

Probing Nuclear Structure with Photon-Gluon Collisions

Daniel Brandenburg (BNL/CFNS) for the STAR Collaboration

Daniel Brandenburg

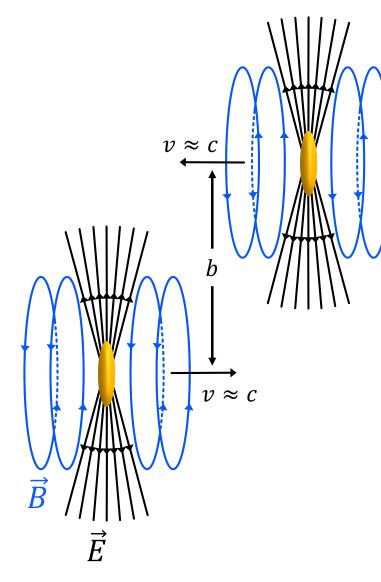
Talk Outline

1. Introduction

- Ultra-strong electromagnetic fields
- Transverse linearly polarized photons

2. Polarized Photon-Gluon Collisions

- Angular modulations of diffractive $\rho^0 \rightarrow \pi^+\pi^-$ in UPCs
- Comparison between p+Au, Au+Au and U+U

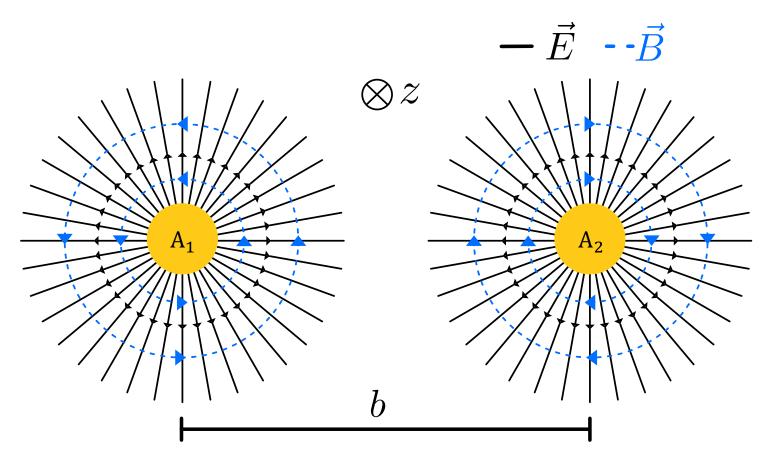

3. Tomographic Technique

• Extracting the nuclear interaction radius

4. Summary + Isobar

Ultra-Peripheral Heavy-Ion Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic fields


- $\gamma \gamma \rightarrow l^+ l^-$: photon-photon fusion
 - One photon from the field of each nucleus interacts
 - Second order process in α
 - Zα ≈ 1 → High photon density with highly charged nuclei
 S. J. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. D 4, 1532 (1971).
 M. Vidović, M. Greiner, C. Best, and G. Soff, Phys. Rev. C 47, 2308 (1993).
- $\gamma \mathbb{P} \rightarrow \rho^0, J/\psi, etc.$: Photo-nuclear production of vector mesons ($J^P = 1^-$)
 - Photon from the EM field of one nucleus fluctuates to a $q\bar{q}$ pair, interacts with pomeron (or Reggeon @ RHIC)
 - Photon quantum numbers $J^{PC} = 1^{--}$

Klein, S. R. & Nystrand, J. *Phys. Rev. C* **60**, 014903 (1999). Klein, S. R. & Nystrand, J. *Phys. Rev. Lett.* **84**, 2330–2333 (2000).

Transverse linearly polarized photons

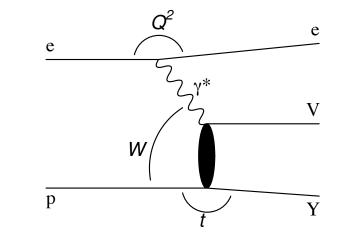
- Extreme Lorentz contraction of EM fields ($\vec{E} \perp \vec{B} \perp \vec{k}$)
 - \rightarrow Quasi-real photons should be linearly polarized in the transverse plane
- Polarization vector : aligned radially with the "emitting" source
- Well defined in the photon position eigenstates
- Event average, <u>washes out</u> <u>polarization effects</u>, since \vec{b} is random from one event to next

Birefringence of the QED Vacuum (07 07 STAR Collaboration, Phys. Rev. Lett. 127, 052302 (2021). polarized $\gamma \gamma \rightarrow e^+ e^-$ [1] leads to **STAR** $0.45 < M_{ee} < 0.76 \text{ GeV}$ $\cos(4\Delta\phi)$ modulations in <u>분</u>1200 Au+Au UPC Au+Au 60-80% × 0.65 $\sqrt{s_{NN}} = 200 \text{ GeV}$ counts $\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$ - Fit: C×(1 + $A_{2\Delta\phi}$ cos 2 $\Delta\phi$ + $A_{4\Delta\phi}$ cos 4 $\Delta\phi$) $\approx \Delta \phi [(e^+ + e^-), e^+]$ 800 **Ultra-Peripheral** QED χ^2/ndf Measured 600 **Ouantity** $-A_{4\Delta\phi}(\%)$ $16.8 \pm 2.5 \quad 16.5 \quad 18.8 / 16$ 400 Peripheral (60–80%) 200 Polarized $\gamma \gamma \rightarrow e^+e^-$: Without Polarization : χ^2/ndf Quantity Measured QED — – QED STARLight SuperChic $-A_{4\Delta\phi}(\%)$ 10.2 / 17 27 + 634.5 $\frac{\pi}{2}$ 0 $\Delta \phi = \phi_{ee}$

 $\cos 4\Delta \phi$ observed at > 6σ significance (UPC) – **photons are linearly polarized** + First laboratory evidence for vacuum birefringence January 25, 2022 Daniel Brandenburg

π

 $\pm 1\sigma$



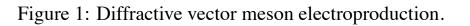

Polarized Photon + gluon Collisions

Photo-Nuclear Interactions

- Photo nuclear interactions have been studied for decades[1, 2, 3]
 - Well known process for probing the hadronic structure of the photon
- Extensive measurements in *ep* conducted at HERA (H1 and Zeus)
 - Involves virtual (longitudinally polarized) photons with large Q^2
 - Detailed measurements of the spindensity elements

