STAR Upgrades

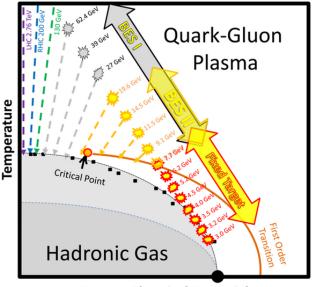
Daniel Brandenburg (Shandong University / BNL-CFNS)

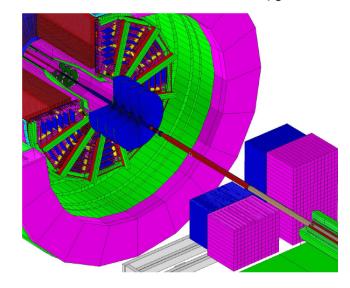
→ for the **STAR Collaboration**

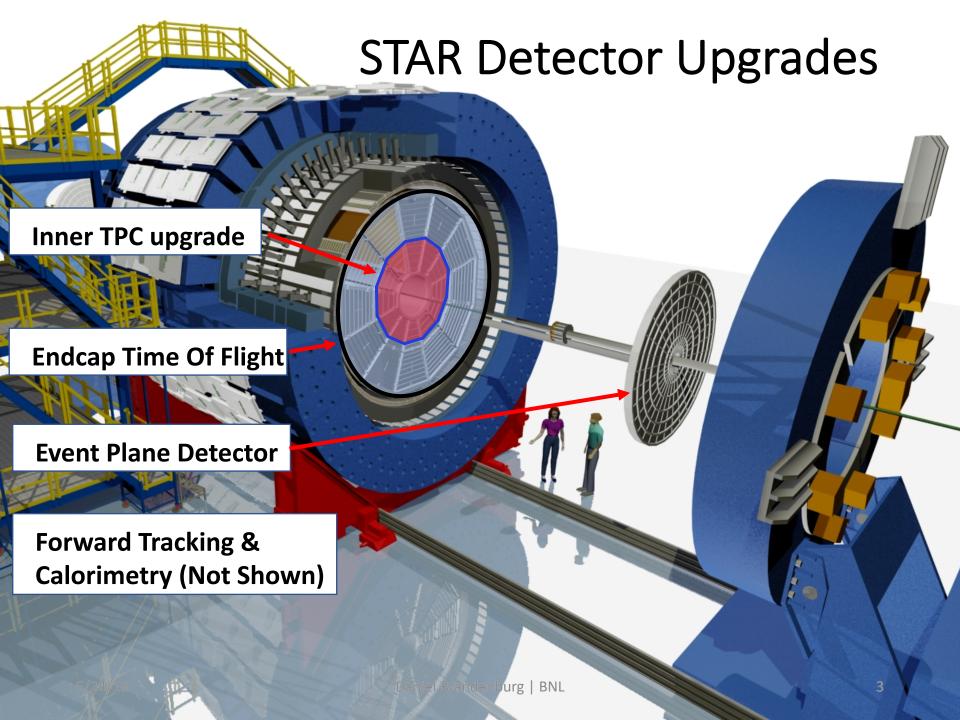
Initial Stages 2019

June 24-27, 2019

Columbia University, NY



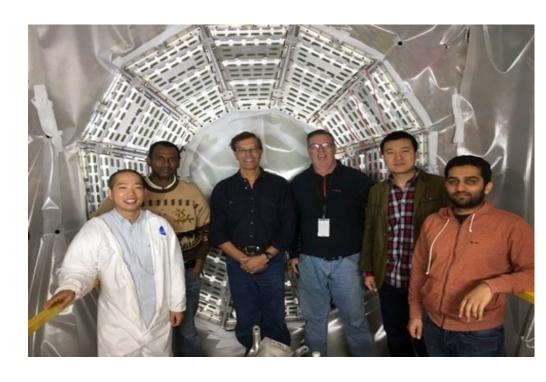



STAR Upgrades : Outline

- **OSTAR Upgrades for BES II**
 - Upgrade of the Inner TPC
 - Event Plane Detector
 - Endcap Time-of-Flight
- Forward Rapidity Physics
- The STAR Forward Upgrade
 - Tracking
 - Calorimetry
- Looking Forward
- Summary

Baryon Chemical Potential μ_B

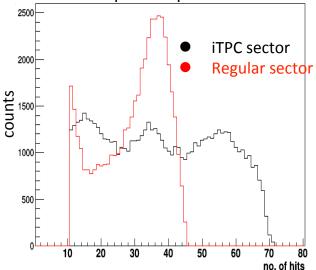
Inner TPC Installation

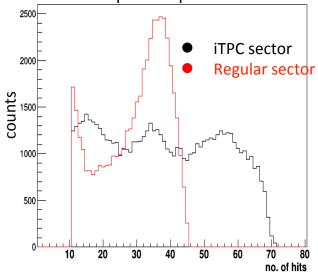

Installation

- East Side Sectors Complete 09/26/18
- West Side Sectors Complete 10/25/18

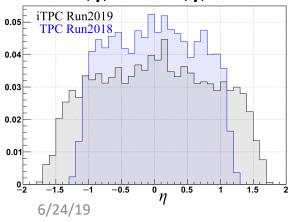
The testing and commissioning plan was developed~ 2 years ago, and updated following the fall DOE NP review - Includes hardware testing

