Observation of the Breit-Wheeler Process in Heavy-Ion Collisions: based on arXiv : 1910.12400 (accepted by Physical Review Letters)

James Daniel Brandenburg (for the STAR Collaboration) Brookhaven National Laboratory / Center for Frontiers in Nuclear Science
LPHYS 21 : 29th annual International Laser Physics Workshop Seminar 9: Extreme Light Technologies, Science, and Applications July 12 ${ }^{\text {th }}, 2021$ (online)

Office of Science

Outline of this talk

1. Quantum Electrodynamics

- Introduction \& some history
- Ultra-peripheral Heavy Ion collisions \rightarrow OED under extreme conditions

2. Observation of the Breit-Wheeler Pair Production process
3. Energy spectrum
4. Anisotropic effects in polarized $\gamma \gamma \rightarrow e^{+} e^{-}$process
5. Summary

Fundamental Interactions : light \& matter
 Photo Electric Effect 1887 Hertz, Ann Phys (Leipzig) 31, 983

 Bremsstrahlung 1895 Röntgen, Ann Phys (Leipzig) 300, 1

 Compton Scattering 1906 Thomson, Conduction of Electricity through Gases

Fundamental Interactions : light \& matter
 Photo Electric Effect 1887 Hertz, Ann Phys (Leipzig) 31, 983

 Bremsstrahlung 1895 Röntgen, Ann Phys
 (Leipzig) 300, 1

 Compton Scattering 1906 Thomson, Conduction of Electricity through Gases

Breit-Wheeler Process, why so elusive?

Breit-Wheeler and Klein-Nishina cross-sections

Breit-Wheeler Pair Production Cross Section $\sigma_{\gamma \gamma}$:

$$
\begin{aligned}
\sigma_{\gamma \gamma}= & \pi r_{0}^{2}\left(\frac{m}{\omega}\right)^{2}\left\{\left[2\left(1+\left(\frac{m}{\omega}\right)^{2}\right)-\left(\frac{m}{\omega}\right)^{4}\right] \cosh ^{-1} \frac{\omega}{m}\right. \\
& \left.-\left(1+\left(\frac{m}{\omega}\right)^{2}\right) \sqrt{1-\left(\frac{m}{\omega}\right)^{2}}\right\}
\end{aligned}
$$

- Same peak cross section as Compton scattering and Dirac annihilation
- Cross section, $\sigma_{\gamma \gamma}$ peaks at $10^{-29} \mathrm{~m}^{2}$
\circ Creating matter from massless state, remember: $E=m c^{2}$
- center of mass energy must be $W \geq 2 m_{e}$

Breit and Wheeler, Phys Rev 46, I 087 (1934)
Jauch and Rohrlich, The Theory of Photons and Electrons (1959)

Progress Towards the Breit-Wheeler Process

SLAC E-144 Experiment

- Non-linear Breit-Wheeler Process: $\gamma+n \gamma_{0} \rightarrow e^{+} e^{-}$
- Two step process: Compton backscattering
- Energy threshold requires $n>4$ with $\langle n\rangle=6.44$

$$
10^{18} \mathrm{~W} / \mathrm{cm}^{2} \text { laser }
$$

Burke et al., PRL79, 1626 (1997)
Hu \& Müller, PRL107, 090402 (2010)

Photon Scattering with Ultra-Strong Lasers

Due to advances in laser technology and
 experimental designs, the achievability of the linear Breit-Wheeler process with ultra-strong lasers is nearing realization.
$>\mathbf{1 0 0} \mathrm{MeV} \gamma$-rays from high energy electron beam
$>$ keV X-ray field inside an NIF hohlraum

$$
=10,000 \text { pairs } / \text { shot }
$$

Setup capable of achieving energy threshold:

$$
\sqrt{E_{\gamma 1} E_{\gamma 2}}>m_{e} c^{2}
$$

Many Laser-based experimental concepts for achieving the Breit-Wheeler process Cannot cover them all

Breit-Wheeler Process, why so elusive?

\circ Already in 1934 Breit and Wheeler knew it was hard, maybe impossible?