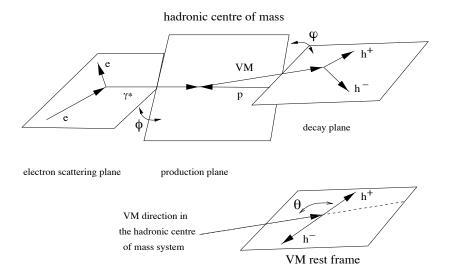
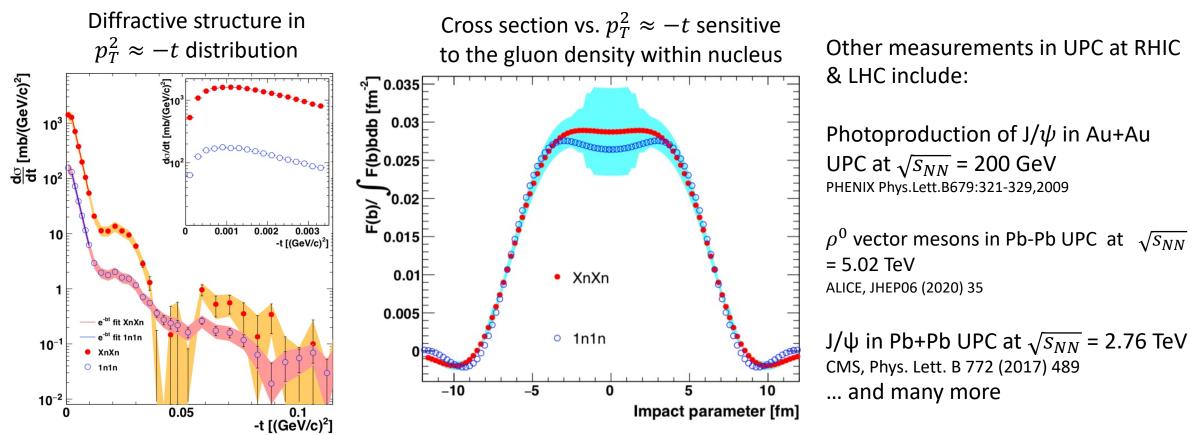


Figure 3: Definition of the angles characterising diffractive VM production and decay in the helicity system.


H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
 ZEUS Collaboration. Eur. Phys. J. C 2, 247–267 (1998).
 See refs 1-25 in [2]

January 25, 2022

Photo-Nuclear processes in UPC

STAR Collaboration *et al. Phys. Rev. Lett.* **89**, 272302 (2002) STAR Collaboration *et al. Phys. Rev. Lett.* **102**, 112301 (2009). STAR Collaboration *et al. Phys. Rev. C* **96**, 054904 (2017).

STAR has studied $\gamma \mathbb{P} \to \rho^0 \to \pi^+ \pi^-$ (and direct $\pi^+ \pi^-$ production) in the past

What more can we learn, with transverse linearly polarized photons?

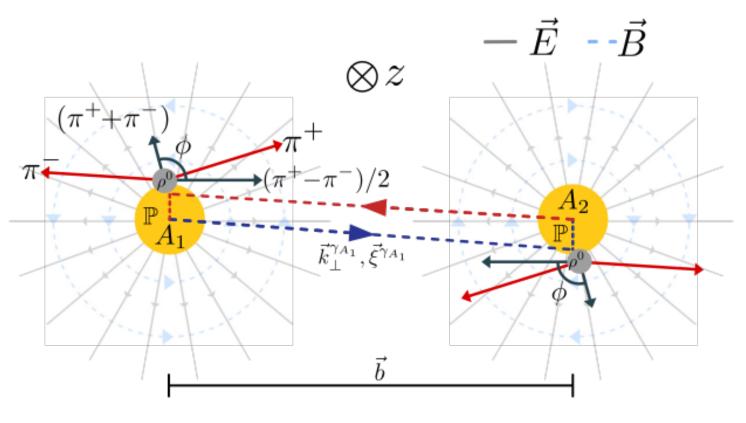

Daniel Brandenburg

Photo-production with Polarized Photons

- Polarization vector : aligned radially with the "emitting" source
- Well defined in terms of the semi-classical \vec{E} and \vec{B} fields
- Final state $\pi^+\pi^-$ pair is produced through interference of both amplitudes

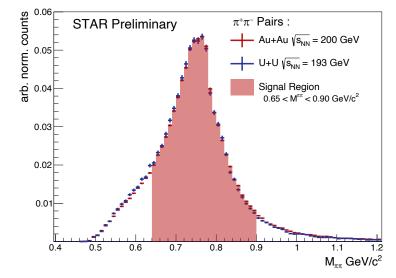
 $\sigma(p_T, b, y) = |A(p_T, b, y) - A(p_T, b, -y) \exp(i\vec{p}_T \cdot \vec{b})|^2,$ Klein, S. R. & Nystrand, J. *Phys. Rev. Lett.* **84**, 2330–2333 (2000). (1)

Quantum Interference Effects with Polarized Photons

If the photons are linearly polarized in the transverse plane:

- \rightarrow Modulation due to quantum interference of amplitudes
- \rightarrow Expect a cos 2 $\Delta \phi$ modulation in the final state[1]

Theoretical calculations indicate that the quantum interference effect is sensitive to:

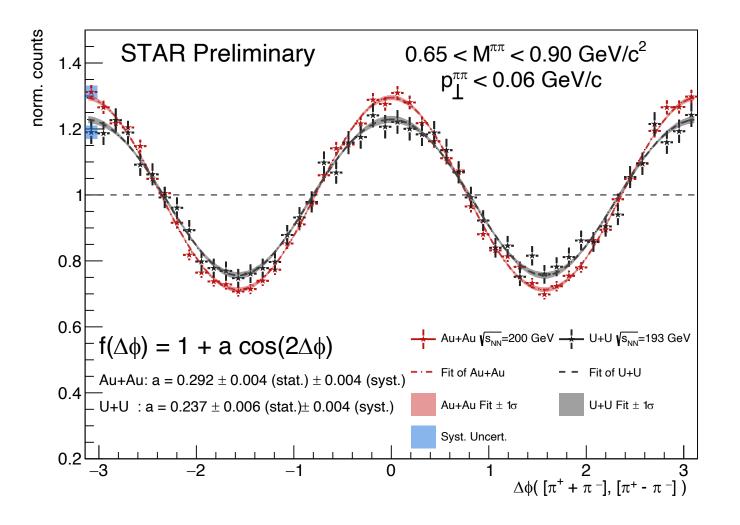

- \rightarrow Nuclear Geometry (gluon distribution)
- → Impact Parameter (detailed spatial distribution)

Access through measurement of $\Delta \phi$ distribution, like the $\gamma \gamma \rightarrow e^+ e^-$ case