Important components were:

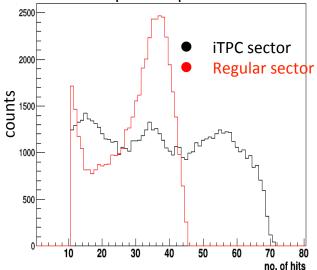

- √ Tests at SDU
- √ Test at BNL pre-installation
- √ Final inspection at installation time
- ✓ Post Installation checkout
- ✓ Cosmic data taking


2019 Schedule followed:

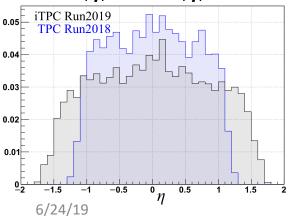
- Jan 18 Feb 4: Cosmic data with forward Full Field
- Feb 4: Change Magnet polarity
- Feb 4 ~Feb 18 Cosmic data with reverse full field
- Feb. 11: cool down of 2nd half of blue ring begins
- Feb. 14: beam in blue ring starting with the day shift
- Feb. 19: cool down of 2nd half of yellow ring begins
- Feb. 20: beam in yellow ring starting with the day shift
- Feb. 20: 1st collisions in STAR overnight at injection energy
- Feb. 21-27: Physics setup


- ➤ Replace all inner TPC sectors → continuous pad rows
- Doubled the readout channels. Using SAMPA chip developed for ALICE

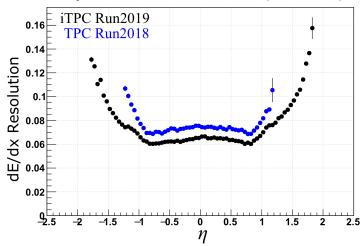
- ➤ Replace all inner TPC sectors → continuous pad rows
- Doubled the readout channels. Using SAMPA chip developed for ALICE



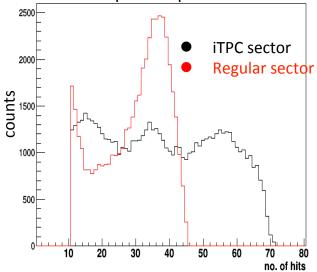
o Increase mid-rapidity coverage from $|\eta| < 1.0$ to $|\eta| < 1.5$



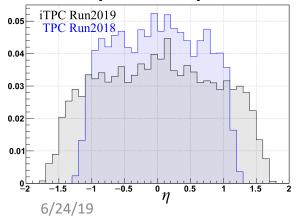
➤ Replace all inner TPC sectors → continuous pad rows


 Doubled the readout channels. Using SAMPA chip developed for ALICE

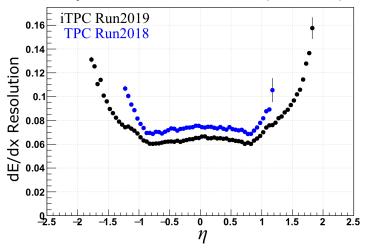
o Increase mid-rapidity coverage from $|\eta| < 1.0$ to $|\eta| < 1.5$

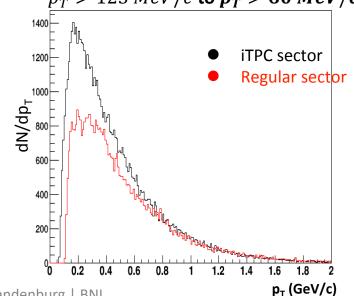


Improved dE/dx Resolution (15%-30%)