Collision of Two Light Quanta

G. Breit* and John A. Wheeler,** Department of Physics, New York University (Received October 23, 1934)

As has been reported at the Washington meeting, pair production due to collisions of cosmic rays with the temperature radiation of interstellar space is much too small to be of any interest. We do not give the explicit calculations, since the result is due to the orders of magnitude rather than exact relations. It is also hopeless to try to observe the pair formation in laboratory experiments with two beams of x-rays or γ-rays meeting each other on account of the smallness of σ and the insufficiently large available densities of quanta. In the considerations of Williams,

Breit-Wheeler Process, why so elusive?

oAlready in 1934 Breit and Wheeler knew it was hard, maybe impossible?

DECEMBER 15 , 1934
PHYSICAL REVIEW
VOLUME

Collision of Two Light Quanta

ohn A. Wheeler, ** Department of Physics, New York University (Received October 23, 1934)

o Or maybe not impossible!
of quanta. In the considerations of Williams, however, the large nuclear electric fields lead to large densities of quanta in moving frames of reference. This, together with the large number of nucleii available in unit volume of ordinary materials, increases the effect to observable amounts. Analyzing the field of the nucleus into quanta by a procedure similar to that of v . Weizsäcker, ${ }^{4}$ he finds that if one quantum $h \nu$
E. J. Williams Phys. Rev. 45, 729 (1934)
K. F. Weizsacker, Z. Physik, 612 (1934)

Ultra-Peripheral Heavy Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field

Weizäcker-Williams Equivalent Photon Approximation (EPA):
\rightarrow In a specific phase space, transverse EM fields can be quantized as a flux of quasi-real photons
Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612

$$
n \propto \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \approx|\vec{E}|^{2} \approx|\vec{B}|^{2}
$$

$Z \alpha \approx 1 \rightarrow$ High photon density Ultra-strong electric and magnetic fields:
\rightarrow Expected magnetic field strength $\overrightarrow{\mathbf{B}} \approx \mathbf{1 0}^{\mathbf{1 4}}-\mathbf{1 0}^{\mathbf{1 6}} \mathrm{T}$
Skokov, V., et. al. Int. J. Mod. Phys. A 24 (2009): 5925-32

Test QED under extreme conditions

K. Hattori and K. Itakura, Photon and Dilepton Spectra from Nonlinear OED Effects in

Supercritical Magnetic Fields Induced by Heavy-Ion Collisions, Nuclear and Particle Physics
Proceedings 276-278, 313 (2016).

The Central Challenge

Similar to the laser experiments, central challenge is to precisely distinguish pair production mechanism

Virtual photon scattering 1934, Landau \& Lifshitz

Phys. Z.6, 244

Bethe-Heitler Pair Production 1932, Anderson, Science 76,238

Breit-Wheeler pair production Predicted 1934

The Central Challenge

Similar to the laser experiments, central challenge is to precisely distinguish pair production mechanism

STAR in $2004: d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d P_{\perp}$
STAR Collaboration, et al. Physical Review C, vol. 70, no. 3,
 Sept. 2004, p. 031902. APS, doi:10.1103/PhysRevC.70.031902.

In that paper and subsequent papers from community, assume that difference between EPA and QED (near $P_{\perp} \approx 0$) results from significant photon virtuality
Higher order processes may reduce cross
section by ~20\%
\rightarrow Unable to definitively determine process
By 2005, review paper (with nearly 500 citations) states:
These photons are almost real, with virtuality $-q^{2}<\left(\hbar / R_{\mathrm{A}}\right)^{2}$. Except for the production of $e^{+} e^{-}$pairs, the photons can usually be treated as real photons.

A Novel Approach for the Breit-Wheeler Process

\rightarrow Perform a precision measurement of the differential cross sections

1. Photon Energy Spectrum

- Transverse Momentum distribution
- Invariant mass distribution
- Impact parameter dependence

2. Angular Distribution

- Distinctive polar angle distribution
- Azimuthal modulations predicted for real photon (transversely polarized)

General density matrix for the twophoton system:

Spin 1 Photon helicity $a=(-, 0,+)$

A Novel Approach for the Breit-Wheeler Process

\rightarrow Perform a precision measurement of the differential cross sections

1. Photon Energy Spectrum

- Transverse Momentum distribution
- Invariant mass distribution
- Impact parameter dependence

2. Angular Distribution

- Distinctive polar angle distribution
- Azimuthal modulations predicted for real photon (transversely polarized)

General density matrix for the twophoton system:

Spin 1 Photon helicity $a=(-, 0,+)$
Helicity 0 : Forbidden for real photon
Real photon: Allowed J^{P} states: $\mathbf{2}^{ \pm}, \mathbf{0}^{ \pm}$

A Novel Approach for the Breit-Wheeler Process

\rightarrow Perform a precision measurement of the differential cross sections

Angular distribution allows identification of quantum numbers - e.g. Higgs Boson

SM Higgs boson

General density matrix for the twophoton system:

Spin 1 Photon helicity $a=(-, 0,+)$
Helicity 0 : Forbidden for real photon
Real photon: Allowed J^{P} states: $2^{ \pm}, 0^{ \pm}$

Pietro Faccioli,
https://indico.cern.ch/event/246009/attachments/422282/586290/CERN 23-4.2013 no animations.pdf

Signatures of the Breit-Wheeler Process

1. Exclusive $e^{+} e^{-}$pair production
2. Photon helicity $+/-1$ only

- Smooth invariant mass spectra (No vector mesons)
- Individual $e^{+} e^{-}$preferentially aligned along beam direction

3. Energy Spectrum:

- Production peaked at very low P_{\perp} (pair transverse momentum)
- Impact parameter dependence on P_{\perp}

4. Photon transverse polarization \& spatial distribution

$\gamma \gamma \rightarrow e^{+} e^{-}$Process in UPCs

Breit-Wheeler $\gamma \gamma \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$ pair production process

Mutual Coulomb excitation and nuclear dissociation

- Provides efficient trigger condition
\rightarrow Provides high statistics sample (>6,000 $e^{+} e^{-}$pairs) for multi-differential analysis

High Purity electron(positron) Identification

Combination of two STAR detectors allows $e^{+} e^{-}$pairs to be identified with $>99 \%$ purity

Crucial, since photo-nuclear production of $\pi^{+} \pi^{-}$pairs are dominate contribution to UPC events

Total $\gamma \gamma \rightarrow e^{+} e^{-}$cross-section in STAR Acceptance STAR

STAR: $A u+A u$ at $\sqrt{S_{N N}}=200 \mathrm{GeV}$

STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258 gEPA \& OED : W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

Pure QED $2 \rightarrow 2$ scattering: $d \sigma / d M \propto E^{-4} \approx M^{-4}$

No vector meson production \rightarrow Forbidden for real photons with helicity ± 1 (i.e. 0 is forbidden)
$\boldsymbol{\sigma}\left(\gamma \boldsymbol{\gamma} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}\right)$in STAR Acceptance:
Data: 0.261 ± 0.004 (stat.) ± 0.013 (sys.)
± 0.034 (scale) mb

STARLight	gEPA	QED
0.220 mb	0.260 mb	0.260 mb

Measurement of total cross section agrees with theory calculations at $\pm \mathbf{1} \sigma$ level
$d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d P_{\perp}$

- First high precision measurement of differential cross section - stringent test of theory predictions
- STARLight predicts significantly lower $\left\langle P_{\perp}\right\rangle$ than seen in data
\circ Is the increased P_{\perp} observed due to significant photon virtuality?
- Let's look at how the calculation is done in the lowest order OED case

[^0]STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

Photon virtuality and differential cross section

Impact Parameter Dependence

Note: gEPA1 vs. gEPA2 : gEPA2 includes phase term to approximate full QED result

B

- QED (and gEPA parameterization) describe data
- Larger $\left\langle P_{\perp}\right\rangle$ from impact parameter dependence
- No evidence for significant photon virtuality
- Still only models, can we experimentally investigate impact parameter dependence : \rightarrow Compare UPC vs. same process at a different $\langle\boldsymbol{b}\rangle$ (mean impact parameter)

UPC vs. Peripheral

Spectrum from peripheral collisions is significantly broader than spectrum from UPC, possible medium effect?