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

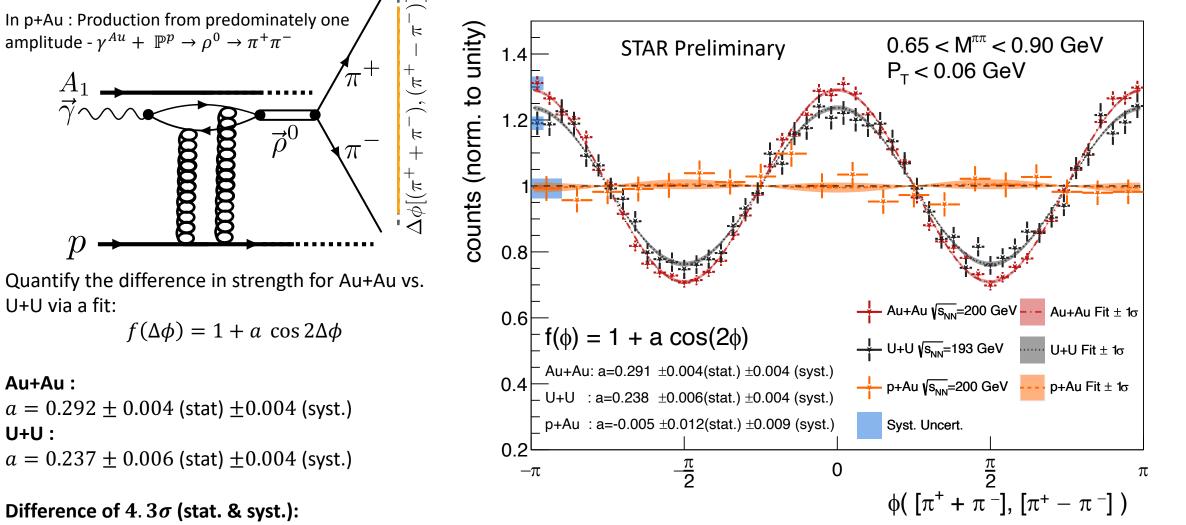
January 25, 2022

$\Delta \phi$ in Au+Au and U+U Collisions


Quantify the difference in strength for Au+Au vs. U+U via a fit:

$$f(\Delta\phi) = 1 + a \, \cos 2\Delta\phi$$

Au+Au : $a = 0.292 \pm 0.004 \text{ (stat)} \pm 0.004 \text{ (syst.)}$ U+U : $a = 0.237 \pm 0.006 \text{ (stat)} \pm 0.004 \text{ (syst.)}$


Difference of 4. 3σ (stat. & syst.):

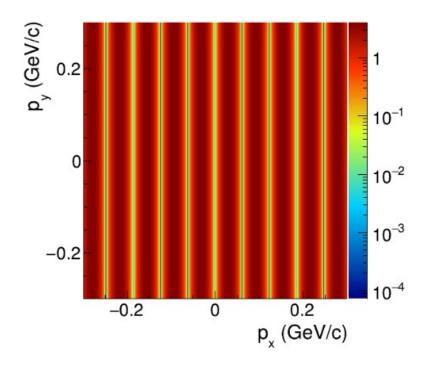
 Interference effect is sensitive to the nuclear geometry / gluon distribution

STAR

$\Delta\phi$ in Au+Au, U+U, and p+Au Collisions

Interference 'turns off' in p+Au

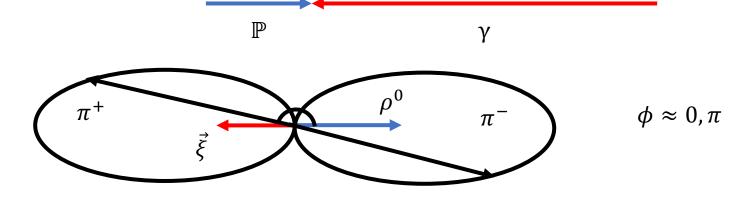
geometry / gluon distribution


Interference effect is sensitive to the nuclear

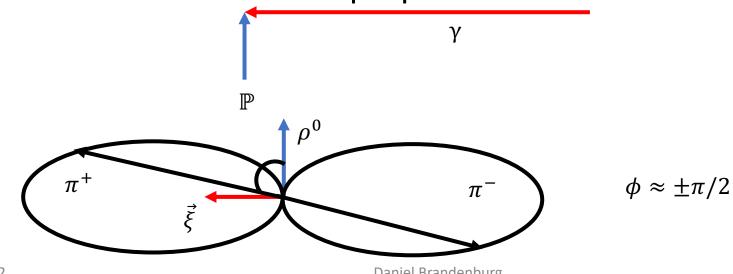
Tomographic Technique

Motivation for 2D Analysis : P_x vs P_y

- Photon polarization is aligned with $ec{b}$ (exactly for point source)
- Two source interference takes place in x-axis (impact parameter direction)

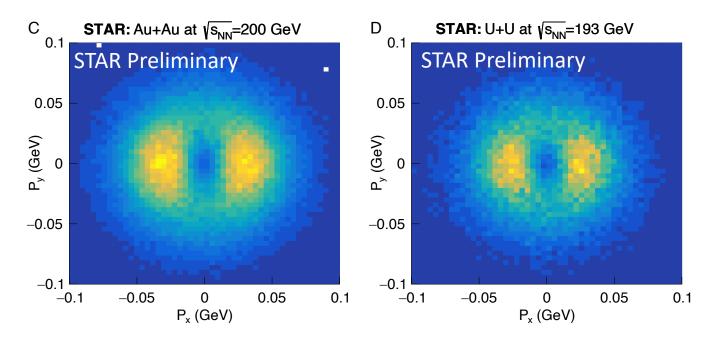

- Interference pattern disappears in P_{γ} direction
- Due to polarization of the ρ^0 , daughter pions aligned with photon polarization.
- Express ρ^0 transverse momentum in 2D:
 - $P_x = p_T \times \cos \phi$
 - $P_y = p_T \times \sin \phi$

Phys. Rev. D 103, 033007 (2021), https://arxiv.org/abs/2006.12099 January 25, 2022 Daniel Brandenburg



Interference Reveals Event Configurations

• Case I : Photon & Pomeron are (anti-) parallel



• Case II : Photon & Pomeron are perpendicular

2D "Imaging" : Clear difference in P_x vs. P_y

- Express ρ^0 transverse momentum in two-dimensions:
 - $P_x = p_T \times \cos \phi$

•
$$P_y = p_T \times \sin \phi$$

- Clear asymmetry in P_x vs. P_y due to interference effect in both Au+Au and U+U
- Illustrated "2D" tomography

Nuclear radius is too large?

STAR Collaboration, L. Adamczyk, *et al., Phys. Rev. C* 96, 054904 (2017). J. Adam *et al.* (ALICE Collaboration), J. High Energy Phys. 1509 (2015) 095.