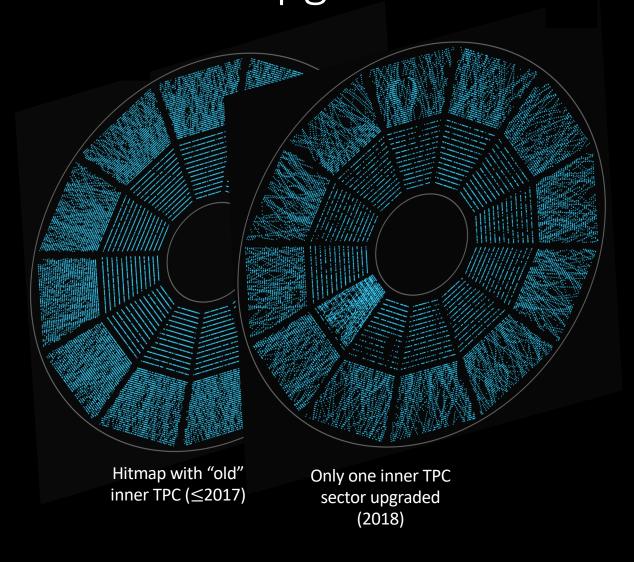


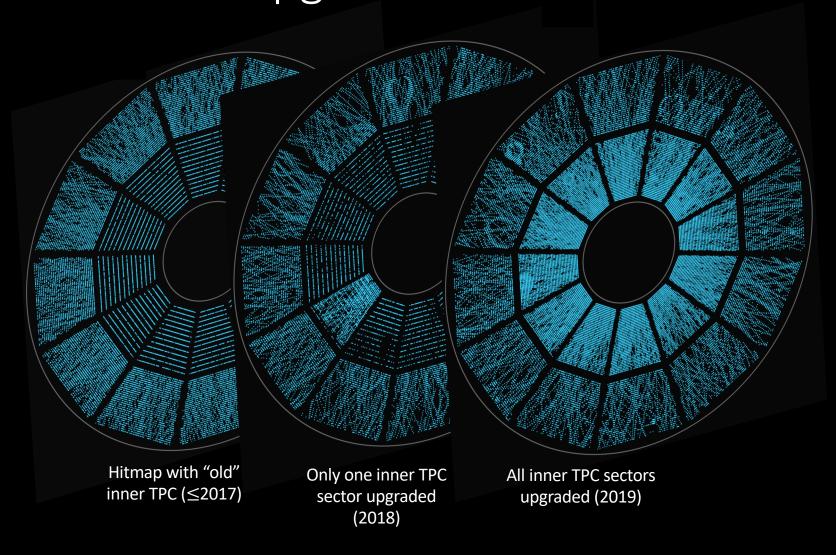
➤ Replace all inner TPC sectors → continuous pad rows


 Doubled the readout channels. Using SAMPA chip developed for ALICE

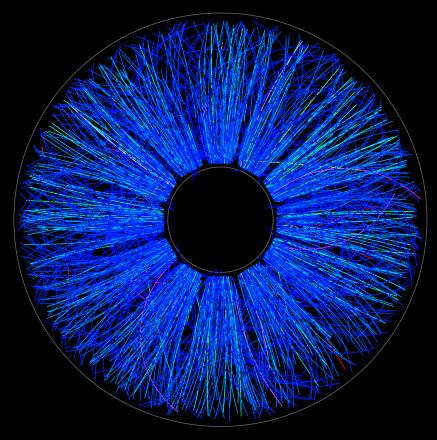

o Increase mid-rapidity coverage from $|\eta| < 1$. 0 to $|\eta| < 1$. 5



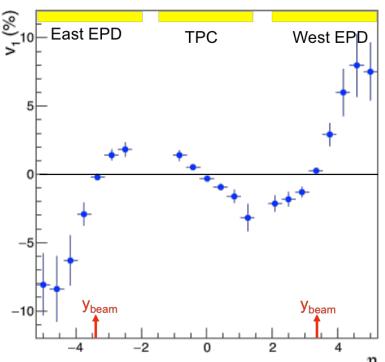

Improved dE/dx Resolution (15%-30%)



- Improved Momentum Resolution
- o Decrease minimum p_T threshold from $p_T > 125 \ MeV/c$ to $p_T > 60 \ MeV/c$



Successful, <u>on-time</u> & <u>under budget</u> completion of the iTPC upgrade

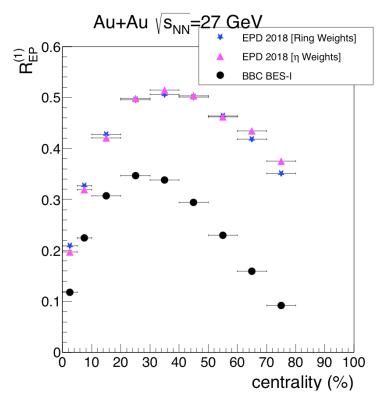


2019 Event Display: Au+Au 19.6 GeV Full tracking with all iTPC sectors

Event Plane Detector

STARNote 666 https://drupal.star.bnl.gov/STAR/starnotes/public/sn0666

- Replaces Beam-Beam Counter (BBC)
 - Improved triggering capabilities
 - \circ Extend η coverage
 - Improve event plane resolution

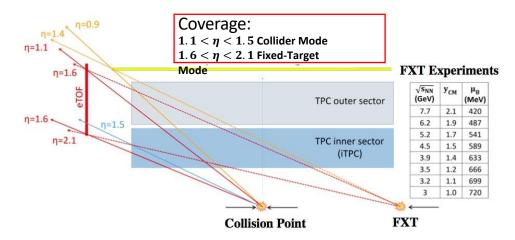


Added coverage from EPD

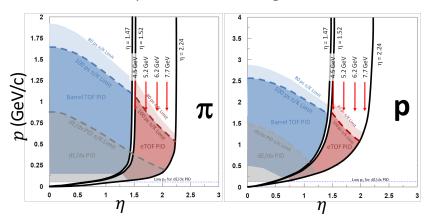
ightarrow Allows measurement of v_1 over ~10 units of $\eta!$