Characterize difference in spectra via $\sqrt{\left\langle P_{\perp}^{2}\right\rangle}$

$\sqrt{\left\langle P_{\perp}^{2}\right\rangle}(\mathrm{MeV} / \mathrm{c})$	UPCAu+Au	$\mathbf{6 0 - 8 0 \%} \mathbf{A u}+\mathrm{Au}$
Measured	38.1 ± 0.9	50.9 ± 2.5
QED	37.6	48.5
\boldsymbol{b} range (fm)	≈ 20	$\approx 11.5-13.5$

- Leading order OED calculation of $\gamma \gamma \rightarrow e^{+} e^{-}$describes both spectra ($\pm 1 \sigma$)
- Best fit for spectrum in $60-80 \%$ collisions found for QED shape plus 14 ± 4 (stat.) ± 4 (syst.) MeV/c broadening
oAdditional broadening has been proposed as a precision probe of medium interactions: due to trapped magnetic field or Coulomb scattering in QGP [1-3] oFuture measurements may provide needed precision olmpact parameter dependence recently confirmed by CMS arxiv:2011.05239

Unique signature of the Breit-Wheeler process

Lev Landau

Evgenni Lifshitz

What has been shown so far \rightarrow already enough to demonstrate that colliding photons are real with respect to $e^{+} e^{-}$pair production for the first time

- Both Breit + Wheeler and Landau + Lifshitz studied the theory of photon + photon collisions in the early 30s
- Both BW and LL predicted (their) process in high-energy heavy-ion collisions
Real photons are transversely polarized
Breit \& Wheeler predict photon polarization dependence : $d \sigma_{\perp} \neq d \sigma_{\|}$

However, Experimentally accessing polarization
 information is extremely challenging

Experimental Anisotropic Polarization Effect

Recently realized, photon polarization leads to a $\cos (4 \Delta \phi)$ modulation in polarized $\gamma \gamma \rightarrow e^{+} e^{-}[1]$
The corresponding vacuum LbyL scattering[2] displays a $\cos (\mathbf{2 \Delta \phi})$ modulation
[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
[2] Harland-Lang, L. A., Khoze, V. A. \& Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).

$$
\begin{aligned}
\Delta \phi= & \Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
& \approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]
\end{aligned}
$$

First $\gamma \gamma$ polarization sensitive measurement

$-\vec{E}--\vec{B} \otimes z$

- Polarization vector : aligned radially with the "emitting" source
- Well defined in the photon position eigenstates
- Well defined in terms of electric and magnetic field directions

Anisotropic Polarization Effect

Probe photon with polarization vector $\overrightarrow{\xi_{1}}$ takes two different transverse paths depending on $\Delta \phi$ - the angle between $\overrightarrow{\xi_{1}}$ and $\overrightarrow{\xi_{2}}\left(\overrightarrow{B_{2}}\right)$
Two photon system: $0^{ \pm}, 2^{ \pm}$

Upon decay into spin $1 / 2$ fermions, spin is encoded into orbital angular momentum

1. $\overrightarrow{\xi_{1}} \perp \overrightarrow{B_{2}}\left(\overrightarrow{\xi_{1}} \| \overrightarrow{\xi_{2}}\right) \rightarrow-\langle\cos 4 \Delta \phi\rangle$
2. $\overrightarrow{\xi_{1}} \| \overrightarrow{B_{2}}\left(\overrightarrow{\xi_{1}} \perp \overrightarrow{\xi_{2}}\right) \rightarrow+\langle\cos 4 \Delta \phi\rangle$

Recently realized that measurement of $e^{+} e^{-}$angular distributions are sensitive to polarization through quantum space-momentum correlations

S. Bragin, et. al., Phys. Rev. Lett. 119 (2017), 250403
R. P. Mignani, et al., Mon. Not. Roy. Astron. Soc. 465 (2017), 492

Linearly polarized photon collisions

Recently realized, $\Delta \sigma=\sigma_{\|}-\sigma_{\perp} \neq 0$ leads to $\boldsymbol{\operatorname { c o s }}(\boldsymbol{n} \Delta \boldsymbol{\phi})$ modulations in polarized $\gamma \gamma \rightarrow e^{+} e^{-[1]}$

$$
\begin{aligned}
\Delta \phi & =\Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
& \approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]
\end{aligned}
$$

Ultra-Peripheral

Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	16.8 ± 2.5 Quantity	16.5	$18.8 / 16$
$-A_{4 \Delta \phi}(\%)$	27 ± 6	34.5	$10.2 / 17$

Linearly polarized photon collisions

Recently realized, $\Delta \sigma=\sigma_{\|}-\sigma_{\perp} \neq 0$ leads to $\boldsymbol{\operatorname { c o s }}(\boldsymbol{n} \boldsymbol{\Delta} \boldsymbol{\phi})$ modulations in polarized $\gamma \gamma \rightarrow e^{+} e^{-[1]}$

$$
\begin{aligned}
\Delta \phi= & \Delta \phi\left[\left(e^{+}+e^{-}\right),\left(e^{+}-e^{-}\right)\right] \\
& \approx \Delta \phi\left[\left(e^{+}+e^{-}\right), e^{+}\right]
\end{aligned}
$$