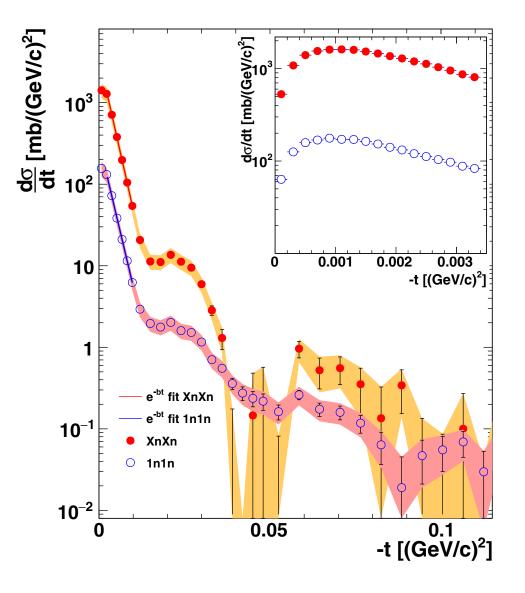
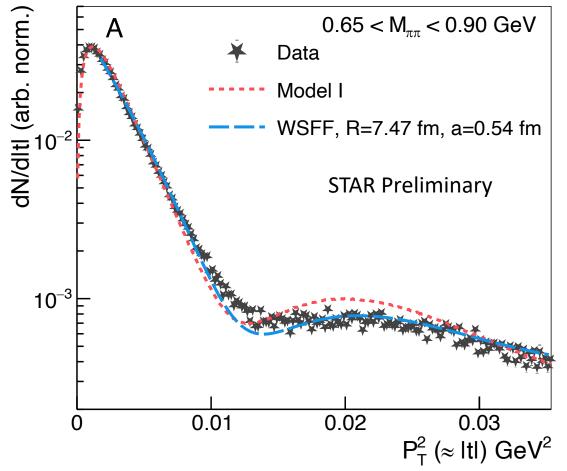



Photo-nuclear measurements have historically produced a |t| slope that corresponds to a **mysteriously large source!**

STAR (2017): |t| slope = $407.8 \pm 3(GeV/c)^{-2}$ ALICE (Pb) : |t| slope = $426 \pm 6 \pm 15 (GeV/c)^{-2}$ \rightarrow Effective radius of >8 fm?!? $(R_{Au}^{charged} \approx 6.38 \text{ fm}, R_{Pb}^{charged} \approx 6.62 \text{ fm})$ **STAR**

Mysteriously large?

STAR: $\pi^+\pi^-$ Pairs, Au+Au $\sqrt{s_{NN}}$ =200 GeV

STAR Collaboration, L. Adamczyk, *et al.*, *Phys. Rev. C* 96, 054904 (2017). J. Adam *et al.* (ALICE Collaboration), J. High Energy Phys. 1509 (2015) 095.

Photo-nuclear measurements have historically produced a |t| slope that corresponds to a **mysteriously large source!**

STAR (2017): |t| slope = $407.8 \pm 3(GeV/c)^{-2}$ ALICE (Pb) : |t| slope = $426 \pm 6 \pm 15 (GeV/c)^{-2}$ \rightarrow Effective radius of >8 fm?!? $(R_{Au}^{charged} \approx 6.38 \text{ fm}, R_{Pb}^{charged} \approx 6.62 \text{ fm})$

Mysteriously large?

STAR Collaboration, L. Adamczyk, *et al., Phys. Rev. C* 96, 054904 (2017). J. Adam *et al.* (ALICE Collaboration), J. High Energy Phys. 1509 (2015) 095.

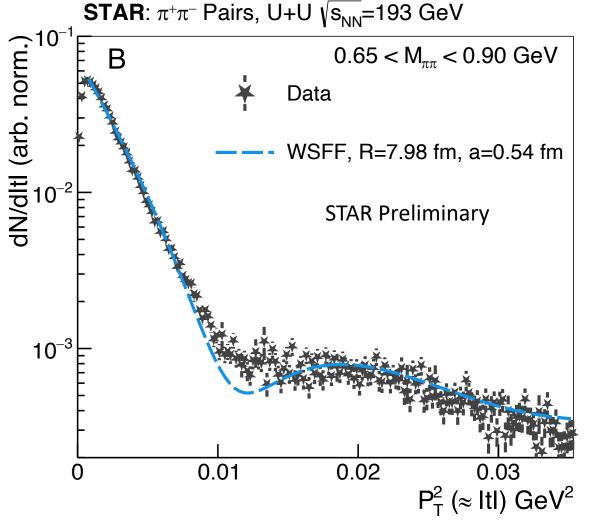
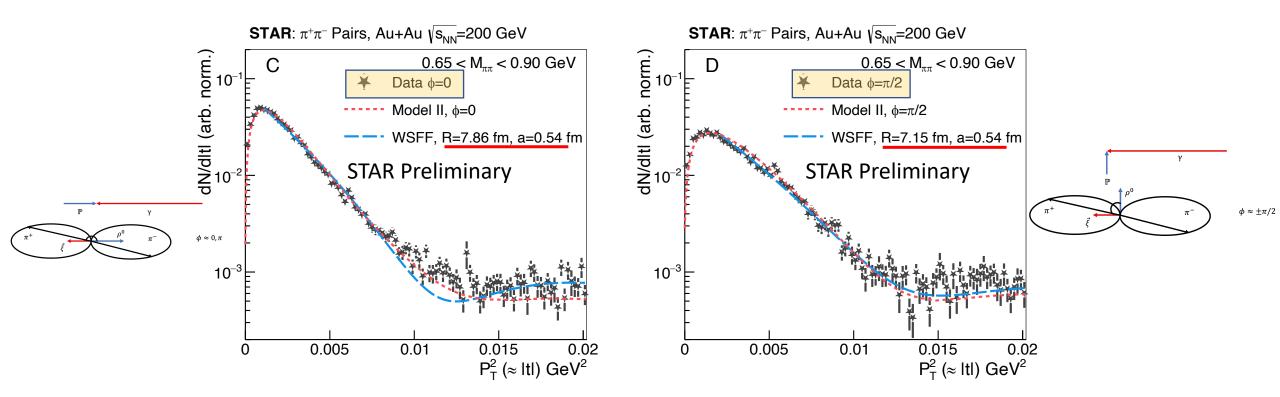


Photo-nuclear measurements have historically produced a |t| slope that corresponds to a **mysteriously large source!**

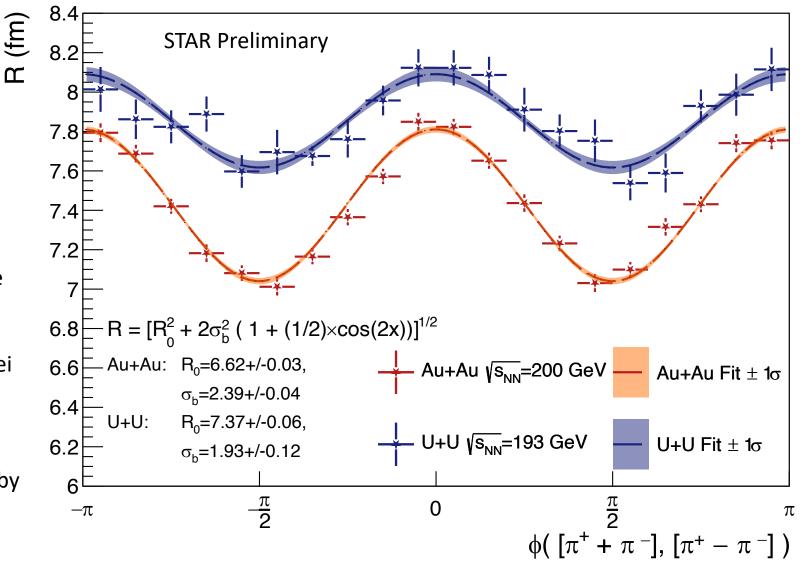

STAR (2017): |t| slope = $407.8 \pm 3(GeV/c)^{-2}$ ALICE (Pb) : |t| slope = $426 \pm 6 \pm 15 (GeV/c)^{-2}$ \rightarrow Effective radius of >8 fm?!? $(R_{Au}^{charged} \approx 6.38 \text{ fm}, R_{Pb}^{charged} \approx 6.62 \text{ fm})$

