarrow for the **STAR Collaboration**

RHIC & AGS Users Meeting June 4-7, 2019 : Brookhaven National Lab

STAR Upgrades : Outline ○ STAR Upgrades for BES II ○ Upgrade of the Inner TPC • Event Plane Detector ○ Endcap Time-of-Flight **•** Forward Rapidity Physics • The STAR Forward Upgrade ○ Tracking ○ Calorimetry **OLooking Forward ○**Summary

STAR Detector Upgrades

Event Plane Detector

Forward Tracking & Calorimetry (Not Shown)

Inner TPC Installation

Installation

- East Side Sectors Complete 09/26/18
- West Side Sectors Complete 10/25/18

The testing and commissioning plan was developed~ 2 years ago, and updated following the fall DOE NP review - Includes hardware testing

Important components were:

- ✓ Tests at SDU
- ✓ Test at BNL pre-installation
- ✓ Final inspection at installation time
- ✓ Post Installation checkout
- ✓ Cosmic data taking

2019 Schedule followed:

- Jan 18 Feb 4: Cosmic data with forward Full Field
- Feb 4: Change Magnet polarity
- Feb 4 ~Feb 18 Cosmic data with reverse full field
- Feb. 11: cool down of 2nd half of blue ring begins
- Feb. 14: beam in blue ring starting with the day shift
- Feb. 19: cool down of 2nd half of yellow ring begins
- Feb. 20: beam in yellow ring starting with the day shift
- Feb. 20: 1st collisions in STAR overnight at injection energy
- Feb. 21-27: Physics setup

➢ Replace all inner TPC sectors → continuous pad rows

 Doubled the readout channels.
 Using SAMPA chip developed for ALICE

Doubled the readout channels. Ο Using SAMPA chip developed for ALICE

2

 Doubled the readout channels.
 Using SAMPA chip developed for ALICE

Inner TPC Upgrade

Inner TPC Upgrade

Successful, <u>on-time & under budget</u> completion of the iTPC upgrade

2019 Event Display : Au+Au 19.6 GeV Full tracking with all iTPC sectors

Event Plane Detector

- Replaces Beam-Beam Counter (BBC)
 - $\circ~\mbox{Improved triggering capabilities}$
 - $\circ~\mbox{Improves background rejection}$
- \circ Coverage : 2.1 < $|\eta|$ < 5.1
- $\,\circ\,$ Greatly improves event plane resolution
 - $\,\circ\,$ Especially 1st order event plane
 - $\circ~$ Crucial for achieving BES II physics goals
- Smooth installation (completed in 2018), commissioning, and operation
- $\,\circ\,$ Already used for physics analysis of 2018 data

Each (East, West) wheel:

- \circ 16 tile "rows" at given radius
- \circ 24 tiles per row (except 12 for innermost)
- ➤ 372 tiles x 2 = 744 tiles in total

Event Plane Detector Performance

Good signal & clear MIP peak from ALL 744 tiles

Event Plane Detector Performance

Event Plane Performance

1st order Event Plane Resolution

 \rightarrow Significant improvement across all centrality

Added coverage from EPD

ightarrow Allows measurement of v_1 over ~10 units of $\eta!$

6/6/19

Daniel Brandenburg | BNL

17

Endcap Time-of-Flight Detector

Full eToF installation : completed Nov 22, 2018

Inside face of east pole-tip, partially installed

Fully installed and cabled

eToF Performance & Calibration

10

eToF calibration procedure:

- o Time delays between channels
 - Local Y position (along strips)
 - \circ T0 offsets (cable length etc.)
- Clock range & sync between eTOF and barrel time of flight
- Gain matching between different preamps
- Global position alignment
- After calibration : Time resolution ~85 ps

ETOF Performance in 2019 Running

Particle Identification : Fixed Target test run

STAR Physics Program after BES II

STAR Upgrades for BES II → provide <u>unique</u> opportunities at mid-rapidity in high energy A+A, p+A, and p+p

The STAR midrapidity pp, pA, AA physics program beyond BES-II : <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669</u>

Forward Upgrades

oForward Rapidity Physics (2.5 < η < 4)
 oThe STAR Forward Upgrade
 oTracking
 oCalorimetry
 oA Look Forward