Smooth installation

- ✓ Completed in 2018
- ✓ Already used in analysis of 2018 data

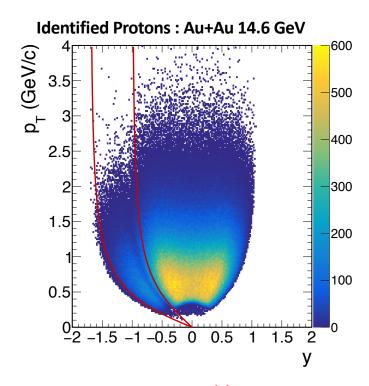


1st order Event Plane Resolution

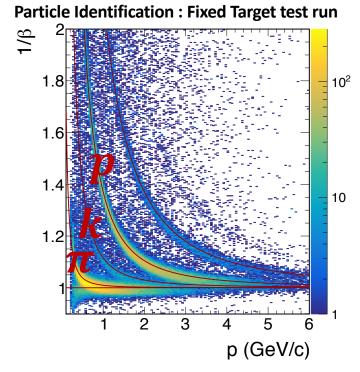

→ Significant improvement across all centrality

Motivation: Endcap Time-of-Flight Detector

- Extend STAR's particle ID capabilities (π, K, p)
 - \circ Complements the increased iTPC coverage $|\eta| < 1.5$
 - Essential for <u>mid-rapidity</u> particle
 ID in Fixed Target Program
- ➤ Allows "gap-less" scan of phase diagram with collider + Fixed Target Energies
 - Rapidity dependence of key bulk observables
 - Particle ID needed for fluctuation measurements in the Fixed Target Program
- ➤ First streaming DAQ system at RHIC important step towards the future
- ➤ Collaboration with CBM Fair phase 0



Acceptance in Fixed Target Mode



> Full eToF installation : completed Nov 22, 2018

ETOF Performance in 2019 Running

Region in red lines:
extended coverage added by eTOF
for identified protons

Particle bands are clearly distinguished over large momentum range.

Achieved target time resolution →

Calibrated time resolution ~85 ps

STAR Physics Program after BES II

> STAR Upgrades for BES II → provide <u>unique</u> opportunities at midrapidity in high energy A+A, p+A, and p+p

Mid-rapidity $-1.5 < \eta < 1.5$

Forward-rapidity 2.5<7<4

A+A

Beam:

Full Energy (200 GeV) Au+Au

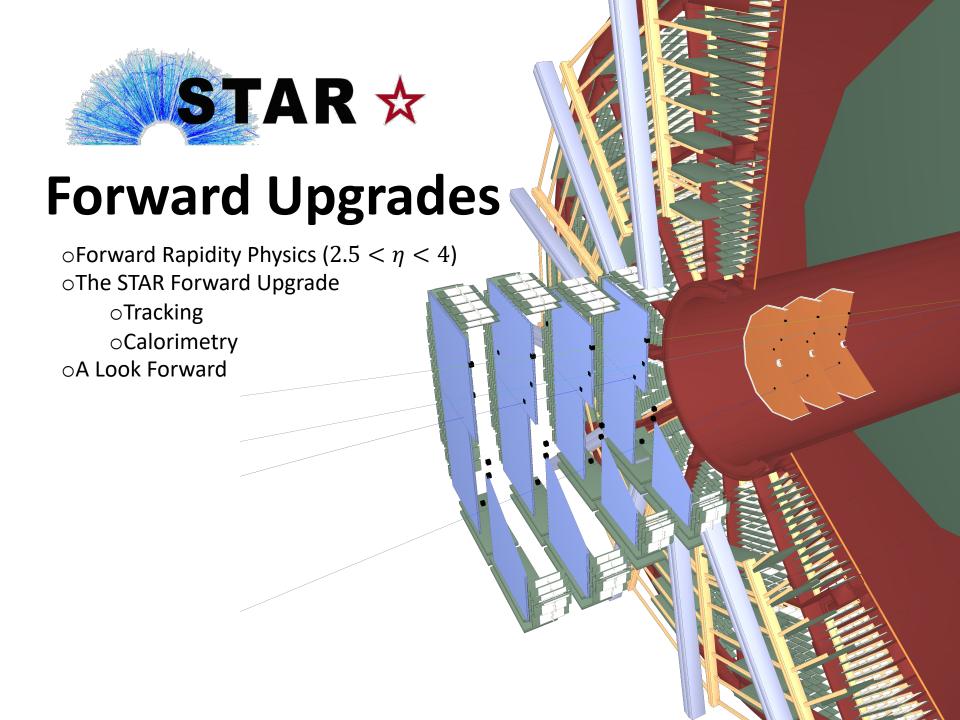
Physics Topics:

a deep look into the properties of the QGP:

- > γ & e+e- pairs
- o Chiral symmetry restoration
- Temperature and lifetime of hot, dense medium
- \triangleright Lower momentum π, K, p spectra
- Hypertriton Lifetime Measurement
- Precision measurements of direct photon yields and vn

p+A, p+p

Beam:


500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

Improve statistical precision:

- > TMD measurements, i.e. Collins, Sivers,
- > Access s & \(\Delta \) through Kaons in jets
- Measurement of GPD E_g through UPC
 .Τ/Ψ
- First access to Wigner functions through di-jets in UPC
- Gluon and quark vacuum fragmentation
- Gluon and quark fragmentation in nuclear medium
- Nuclear dependence of Collins FF

The STAR midrapidity pp, pA, AA physics program beyond BES-II: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

Forward Rapidity Physics at STAR

- ➤ Unique program addressing several fundamental questions in QCD
- ➤ Essential to RHIC cold & hot QCD physics mission + fully realize scientific promise of future Electron Ion Collider

Mid-rapidity -1.5<n<1.5

Forward-rapidity 2.5<η<4

Au+Au

Beam:

Full Energy (200 GeV) Au+Au

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to η~4
- Longitudinal decorrelation up to η~4
- Global Lambda Polarization
 Test for strong rapidity dependence

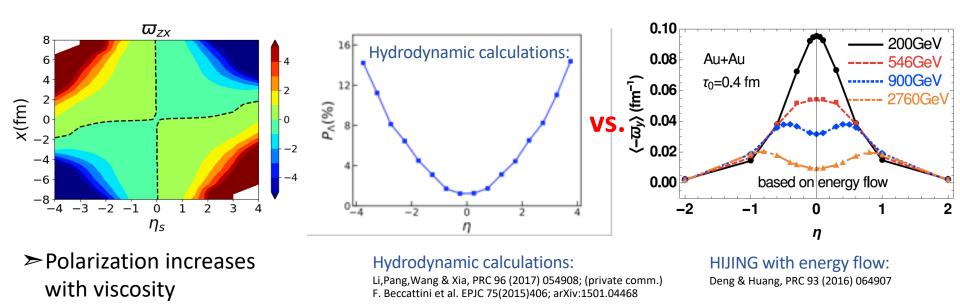
p+A, p+p

Beam:

500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

- TMD measurements at high x transversity → tensor charge
- Improve statistical precision for Sivers through Drell-Yan
- $\Delta g(x,Q2)$ at low x through Di-jets
- Gluon PDFs for nuclei
- $ightharpoonup R_{pA}$ for direct photons & DY
- Test of Saturation predictions through di-hadrons, γ-Jets

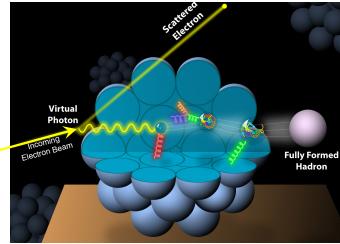

Forward Rapidity Physics at STAR

- ➤ Unique program addressing several fundamental questions in QCD
- ➤ Essential to RHIC cold & hot QCD physics mission + fully realize scientific promise of future Electron Ion Collider

Mid-rapidity $-1.5 < \eta < 1.5$ Forward-rapidity 2.5<η<4 Au+Aup+A, p+pBeam: Beam: Full Energy (200 GeV) Au+Au 500 GeV: p+p 200 GeV: p+p and p+A Physics Topics: Temperature dependence Physics Topics: of viscosity through flow TMD measurements at high x harmonics up to n~4 transversity → tensor charge Longitudinal decorrelation Improve statistical precision for up to n~4 Sivers through Drell-Yan Global Lambda Polarization • $\Delta g(x,Q2)$ at low x through Di-jets > Test for strong rapidity Gluon PDFs for nuclei dependence R_{pA} for direct photons & DY Test of Saturation predictions through di-hadrons, y-Jets

Global Hyperon Polarization

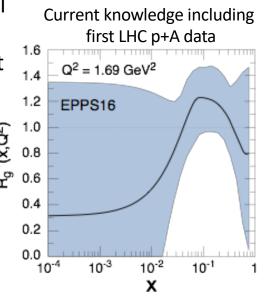
➤ Sensitive to <u>thermalization</u> and <u>viscosity</u>

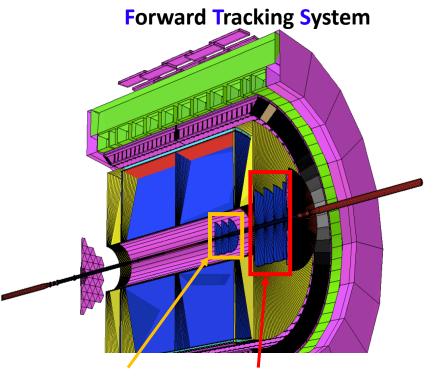



Model's predict opposite Polarization trend with rapidity → Measurements at forward rapidity are key

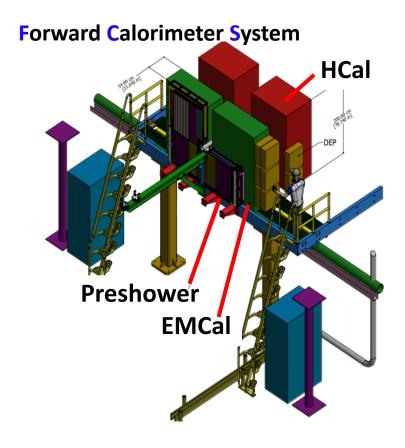
Probing the Initial State in A+A

≥3 important questions:


- O What are the nPDFs at low-x?
- O How saturated is the initial state of the nucleus?
- What is the spatial transverse distributions of nucleons and gluons?