- Is this a deficiency of the exponential fit?
- Use a Woods-Saxon instead, radius is still >1 fm too big
- Uranium has the same issue, >1 fm larger than charge radius ($R_U^{charged} \approx 6.81$ fm)

$|t| vs. \phi$, which radius is 'correct'?

Now instead of p_x and p_y lets look at |t| with a 2D approach

- Drastically different radius depending on ϕ , still way too big
- Notice how much better the Woods-Saxon dip is resolved for $\phi = \pi/2$ -> experimentally able to **remove photon momentum, which blurs diffraction pattern**
- Can we extract the 'true' nuclear radius from |t| vs. ϕ information?


Daniel Brandenburg

|t| vs. ϕ , the whole picture?

- Strong $\cos 2\phi$ modulation
- At $\phi = \pm \pi/2$
 - Smearing from photon momentum is removed*
 - Interference effect, which modifies |t| spectra, is at a minimum
- Goal: extract R₀
- Correct for the polarization 'resolution' – similar to event plane resolution correction for flow
- Finally, need to correct for depolarization from finite size nuclei (4%) and size of probe (transverse size of the ρ⁰ wavefunction)

*: The $\rho^0 \rightarrow \pi^+\pi^-$ decay is governed by a spherical harmonic - not perfectly aligned with the photon momentum

Nuclear Radius Comparison

STAR Collaboration, L. Adamczyk, *et al.*, *Phys. Rev. C* 96, 054904 (2017).
 H. Alvensleben, *et al.*, *Phys. Rev. Lett.* 24, 786 (1970).
 G. McClellan, *et al.*, *Phys. Rev. D* 4, 2683 (1971).

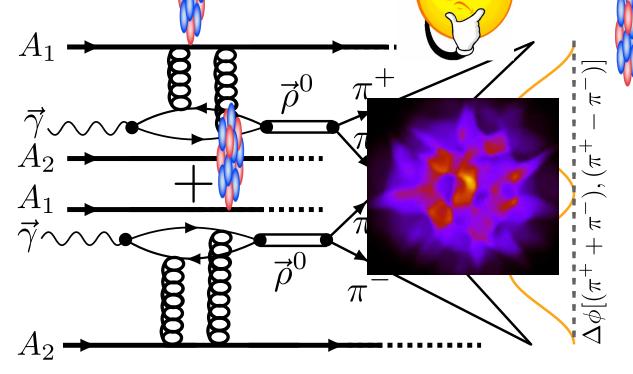
	Au+Au (fm)	U+U (fm)
Charge Radius	6.38 (long: 6.58, short: 6.05)	6.81 (long: 8.01, short: 6.23)
Inclusive t slope (STAR 2017) [1]	7.95 ± 0.03	
Inclusive t slope (WSFF fit)*	7.47 ± 0.03	7.98 <u>+</u> 0.03
Tomographic technique*	6.53 ± 0.03 (stat.) ±0.05 (syst.)	7.29 \pm 0.06 (stat.) \pm 0.05 (syst.)
DESY [2]	6.45 ± 0.27	6.90 ± 0.14
Cornell [3]	6.74 ± 0.06	
Neutron Skin (Tomographic Technique)	0.09 ± 0.02 (stat.) ± 0.05 (syst.)	0.41 \pm 0.03 (stat.) \pm 0.05 (syst.) (Note: for Pb $pprox$ 0.3)
		*STAR Preliminary

*STAR Preliminary

Precision measurement of <u>nuclear</u> interaction radius at <u>high-energy</u> Measured radius of Uranium shows evidence of (relatively) large neutron skin

Summary (1)

- 1. Observed (6.7 σ) cos 4 $\Delta\phi$ angular modulation in linear polarized $\gamma\gamma \rightarrow e^+e^-$ (Breit-Wheeler) process
 - Colliding photons are linearly polarized
 - First laboratory evidence for vacuum birefringence
- 2. First measurements of $\Delta \phi$ modulations in $\gamma \mathbb{P} \rightarrow \rho^0 \rightarrow \pi^+ \pi^-$ process
 - Strong $\cos 2\Delta\phi$ modulations due to photon polarization
 - Measurement in Au+Au and U+U collisions
- 3. Novel Tomographic Technique
 - Experimentally demonstrate sensitivity to gluon distribution within nucleus
 - Measurement of nuclear radii in high-energy heavy ions (Au and U)

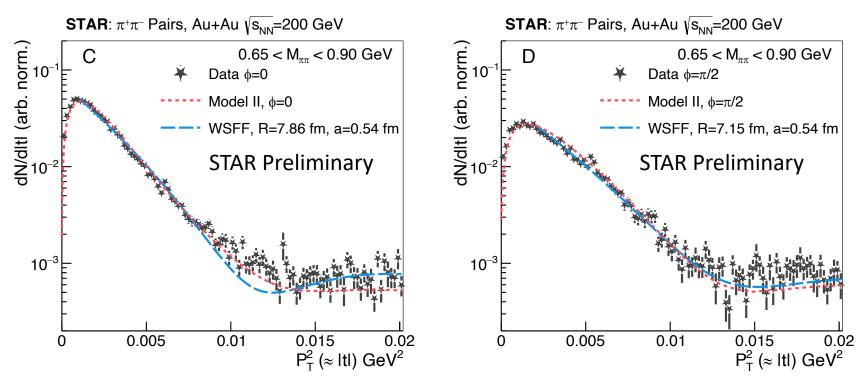

Many open questions from both experimental and theoretical sides Exciting opportunities at RHIC, LHC, and future EIC

Opportunities in RHIC Isobar Data

STAR

STAR Isobar data : Minbias triggers + UPC J/ψ

- Comparison of Zr+Zr vs. Ru+Ru
- Measurement of photonuclear process in peripheral to central MB collisions
- Comparison of $\rho^0 \rightarrow \pi^+\pi^ \gamma^+ \mu^-$ (better from theoretical side)
- Effect is duto interference **()** teraction with medium induce decoherence?