Ultra-Peripheral

Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	16.8 ± 2.5	16.5	18.8 / 16
	Peripheral (60-80\%)		
Quantity	Measured	QED	χ^{2} / ndf
$-A_{4 \Delta \phi}(\%)$	$27+6$	34.5	10.2 / 17

\rightarrow First Earth-based observation (6.7 $\boldsymbol{\sigma}$ level) of anisotropic photon polarization effect

First Experimental Measurement of Magnetic Field in HICs

Sensitive to magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of $\cos 4 \Delta \phi$ modulation
- (photon polarization provides connection to magnetic field)

Peak value for single ion: $|B| \approx 0.7 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Fundamental Interactions : light \& matter
 Photo Electric Effect 1887 Hertz, Ann Phys (Leipzig) 31, 983

 Bremsstrahlung 1895 Röntgen, Ann Phys
 (Leipzig) 300, 1

 Compton Scattering 1906 Thomson, Conduction of Electricity through Gases

Summary

1. Observation of the Breit-Wheeler process in HICs
2. First Earth-based observation of anisotropic photon polarization effect :
Observed (6.7σ) via angular modulations in linear polarized $\gamma \gamma \rightarrow e^{+} e^{-}$process
3. Novel experimental measurements sensitive to EM field strength and distribution in space.
\rightarrow First experimental measurement that HIC produce the strongest magnetic fields in the Universe $\approx 10^{15}$ Tesla

More work needed to constrain magnetic field topology, to test for possible medium effects, explore OED in the strong field regime - Exciting opportunities lie ahead

Thank You

Quantum Electrodynamics

Three important discoveries that alter the classical picture:

- Einstein's energy-mass equivalence: $E=m c^{2}$
- Uncertainty principle: $\Delta E \Delta t \geq \hbar / 2$
- Existence of positron : Dirac predicts negative electron energy states (1928), Anderson discovered positron in 1932

Quantum Electrodynamics

Three important discoveries that alter the classical picture:

- Einstein's energy-mass equivalence: $E=m c^{2}$
- Uncertainty principle: $\Delta E \Delta t \geq \hbar / 2$
- Existence of positron : Dirac predicts negative electron energy states (1928), Anderson discovered positron in 1932
\rightarrow Vacuum fluctuations
-1936: Euler \& Heisenberg present modified Lagrangian

$$
\mathcal{L}_{E H}=\frac{1}{2 \mu_{0}}\left(\frac{E^{2}}{c^{2}}-B^{2}\right)+\frac{A_{e}}{\mu_{0}}\left[\left(\frac{E^{2}}{c^{2}}-B^{2}\right)^{2}+7\left(\frac{\vec{E}}{c} \cdot \vec{B}\right)\right]+\cdots
$$

- Non-linear \rightarrow Super-position principle broken!
\rightarrow light-by-light scattering possible

NB: in 1951 Shwinger derived the Lagrangian within OED

Measurements at the LHC

- Measurements of total production cross section at LHC
\rightarrow Note: Must reject vector-meson (J / ψ) mass region

Large experimental and theoretical uncertainty on total cross section
Cross section measurement alone cannot distinguish process

Some Jargon

Various models and theoretical predictions

- EPA = Equivalent photon approximation
- STARLight = Specific EPA implementation used for comparison to heavyion experiment for ~ 20 years
- Includes some strong (but common) assumptions on photon wave function and kinematics - specifically on spatial dependencies
- Specifically, integrate over all impact parameters
- Generalized EPA (gEPA) = EPA implementation with explicit spatial (impact parameter) dependence
- Equivalent to STARLight EPA when integrated over all space
- QED = lowest order calculation of Breit-Wheeler process
o All predict approximately the same total cross section (few percent)
- Drastically different prediction for pair p_{T} and correlation between e^{+}, e^{-}

$d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d \cos \theta^{\prime}$

$\gamma \gamma \rightarrow e^{+} e^{-}$: Individual e^{+} / e^{-}preferentially aligned along beam axis [1]:

$$
G(\theta)=2+4\left(1-\frac{4 m^{2}}{W^{2}}\right) \frac{\left(1-\frac{4 m^{2}}{W^{2}}\right) \sin ^{2} \theta \cos ^{2} \theta+\frac{4 m^{2}}{W^{2}}}{\left(1-\left(1-\frac{4 m^{2}}{W^{2}}\right) \cos ^{2} \theta\right)^{2}}
$$

- Highly virtual photon interactions should have an isotropic distribution
- Measure θ^{\prime}, the angle between the e^{+}and the beam axis in the pair rest frame.