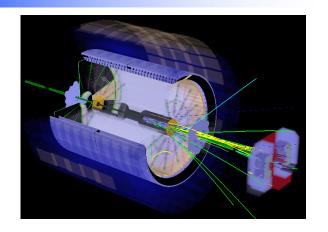


Observables free of final state effects:


- \circ Gluons: R_{pA} for direct photons
- \circ Sea-quarks: R_{pA} for Drell-Yan
- Scan A-dependence ' prediction by saturation models
- Accessible at forward rapidity

STAR Forward Detectors: FTS + FCS

Silicon + small-Strip Thin Gap Chambers (sTGC)


STAR Forward Upgrade Status

Associate Laboratory Director's Review

- Reviewed on 19th, November 2018 :
 - ✓ Physics requirements
 - ✓ Cost & Schedule for each subsystem
 - ✓ Readout & Triggering
 - ✓ Plan for integration and in-situ testing

Positive Feedback & Recommendations

 "Good progress has been made on an intriguing concept for a cold-QCD program to run in the near future in the forward direction at STAR" The STAR Forward Calorimeter System and Forward Tracking System

NSF proposal submitted Jan 2019

Funding for Forward Calorimeter systems

https://drupal.star.bnl.gov/STAR/system/files/ForwardUpgrade.Nov .2018.Review 0.docx

- √ Received very positive feedback
- ✓ Awaiting final response from NSF Division of Grants and Agreements expect to be funded

Final Report ALD's review: https://drupal.star.bnl.gov/STAR/system/files/STAR%20forward%20upgrade%20review%20Final%20Report.pdf

Proposal November 2018

STAR Forward Upgrade Institutions

Large project → Dedicated manpower & expertise for each system

sTGC

Silicon

HCal DAQ / Readout Software

Integration

VALPARAISC

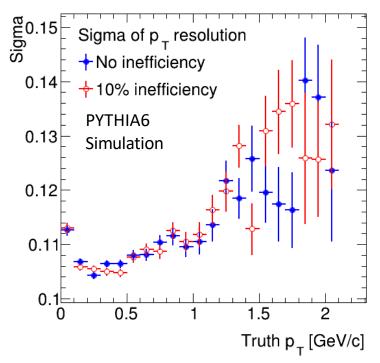
KENTUCKY

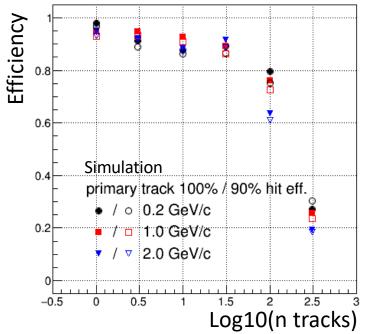
UNIVERSITY INDIANA UNIVERSITY

Forward Tracking System

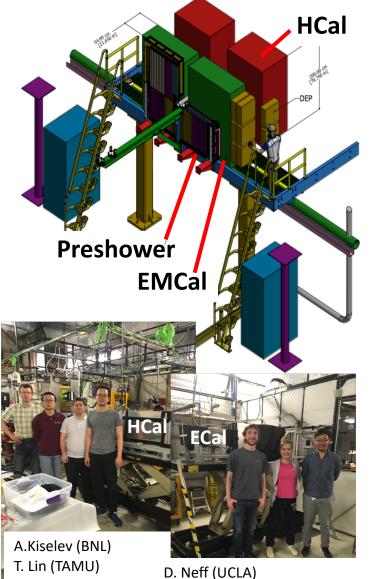
	Requirement	Motivation
Momentum Resolution	< 30%	A+A goals
Tracking Efficiency	> 80% @ 100 tracks / event	A+A goals
Charge Separation	_	p+p / p+A goals

Silicon mini-strip disks ×3


- ○Location : z = 90, 140, 187 cm from interaction point
- OBuild on and utilize STAR experience of successful Intermediate Silicon Tracker(IST) detector
- ominimal material (≤1% X0/layer) in the acceptance


Small-Strip Thin Gap Chamber (sTGC) $\times 4$

- oLocation : z = 270, 300, 330, 360 cm from interaction point
- Significant reduction in cost (compared to all silicon)
- Prototype at BNL, testing in STAR during 2019 run


Forward Tracking System

	Requirement	Motivation
Momentum Resolution	< 30%	A+A goals
Tracking Efficiency	> 80% @ 100 tracks / event	A+A goals
Charge Separation	_	p+p / p+A goals