- Unlike leptons, π interact via strong force
- Presence of strongly interacting medium → wavefunction collapse?
 - I.e. no interference?
 - Difference between pion vs. lepton final states?

Additional Slides

Data v.s. Model Revisited (Au+Au)

- Model II with interference effect accurately describes |t| spectra for $\phi = 0$ and $\phi = \pm \pi/2$ cases
- Model uses $R_{Au} = 6.38$ fm (charge radius)
- Interference effect is essential for proper interpretation

Photon Polarization \rightarrow Destructive Interference

• Observation of **DESTRUCTIVE** interference in vector meson production

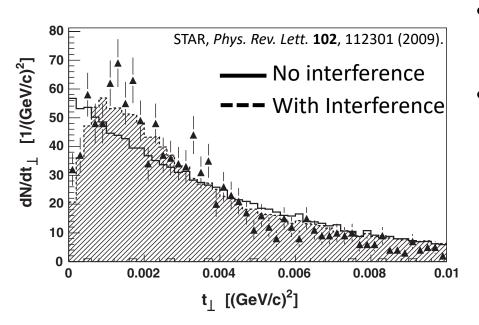


FIG. 2. Raw (uncorrected) $\rho^0 t_{\perp}$ spectrum in the range 0.0 < |y| < 0.5 for the MB data. The points are data, with statistical errors. The dashed (filled) histogram is a simulation with an interference term ("Int"), while the solid histogram is a simulation without interference ("NoInt"). The handful of events histogrammed at the bottom of the plot are the wrong-sign $(\pi^+\pi^+ + \pi^-\pi^-)$ events, used to estimate the combinatorial background.

Klein, S. R. & Nystrand, J. *Phys. Rev. C* **60**, 014903 (1999). Klein, S. R. & Nystrand, J. *Phys. Rev. Lett.* **84**, 2330–2333 (2000). January 25, 2022

- Explanation of destructive interference attributed to odd parity under $A_1 \Leftrightarrow A_2$ exchange
- However, strictly speaking real photons do not have well defined parity
 - → Photon intrinsic parity is defined by the radiation field Yang, C. N. Phys. Rev. 77, 242–245 (1950).

Photon Polarization \rightarrow Destructive Interference

• Observation of **DESTRUCTIVE** interference in vector meson production

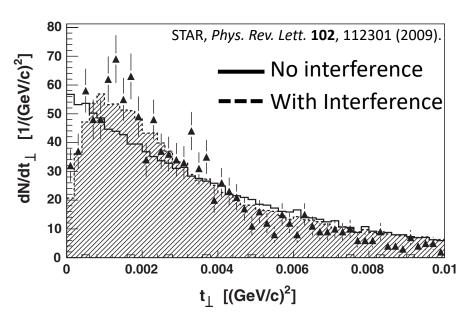
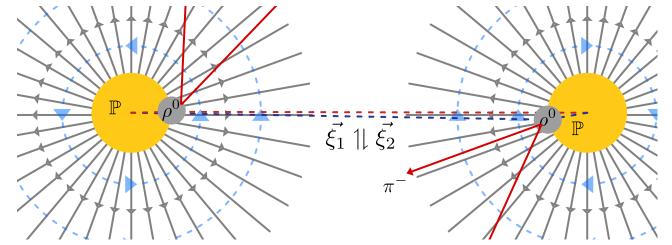
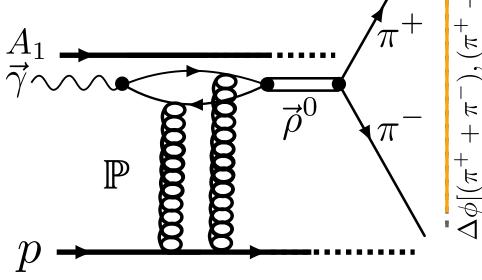



FIG. 2. Raw (uncorrected) $\rho^0 t_{\perp}$ spectrum in the range 0.0 < |y| < 0.5 for the MB data. The points are data, with statistical errors. The dashed (filled) histogram is a simulation with an interference term ("Int"), while the solid histogram is a simulation without interference ("NoInt"). The handful of events histogrammed at the bottom of the plot are the wrong-sign $(\pi^+\pi^+ + \pi^-\pi^-)$ events, used to estimate the combinatorial background.

Klein, S. R. & Nystrand, J. *Phys. Rev. C* **60**, 014903 (1999). Klein, S. R. & Nystrand, J. *Phys. Rev. Lett.* **84**, 2330–2333 (2000). January 25, 2022

- Explanation of destructive interference attributed to odd parity under $A_1 \Leftrightarrow A_2$ exchange
- However, strictly speaking real photons do not have well defined parity

→ Photon intrinsic parity is defined by the radiation field Yang, C. N. Phys. Rev. 77, 242–245 (1950).


- Production at zero P_T must have anti-parallel photon polarization
- Provides an intuitive understanding of destructive interference

Can we "turn off" the interference effect?

In p+Au there is a significant difference in charge (Z) between the colliding beams:

- Photon emission from the field of the proton is Z^2 down compared to a photon emitted from the field of the Au
- Production from predominately one amplitude $\gamma^{Au} + \mathbb{P}^p \rightarrow \rho^0 \rightarrow \pi^+\pi^-$

With only one "diagram" \rightarrow No interference: Expect an isotropic $\Delta \phi$ distribution

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

January 25, 2022

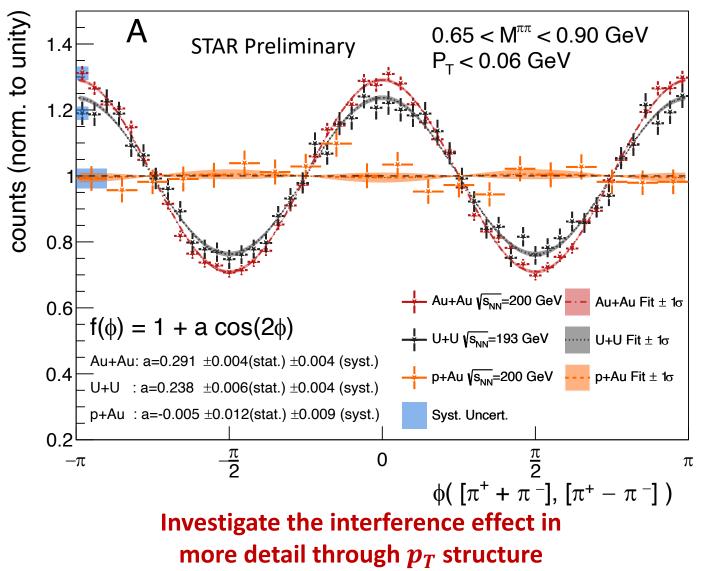
$\Delta\phi$ in Au+Au and U+U Collisions

Ultra-peripheral events from:

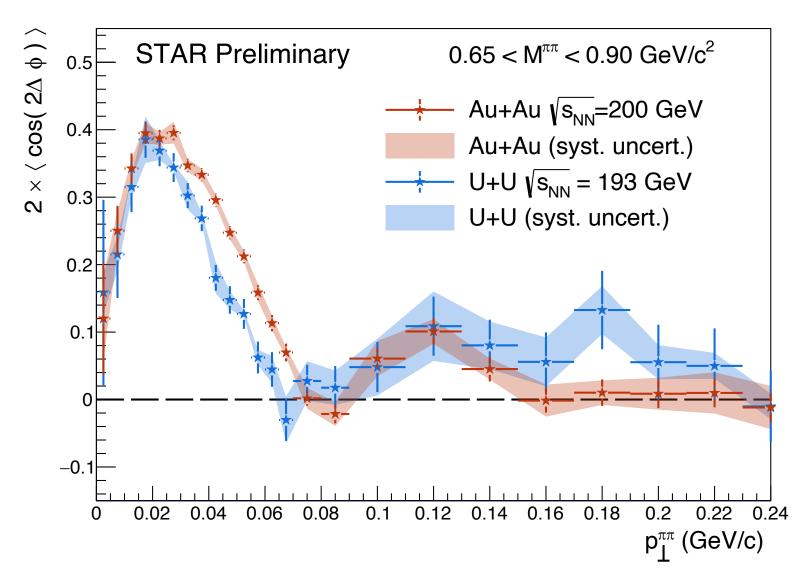
- Au+Au at $\sqrt{s_{NN}} = 200$
- U+U at $\sqrt{s_{NN}} = 193$
- At low p_T where the modulation is strongest ($p_T < 60 \ MeV/c$)

Quantify the difference in strength for Au+Au vs. U+U via a fit:

 $f(\Delta \phi) = 1 + a \, \cos 2\Delta \phi$

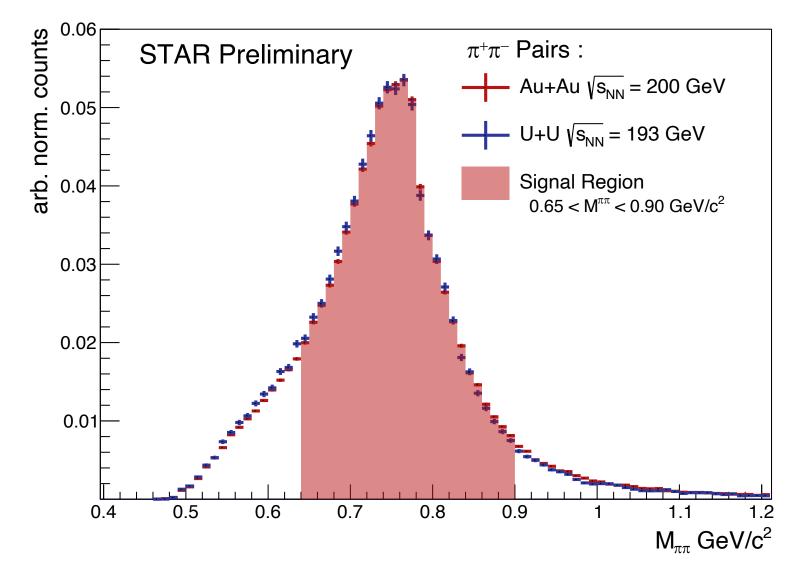

Au+Au :

```
a = 0.291 \pm 0.004 (stat) \pm 0.004 (syst.) 
U+U :
```


```
a = 0.238 \pm 0.006 (stat) \pm 0.004 (syst.)
```

Difference of 4. 3σ (stat. & syst.):

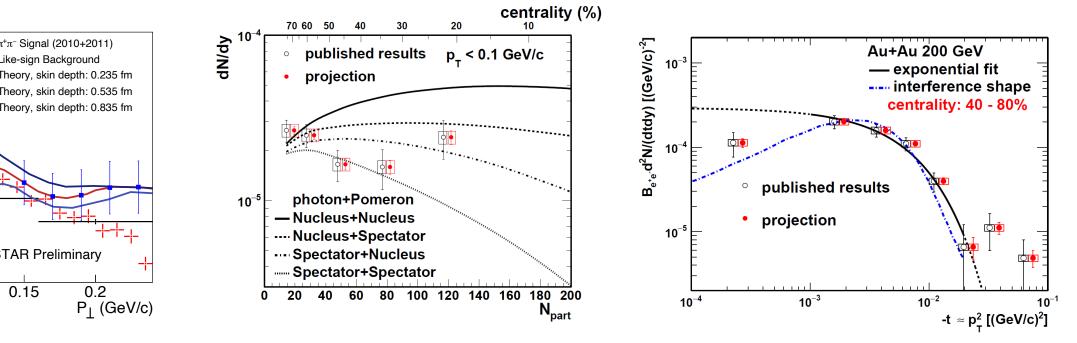
 Interference effect is sensitive to the nuclear geometry / gluon distribution



$\cos 2\Delta \phi \ vs. p_T$ in U+U and Au+Au

- Strong $\cos 2\Delta\phi$ modulation observed at $p_T < \sim 60 \text{ MeV}/c$
- In U+U: Broad second "peak" above 80 MeV/c
- In Au+Au: more definite second peak around $80 < p_T < 160$ MeV/c
- Systematic uncertainty shown in colored band
- Novel input for discriminating coherent + incoherent contributions

Measurements in Au+Au and U+U UPC events

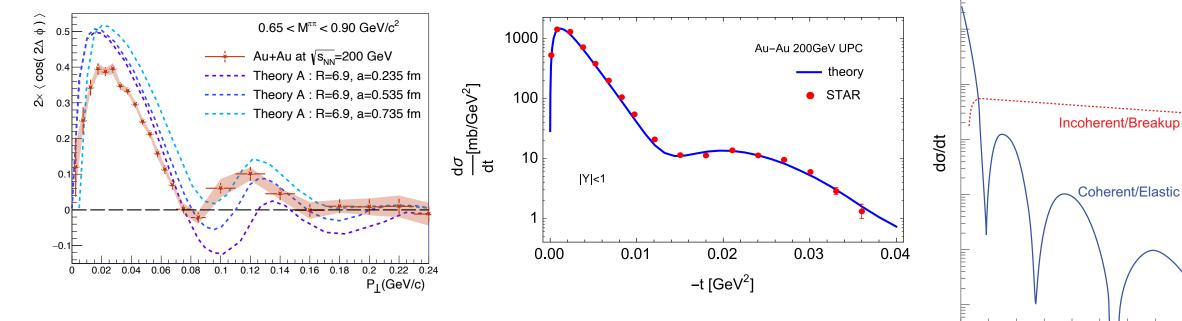


- Clear ρ^0 peak in both Au+Au and U+U UPC events.
- First measurement of diffractive coherent photonuclear production in U+U collisions.
- For the $\Delta \phi$ measurement, we select region around ρ^0 mass with roughly uniform acceptance

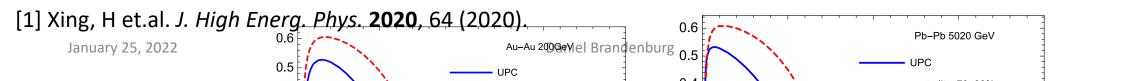
Future Tests of Interference Effects

3. Measurement $\Delta \phi$ distribution in non-UPC events

Answer Question: What is coherently interaction?