Forward Rapidity Physics at STAR

Unique program addressing several fundamental questions in QCD

Essential to RHIC cold & hot QCD physics mission + fully realize scientific

promise of future Electron Ion Collider

Mid-rapidity -1.5 <n<1.5< th=""><th colspan="3">Forward-rapidity 2.5<η<4</th></n<1.5<>	Forward-rapidity 2.5<η<4		
	Au+Au		p+A, p+p
	 Beam: Full Energy (200 GeV) Au+Au Physics Topics: Temperature dependence of viscosity through flow harmonics up to η~4 Longitudinal decorrelation up to η~4 Global Lambda Polarization → Test for strong rapidity dependence 		 Beam: 500 GeV: p+p 200 GeV: p+p and p+A Physics Topics: TMD measurements at high x transversity → tensor charge Improve statistical precision for sivers through Drell-Yan Ag(x,Q2) at low x through Di-jets Gluon PDFs for nuclei R_{pA} for direct photons & DY Test of Saturation predictions through di-hadrons, γ-Jets

Forward Rapidity Physics at STAR

Unique program addressing several fundamental questions in QCD

Essential to RHIC cold & hot QCD physics mission + fully realize scientific

promise of future Electron Ion Collider

Mid-rapidity -1.5<η<1.5	Forward-rapidity 2.5<η<4		
	Au+Au	p+A, p+p	
	 Beam: Full Energy (200 GeV) Au+Au Physics Topics: Temperature dependence of viscosity through flow harmonics up to η~4 Longitudinal decorrelation up to η~4 Global Lambda Polarization → Test for strong rapidity dependence 	 Beam: 500 GeV: p+p 200 GeV: p+p and p+A Physics Topics: TMD measurements at high x transversity → tensor charge Improve statistical precision for Sivers through Drell-Yan Δg(x,Q2) at low x through Di-jets Gluon PDFs for nuclei R_{pA} for direct photons & DY Test of Saturation predictions through di-hadrons, γ-Jets 	

Global Hyperon Polarization

➤ Sensitive to <u>Thermalization</u> and <u>Viscosity</u>

➤ Polarization increases with viscosity

Hydrodynamic calculations:

Li,Pang,Wang & Xia, PRC 96 (2017) 054908; (private comm.) F. Beccattini et al. EPJC 75(2015)406; arXiv:1501.04468 HIJING with energy flow: Deng & Huang, PRC 93 (2016) 064907

Model's predict opposite Polarization trend with rapidity → Measurements at forward rapidity are key

Probing the Initial State in A+A

►3 important questions:

- What are the nPDFs at low-*x*?
- \circ How saturated is the initial state of the nucleus?

 \circ What is the spatial transverse distributions of nucleons and gluons?

Observables free of final state effects:

• Gluons: R_{pA} for direct photons

• Sea-quarks: R_{pA} for Drell-Yan

- Yan ➤ Scan A-dependence prediction by saturation [™] models
- Accessible at forward rapidity

STAR Forward Detectors: FTS + FCS

Silicon + small-Strip Thin Gap Chambers (sTGC)

STAR Forward Upgrade Status

Associate Laboratory Director's Review

- Reviewed on 19th, November 2018 :
 - Physics requirements
 - Cost & Schedule for each subsystem
 - Readout & Triggering
 - Plan for integration and in-situ testing
- Positive Feedback & Recommendations
 - "Good progress has been made on an intriguing concept for a cold-QCD program to run in the near future in the forward direction at STAR"

NSF proposal submitted Jan 2019

- Funding for Forward Calorimeter systems
- Received very positive feedback
- Awaiting final response fully expect funding

Final Report ALD's review : <u>https://drupal.star.bnl.gov/STAR/system/files/STAR%20forward%20upgrade%20review%20Final%20Report.pdf</u>

https://drupal.star.bnl.gov/STAR/system/files/ForwardUpgrade.Nov_.2018.Review_0.docx

The STAR Forward Calorimeter System and Forward Tracking System

Proposal November 2018

Organizational Structure STAR Forward Upgrade

≻Large project → Dedicated manpower & expertise for each system

Organizational Structure STAR Forward Upgrade ≻Large project → Dedicated manpower & expertise for each system