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4, 1532 (1971) STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

$d \sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right) / d \cos \theta^{\prime}$

$\gamma \gamma \rightarrow e^{+} e^{-}$: Individual e^{+} / e^{-}preferentially aligned along beam axis [1]:

$$
G(\theta)=2+4\left(1-\frac{4 m^{2}}{W^{2}}\right) \frac{\left(1-\frac{4 m^{2}}{W^{2}}\right) \sin ^{2} \theta \cos ^{2} \theta+\frac{4 m^{2}}{W^{2}}}{\left(1-\left(1-\frac{4 m^{2}}{W^{2}}\right) \cos ^{2} \theta\right)^{2}}
$$

- Highly virtual photon interactions should have an isotropic distribution
- Measure θ^{\prime}, the angle between the e^{+}and the beam axis in the pair rest frame.
\Rightarrow Data are fully consistent with $G(\boldsymbol{\theta})$ distribution expected for $\gamma \gamma \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$
\Rightarrow Measurably distinct from isotropic

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. D4, 1532 (1971)
STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258 distribution

STARLight EPA calculation

Core assumptions in STARLight, SuperChic, and other similar EPA codes

- The impact parameter is conjugate to pair p_{T}, uncertainty principle \rightarrow must integrate over all $b>2 R$
- Use point charge source
- No production within nucleus
- STARLight manually applies polar angle correlations, no azimuthal correlations

Calculating Cross Section for $\gamma \gamma \rightarrow e^{+} e^{-}$Process

Generalized EPA \& OED Calculations:

- Use Woods-Saxson Form Factor for nuclear charge distribution
- Include production inside nucleus - absorption effects found to be negligible
- Predict impact parameter dependent P_{\perp} distribution

Breit-Wheeler Process and Light-by-Light Scattering

Breit-Wheeler Process

Light-by-Light Scattering

[1] Budnev, V. M., Ginzburg, I. F., Meledin, G. V. \& Serbo, V. G. Physics Reports 15, 181-282 (1975).
[2] ATLAS Collaboration et al. Phys. Rev. Lett. 123, 052001 (2019).

The Breit-Wheeler process and Light-by-Light scattering are intimately connected

According to the optical theorem[1] the Breit-Wheeler process is the imaginary part of the forward scattering amplitude

In QED formalism, the BreitWheeler process is the imaginary part of the propagator - i.e. when the $e^{+} e^{-}$masses are real.

Light-by-Light recently observed by ATLAS [2] and CMS collaborations

Looking to the Future

- Implications for non-perturbative QED?

1. Implications for vacuum birefringence?
2. Schwinger pair production in heavy ion collisions?

Optical Birefringence

Birefringent material: Different index of refraction for light polarized parallel $\left(n_{\|}\right)$vs. perpendicular $\left(n_{\perp}\right)$ to material's ordinary axis
\rightarrow splitting of wave function when $\Delta n=n_{\|}-n_{\perp} \neq 0$

Classical Electromagnetism

- Maxwell's equations are linear
$>$ Superposition principle holds

$$
\begin{aligned}
& \mathcal{L}_{\text {classical }}=\frac{1}{2 \mu_{0}}\left(\frac{E^{2}}{c^{2}}-B^{2}\right) \vec{D}=\frac{\partial \mathcal{L}_{\text {classical }}}{\partial \vec{E}} \\
& \vec{H}=-\frac{\partial \mathcal{L}_{\text {classical }}}{\partial \vec{B}} \vec{E} \\
& \vec{H}=\frac{1}{\mu_{0}} \vec{B}
\end{aligned}
$$

\rightarrow Unique speed of light in vacuum:

$$
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=299792458 \mathrm{~m} / \mathrm{s}
$$