Forward Calorimeter System

M.Sergeeva (UCLA)
B. Chan (UCLA)

Detector	Resolution p+p and p+A	Resolution A+A
ECal	$\sim 10\%/\sqrt{E}$	$\sim 20\%/\sqrt{E}$
HCal	$\sim 50\%/\sqrt{E} + 10\%$	_

Electromagnetic Calorimeter

- Reuse PHENIX PbSc
- New readout: SiPM

Hadronic Calorimeter

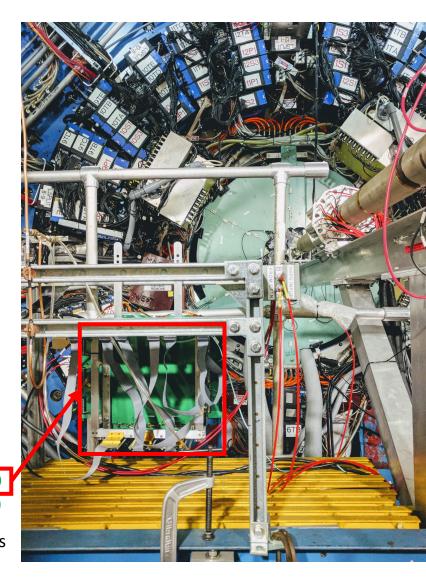
- Sampling ironscintillator
- Uses same readout as ECal

R&D in support of EIC

- → HCal development
- → All readout electronics
- → Balance Cost & performance

NSF grant expected to provide majority of funds

D. Kapukchyan (UCR)


Plan/Goals for Run 19

Forward Calorimeter System

- ✓ Fermilab test beam results completed
- ✓ Measured ECAL energy resolution ~ 10% / \sqrt{E}
- HCAL energy resolution measured ~ 75% / \sqrt{E} + 7%
 - > Work on modified light collection to improve resolution
- > 10-20 hours of Au+Au 200 GeV collisions
 - Test readout of calorimeters at ~ 10kHz rate
 - Finish commissioning of DEP (digitizer/trigger) boards with this data
 - Look at MIPS use for calibration etc.

Forward Tracking System

- Silicon Detectors
 - Complete the design of detector module in June 2019
 - Build the first complete prototype module in Summer/Fall 2019
 - o Fully test the prototype module in Fall/Winter 2019
- > sTGC Detectors
 - ✓ 30x30 cm prototype installed in STAR on June 5th, 2019
 - ✓ Test in STAR DAQ with C10 (90% argon + 10% CO2)
 - Test performance with various gas mixtures at Shandong University in full size (60 x 60 cm) prototypes

Looking Forward

Measurements planned for 2021+ with the STAR forward upgrade

→Address important topics in hot & cold QCD

p+p and p+A

- Transverse polarization effects in the proton : Twist-3 and TMDs
- Transversity, Collins, and Interference fragmentation functions
- Access ΔG through dijets with p+p at \sqrt{s} = 500 GeV
- Probe initial state with p+A collisions

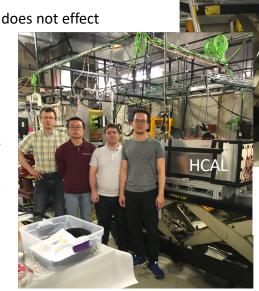
A+A

- Correlation measurements in hot and dense nuclear matter
- Precision measurements of long range correlations
- \circ Temperature dependence of the viscosity through flow measurements at $\eta \sim 4$

√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
p [↑] p @ 200	300 pb ⁻¹ 8 weeks	Subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Forward instrum. ECal+HCal+Tracking
p [↑] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	Forward instrum. ECal+HCal+Tracking
		Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	
p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAi} : direct photons and DY	Forward instrum. ECal+HCal+Tracking
		A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	
p [↑] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	Aut for Collins observables, i.e. hadron in jet modulations at $\eta > 1$	Forward instrum. ECal+HCal+Tracking
<u>p</u> 'p'@ 510	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A _{LL} for jets, di-jets, h/γ-jets at $\eta > 1$	Forward instrum. ECal+HCal

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

Summary of STAR Upgrades Crucial Upgrades for Beam Energy Scan II:


- o <u>Inner TPC</u>: Successful, on-time & under budget completion, excellent performance
- <u>Event Plane Detector</u>: Excellent uniformity + delivered expected improvement in the event-plane resolution
- Endcap Time of Flight: Fully installed, commissioning and data taking are ongoing 2019
- ➤ Upgrades provide unique opportunities at mid-rapidity in high energy A+A, p+A, and p+p

STAR Forward Rapidity Upgrade:

- ➤ Essential to RHIC cold & hot QCD physics mission & to realize scientific promise of future Electron Ion Collider
- ➤ Forward Tracking System
 - Silicon mini-strip detectors: build on STAR expertise from previous IST detector
 - > Small strip thin gap chambers : reduced cost, already testing prototypes in STAR now
- ➤ Forward Calorimetry System : <u>Preshower</u> + <u>ECal</u> + <u>Hcal</u>
 - > In-situ testing at STAR now, received positive funding feedback from the NSF
- ➤ Unique program addressing several fundamental questions in QCD

Calorimeter Current Status

- Fermilab test beam results
 - HCAL 16 channels, ECAL 16 channels
 - \circ ECAL energy resolution measured ~ 10% / \sqrt{E} meets requirement
 - HCAL energy resolution measured ~ 75% / \sqrt{E} + 7%
 - Work on modified light collection to improve resolution
 - o Promising results ongoing development, but does not effect design)
- Installation and in-situ testing at STAR
 - o 64 (8x8) EMCAL installed
 - o 16 (4x4) HCAL installed
 - o 1 layer (9 slats) Pre-shower (former FMS Post-Shower detector)
 - New generation of digitizer/trigger boards for ECAL/HCAL/Preshower readout
- Currently commissioning in STAR with beam
 - Operating pedestal, LED, and physics runs
- Online + slow controls + offline software being developed

D. Neff (UCLA) M.Sergeeva (UCLA) B. Chan (UCLA)

A.Kiselev (BNL)

D. Chen (UCR)

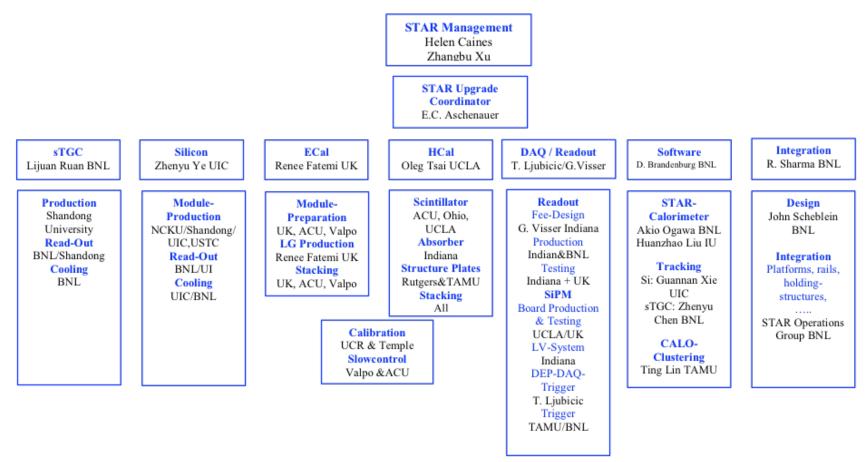
T. Lin (TAMU)

G. Visser (IUCF)

D. Kapukchyan (UCR) O. Tsai (UCLA)

Looking Forward

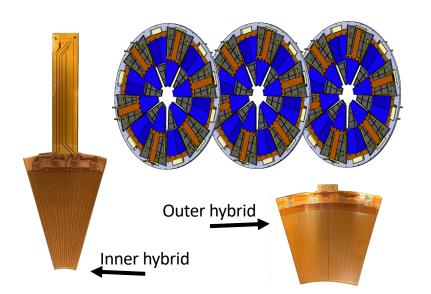
Future A+A Measurements with the STAR forward upgrade


Physics Measurements Detectors Acceptance		Longitudinal de-correlation $C_n(\Delta \eta)$ $r_n(\eta_a, \eta_b)$	η/s(T), ζ/s(T)	Mixed flow Harmonics <i>Cm</i> , <i>n</i> , <i>m</i> + <i>n</i>	Ridge	Event Shape and Jet- studies
Forward Calorimeter (FCS)	$2.5 < \eta < 4$ (photons, hadrons)	One of these detectors necessary		One of these detectors necessary	Good to have	One of these detectors needed
Forward Tracking System (FTS)	$2.5 < \eta < 4$ (charged particles)		Important		Important	

Addresses important topics in hot QCD:

- Ridge in p+p, p+A, and A+A
- Correlation measurements in hot and dense nuclear matter
- Precision measurements of long range correlations
- \circ Temperature dependence of the viscosity through flow measurements at $\eta{\sim}4$

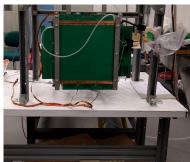
Organizational Structure STAR Forward Upgrade


➤ Large project → Dedicated manpower & expertise for each system

Forward Tracking System Current Status

Silicon Detector

- Silicon strip sensors ordered from Hamamatsu
- Detector module design and prototyping in progress
- First complete prototype module for test in Fall/Winter 2019


sTGC Detector

- 30x30 cm prototype delivered to BNL in January 2019
- Module tested in test-stand using cosmic rays
 + scintillator pads for trigger
- Connected to STAR Data Acquisition system first test data being analyzed now
- o Installed in STAR on June 5, 2019
- Full-size 60x60 cm prototype being produced at Shandong University

Prototype in STAR Clean Room,

On the Mounting Structure