Silicon HCal DAQ / Readout Software ECal Integration sTGC UIC BROOKHAVEN BROOKHAVEN BREDIKEVA UCLA BROOKHAVEN NATIONAL LABORATORY NATIONAL LABORATORY NATIONAL LABORATORY UNIVERSITY NATIONAL LABORATORY OF ILLINOIS AT CHICAGO UIC TT Calibration UNIVERSITY KENTUCKY **INDIANA UNIVERSITY OF ILLINOIS** AT CHICAGO TEXAS A&M UNIVERSITY: VALPARAISC RIVERSID SHANDONG UNIVERSIT UNIVERSITY INDIANA UNIVERSITY **INDIANA UNIVERSITY** TEMPLE INDIANA UNIVERSITY KENTUCKY BROOKHAVEN NATIONAL LABORATORY RUTGERS UCLA **Slow Controls** ABILENE TEXAS A&M CHRISTIAN UNIVERSITY ABILENE CHRISTIAN **VALPARAISO** ABILENE SHANDONG UNIVERSIT TEXAS A&M U N I V E R S I T Y. UNIVERSITY RISTIAN

UNIVERSITY

Details : Forward Tracking System

• Forward Tracking Requirements:

- $_{\odot}$ Momentum resolution: <30% in $0.2 < p_T < 2$ GeV/c (A+A goals)
- Tracking efficiency: 80% at 100 tracks/event (A+A goals)
- \circ Charge separation (p+p /p+A)
- \odot Silicon mini-strip disks $\times 3$ layers
 - \circ Location from interaction point : z = 90, 140, 187 cm
 - Build on and utilize STAR experience of successful Intermediate Silicon Tracker(IST) detector

Daniel Brandenburg | BNL

- \circ Small-Strip Thin Gap Chamber (sTGC) $\times 4$
 - \circ Location from interaction point : z = 270, 300, 330, 360 cm
 - Significant reduction in cost
 - Prototype at BNL, testing in STAR during 2019 run

Forward Tracking System <u>Current Status</u>

Silicon Detector

- Silicon strip sensors ordered from Hamamatsu
- Detector module design and prototyping in progress
- First complete prototype module for test in Fall/Winter 2019

sTGC Detector

- 30x30 cm prototype delivered to BNL in January 2019
- Module tested in test-stand using cosmic rays + scintillator pads for trigger
- Connected to STAR Data Acquisition system first test data being analyzed now
- \circ Installed in STAR on June 5, 2019
- Full-size 60x60 cm prototype being produced at Shandong University

Prototype in STAR Clean Room, On the Mounting Structure

Details : Forward Calorimeter System

FCS Requirements

Detector	pp and pA	AA
ECal	$\sim 10\%/\sqrt{E}$	~20%/√E
HCal	~50%/√E+10%	

Electromagnetic Calorimeter

- Use PHENIX PbSc
- New readout SiPM/APD Ο

Hadronic Calorimeter

- Sampling iron-scintillator
- Uses same readout as EMC

Large scale test run at Fermilab:

- 16 Ch HCAL, 16 Ch EMcal, DAQ etc. delivered to Fermilab in Ο April
- Planned Tests: \cap
 - Test new FEEs
 - Test HCal response to e/h/mips Ο
 - Test HCal calibration using mips (muon beam) Ο
- All test completed as planned

R&D in support of EIC

- \rightarrow HCal development
- \rightarrow All readout electronics
- \rightarrow Balance Cost & performance

Calorimeter Current Status

Fermilab test beam results

- o HCAL 16 channels, ECAL 16 channels
- $\circ~$ ECAL energy resolution measured ~ 10% / \sqrt{E} meets requirement
- $\,\circ\,\,$ HCAL energy resolution measured ~ 75% / \sqrt{E} + 7%
- Work on modified light collection to improve resolution
 - \circ Promising results
 - $\circ~$ (ongoing development, but does not effect design)
- $\,\circ\,$ Installation and in-situ testing at STAR
 - $\circ~$ 64 (8x8) EMCAL installed
 - \circ 16 (4x4) HCAL installed
 - 1 layer (9 slats) Pre-shower (former FMS Post-Shower detector)
 - New generation of digitizer/trigger boards for ECAL/HCAL/Preshower readout
- $\,\circ\,$ Currently commissioning in STAR with beam
 - \circ Pedestal
 - o LED
 - Physics runs
- Online + slow controls + offline software being developed

A.Kiselev (BNL)D. Chen (UCR)T. Lin (TAMU)G. Visser (IUCF)D. Kapukchyan (UCR)O. Tsai (UCLA)