Vacuum Magnetic Birefringence

$c=\frac{1}{\sqrt{\epsilon \mu}}$ BUT $\epsilon_{\|} \neq \epsilon_{\perp}$ and $\mu_{\|} \neq \mu_{\perp}$
Light behaves as if it is traveling through a medium with an index of refraction $n_{v a c} \neq 1$

$$
\tilde{n}_{\mathrm{vac}}=1+\left(n_{\mathrm{B}}+i \kappa_{\mathrm{B}}\right)
$$

Guido Zavattini ICNFP2019

$$
A_{e}=\frac{2}{45 \mu_{0}} \frac{\alpha^{2} \lambda_{e}^{3}}{m_{e} c^{2}}
$$

Unmeasurably small

Vacuum Birefringence

Vacuum birefringence : Predicted in 1936 by Heisenberg \& Euler. Index of refraction for γ interaction with \vec{B} field depends on relative polarization angle wrt B-field direction

Empty space + Ultra-strong Magnetic Field Linearly polarized
(vertical)

[1]
K. Hattori and K. Itakura, Annals of Physics 330, 23 (2013).
[1]
K. Hattori and K. Itakura, Annals of Physics 334, 58 (2013).
 R. P. Mignani, et al., Mon. Not. Roy. Astron. Soc. 465 (2017), 492

Linearly polarized
(horizontal)

Implications for vacuum birefringence

Fig. 1 Lowest order elementary processes leading to magnetic birefringence and dichroism

First observation of light experiencing transverse anisotropy wrt. B-field.
In HICs, EM-field strength:
$B_{\text {max }} \approx 10^{15} \mathrm{~T} \gg B_{c} \approx 10^{9} \mathrm{~T}$
Fields are well above critical field strengths, but act over very short time:

$$
\Delta t \approx \frac{b}{\gamma v} \approx 10^{-23} \mathrm{~s}
$$

Cannot be considered a static classical field
Unlike the normal theoretical picture, in this case: both photons are real and soft ($k_{\perp} \approx 30 \mathrm{MeV} / \mathrm{c}$) and all photons are manifestations of strong EM fields

However, currently there are no evidence of higher-order effects - looking forward to input from more theoretical investigations.

Hattori, K., Taya, H. \&Yoshida, S . J. High Energ. Phys. 2021, 93 (2021). https://doi.org/10.1007/JHEPo1(2021)093

The Schwinger Production Mechanism

- Schwinger mechanism is a non-perturbative OED effect
- In HICs the $E_{\text {max }} \approx 5 \times 10^{16} \mathrm{~V} / \mathrm{cm} \gg E_{c} \approx 10^{16} \mathrm{~V} / \mathrm{cm}$
- Observation of Breit-Wheeler process \rightarrow lowest order process, currently no evidence of higher-order effects

Possible to investigate Schwinger mechanism
experimentally in HICs?

- Precise measurements at lower beam energy where the fields vary more slowly \rightarrow more closely resemble a classical field
- Effect of long-lived EM-fields due to (conductive) QGP is formation
- Need additional theory input for expectation from higher order effects - with specific attention to our experimental conditions

[^1]Some authors have predicted that higher order processes should be present due to $Z \alpha \approx 1$

The Schwinger Production Mechanism

- Schwinger mechanism is a non-perturbative OED effect
- In HICs the $E_{\text {max }} \approx 5 \times 10^{16} \mathrm{~V} / \mathrm{cm} \gg E_{c} \approx 10^{16} \mathrm{~V} / \mathrm{cm}$
- Observation of Breit-Wheeler process \rightarrow lowest order process, currently no evidence of higher-order effects

Possible to investigate Schwinger mechanism
experimentally in HICs?

- Precise measurements at lower beam energy where the fields vary more slowly \rightarrow more closely resemble a classical field
- Effect of long-lived EM-fields due to (conductive) QGP is formation
- Need additional theory input for expectation from higher order effects - with specific attention to our experimental conditions

[^0]: STARLight is scaled to match measured $\sigma\left(\gamma \gamma \rightarrow e^{+} e^{-}\right)$

[^1]: Fig. 3. $e^{+} e^{-}$pair production is classified by the number of photons attached to each ion. We distinguish for classes (i) $n=n^{\prime}=1$ (ii) $n=1, n^{\prime}>1$ (iii) $n>1, n^{\prime}=1$ and (iv) $n>1, n^{\prime}>1$.

