STAR Forward Upgrade & Tracking

Daniel Brandenburg (BNL/CFNS) for the STAR Collaboration

Division of Nuclear Physics, American Physical Society October 29 - November 1, 2020

Mini-Symposium: Novel detector Technologies, from detectors to data analysis III

Hits in sTGC Detector

GENFIT2 Display

Primary Vertex

 Hits in Silicon Detector (not shown)

The STAR Forward Detectors

STAR Forward Rapidity Physics Program

Measurements planned for 2021+ with the STAR forward upgrade

→Address important topics in hot & cold QCD

rward-rapidity 2.5< η <4		
	Au+Au	

Beam:

500 GeV: p+p 200 GeV: p+p and p+A

pp, pA

Fo

Physics Topics:

- TMD measurements at high x transversity → tensor charge
- Improve statistical precision for Sivers through Drell-Yan
- Δg(x, Q²) at low x through Dijets
- Gluon PDFs for nuclei
- > R_{pA} for direct photons & DY
- Test of Saturation predictions through di-hadrons, g-Jets

Beam: 200 GeV: Au+Au

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to h~4
- Longitudinal decorrelation up to h~4
- Global Lambda polarization
- → Test for strong rapidity dependence

Forward Tracking System

	Requirement	Motivation
Momentum Resolution	< 30%	A+A goals
Tracking Efficiency	> 80% @ 100 tracks / event	A+A goals
Charge Separation	_	p+p / p+A goals

Forward Calorimeter System

Detector	Resolution p+p and p+A	Resolution A+A
ECal	$\sim 10\%/\sqrt{E}$	$\sim 20\%/\sqrt{E}$
HCal	$\sim 50\%/\sqrt{E} + 10\%$	_

STAR Forward Silicon Tracker (FST)

Full installation: 3 identical disks

- Acceptance: $0 < \phi < 2\pi$, $2.5 < \eta < 4.0$
- 12 wedge modules / disk
- APV25 frontend readout chips
- Flexible hybrid

Silicon strips:

- 2.85 cm long in r direction
- 2π / (12 * 128)
 φ -segmentations≈
 .0041 radians / strip

Small-Strip Thin Gap Chambers (sTGC)

Detector Technology:

- Based on ATLAS sTGC design
- 4 layers in total
 - 4 modules/layer
 - 2 chambers/module
- Position resolution: ~100 μ m
- Use VMM3 electronics

- ϕ —Acceptance: $0 < \phi < 2\pi$ ("hole" at $-\pi/2$)
- Symmetric Pentagonal design:
- "Sandwich" of X, Y, and diagonal strips

Wire: Au-plated tungsten wire Ø 50µm, 1.8mm pitch Copper strip: 3.2mm pitch Height of one layer: 5.8mm Gas: 55% n-pentane+45%CO2 HV: 2900V

Requires dedicated gas system

Forward Tracking

Unique Challenges:

 Combination of detector technologies: Silicon & sTGC
 Changing magnetic field
 Large hit density

Track finding:

 Cellular Automata

 Track Fitting:

 GENFIT2 (a multi-experiment tracking framework)

Magnetic Field in Forward Region

Tracking Algorithm

Track Finding

OCellular Automata based

Uses hits from sTGC detector (4 space-points)

Track Fitting procedure

- 1. Fit primary vertex + sTGC hits
- 2. Swim along track, find hits in Si planes
- 3. Refit with primary vertex + FST + sTGC

Naïve approach : make all possible connections

 \odot Very slow due to combinatorial blow up

 Still need to <u>distinguish real track</u> segments from combinatorial

Cellular Automation

 OUse simple "criteria" to build up longer segments of hits

 Build small segments, then grow them according to additional criteria

OVery performant & easily parallelized

Criteria for Finding Track Segments

Example Criteria RZRatio :

Two-Segment Criteria : RZRatio

10/16/20

Track Finding Efficiency

Evaluate performance under ideal conditions

- Track finding efficiency (perfect 4/4 correct hits) is $\approx 98\%$
- Track finding efficiency (3/4 or more correct hits) is \approx 99.5%
- Full material effects

• Real STAR B-field map

Simulation Parameters:

- \circ 1 μ^+ / Event
- \circ 2.45 < $|\eta|$ < 4.05
- $\circ 0.2 < p_T < 5 \, GeV/c$
- B Field : REAL (StarMagField)
- Primary Vertex distribution $\mu = (0, 0, 0), \sigma = (0.05, 0.05, 5)$ cm.

- 1. Fit track seed with sTGC hits and primary vertex (PV)
- 2. Project tracks to Silicon detector layers and search for hits along track
- 3. Refit tracks with PV + FST + sTGC

Step 2 : Project track onto silicon detectors, search for hits

Track Fitting Procedure

- 1. Fit track seed with sTGC hits and primary vertex (PV)
- 2. Project tracks to Silicon detector layers and search for hits along track
- 3. Refit tracks with PV + FST + sTGC

Step 3 : Refit track with all information : PV + Si + sTGC

Track Fitting Procedure

- 1. Fit track seed with sTGC hits and primary vertex (PV)
- 2. Project tracks to Silicon detector layers and search for hits along track
- 3. Refit tracks with PV + FST + sTGC

Performance from Simulation

Momentum Resolution

σ_{pT} / p_T = 11% + 5% x pT 0.8 Ideal Simulation 0.6 $1\mu/event$ 0.4 0.2 4.5 0.5 $p_{_{T}}^{_{ m GEN}}$ 0.3 0.25 %WrongQ = 0% + 3% x pT 0.2 Ideal Simulation $1\mu/event$ 0.15 0.1

0.05

 p_{T}^{GEN}

Summary

- <u>STAR Forward physics program is approaching fast!</u>
 - Measurements planned for 2021+ with the STAR forward upgrade
 → Address important topics in hot & cold QCD
- Dedicated forward tracking package being integrated in STAR
 - Cellular automata based track finding
 - GENFIT2 track fitting in non-uniform magnetic field region
- Forward tracking system meets or exceeds goals needed to address the physics goals of the STAR forward upgrade physics program

STAR Forward Upgrade Institutions

Large project → **Dedicated manpower & expertise for each system**

And support from the entire STAR Collaboration