Looking Forward

Measurements planned for 2021+ with the STAR forward upgrade

√s (GeV)	Delivered	Scientific Goals	Observable	Required
· · ·	Luminosity			Upgrade
p [↑] p @ 200	300 pb ⁻¹	Subprocess driving the large A_N at high x_F and η A_N for charged hadrons and		Forward instrum.
	8 weeks		flavor enhanced jets	ECal+HCal+Tracking
p^Au @	1.8 pb ⁻¹	What is the nature of the initial state and hadronization	R_{pAu} direct photons and DY	
200	8 weeks	in nuclear collisions		Forward instrum.
				ECal+HCal+Tracking
		Clear signatures for Saturation	Dihadrons, γ -jet, h-jet,	
			diffraction	
p^Al @	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct photons and DY	Forward instrum.
200	8 weeks			ECal+HCal+Tracking
		A-dependence for Saturation	Dihadrons, γ-jet, h-jet,	
			diffraction	
p [↑] p @ 510	1.1 fb ⁻¹	TMDs at low and high <i>x</i>	A_{UT} for Collins observables, i.e.	Forward instrum.
	10 weeks		hadron in jet modulations at $\eta >$	ECal+HCal+Tracking
			1	
$\vec{p} \cdot \vec{p} \cdot \vec{a} = 510$	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Forward instrum.
	10 weeks		at $\eta > 1$	ECal+HCal

Addresses important topics in hot and cold QCD:

- Transverse polarization effects in the proton : Twist-3 and TMDs
- Transversity, Collins, and Interference fragmentation functions
- Access ΔG through dijets with p+p at \sqrt{s} = 500 GeV
- Probe initial state with p+A collisions

Looking Forward

Future A+A Measurements with the STAR forward upgrade

Physics Measurements		Longitudinal de-correlation	n/s(T)	Mixed flow	Ridae	Event Shape and
Detectors	Acceptance	$r_n(\eta_a,\eta_b)$	ζ/s(T), ζ/s(T)	Harmonics C _{m,n,m+n}	Iuage	Jet- studies
Forward Calorimeter (FCS)	$2.5 < \eta < 4$ (photons, hadrons)	One of these		One of these detectors necessary	Good to have	One of these detectors needed
Forward Tracking System (FTS)	$2.5 < \eta < 4$ (charged particles)	necessary	Important		Important	

Addresses important topics in hot QCD:

- Ridge in p+p, p+A, and A+A
- o Correlation measurements in hot and dense nuclear matter
- Precision measurements of long range correlations
- \circ Temperature dependence of the viscosity through flow measurements at $\eta \sim 4$

Plan/Goals for Run 19

Forward Calorimeter System

- 10-20 hours of Au+Au 200 GeV collisions (taken during APEX running)
 - $\circ~$ Test readout of calorimeters at ~ 10kHz rate
 - $\circ~$ Finish commissioning of DEP (digitizer/trigger) boards with this data
 - $\circ~$ Look at MIPS use for calibration etc.

Forward Tracking System

- Silicon Detectors
 - $\circ~$ Complete the design of detector module in June 2019 ~
 - Build the first complete prototype module in Summer/Fall 2019
 - $\circ~$ Fully test the prototype module in Fall/Winter 2019
- \circ sTGC Detectors
 - \circ 30x30 cm prototype installed in STAR on June 5th, 2019
 - Test in STAR DAQ with C10 (90% argon + 10% CO2)
 - Test performance with various gas mixtures at Shandong University in full size (60 x 60 cm) prototypes

Summary

Crucial Upgrades for Beam Energy Scan II:

- Inner TPC : Successful, on-time & under budget completion, excellent performance
- Event Plane Detector : Excellent uniformity + delivered expected improvement in the event-plane resolution
- Endcap Time of Flight : Fully installed, commissioning and data taking are ongoing 2019

≻Upgrades provide <u>unique</u> opportunities at mid-rapidity in high energy A+A, p+A, and p+p

STAR Forward Rapidity Upgrade:

- Unique program addressing several fundamental questions in QCD
- Essential to RHIC cold & hot QCD physics mission & to realize scientific promise of future Electron Ion Collider
- ► Forward Tracking System : Silicon + small-Strip Thin Gap Chambers
 - ➤ sTGC prototype delivered by SDU and being tested at BNL
 - ➤ Silicon design and R&D at UIC + NCKU
- ► Forward Calorimetry System : EMCal + Hcal
 - ➤ Large scale prototype testing at Fermilab