- STAR Measurements of $J/\psi \rightarrow l^+l^-$ in peripheral collisions already indicate interference
- Coherent measurements in peripheral collisions can help distinguish <u>coherent emitter</u>
- $\Delta \phi$ Interference pattern should provide much more information

Use interference to separate Coherent/Incoherent


- Experimentally, we observe that incoherent does not contribute to interference pattern (Zero above pT > 160 MeV/c)
- Once quantitative agreement is reached between data & theory for $\Delta \phi$ \rightarrow Use interference effect to help disentangle coherent vs. incoherent
 - Simultaneous fit measured spectra (coherent + incoherent) with $\cos 2\Delta \phi$

Separation of coherent vs. incoherent is the essential experimental challenge for EIC measurements

tっ

 Proof of concept already carried out in [1], however STAR t spectra had incoherent pre-subtracted using a dipole form factor.

34

|t| ^t3

Other Polarization Effects

1. Hagiwara, Y., Zhang, C., Zhou, J. & Zhou, Y. Coulomb nuclear interference effect in dipion production in ultraperipheral heavy ion collisions. *Phys. Rev. D* **103**, 074013 (2021).

• $\Delta \phi$ is sensitive to Coulomb-nuclear interference

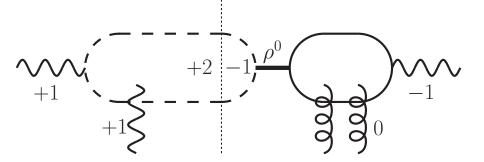
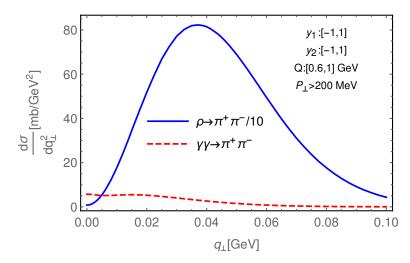
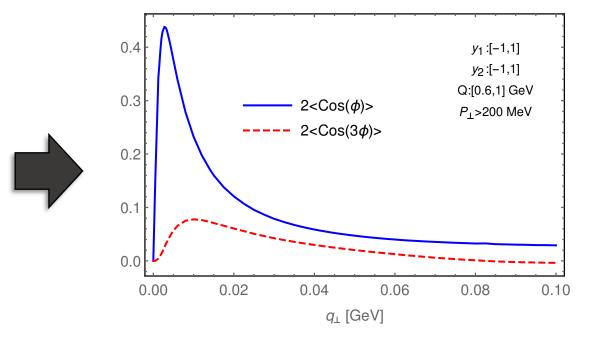
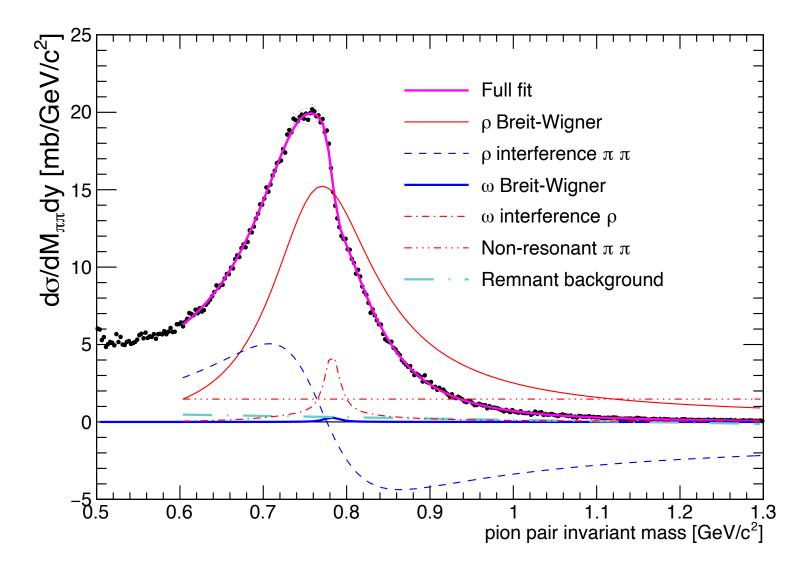




FIG. 1: An illustration of the mechanism giving rise to $\cos 3\phi$ azimuthal asymmetry. The solid line represents the quark propagator, while the pion propagator is indicated by the dashed line.



Coulomb-nuclear interference should produce odd harmonics ($\cos \phi \& \cos 3\phi$)

NOTE: Existing STAR measurement applies charge shuffling to simplify corrections \rightarrow odd harmonics are zero by construction

Measurements in Au+Au and U+U UPC events

Not only ρ^0 , interference from other states:

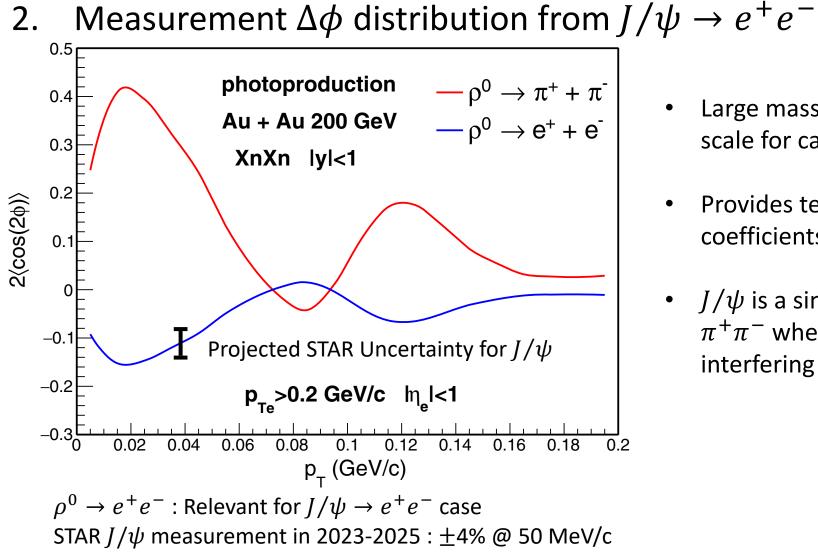
- Drell-Söding (Direct $\pi^+\pi^-$)
- ω interference

For the analysis in this talk we do not attempt to separate them

Additional statistical power may allow future massdifferential studies

Future Tests of Interference Effects

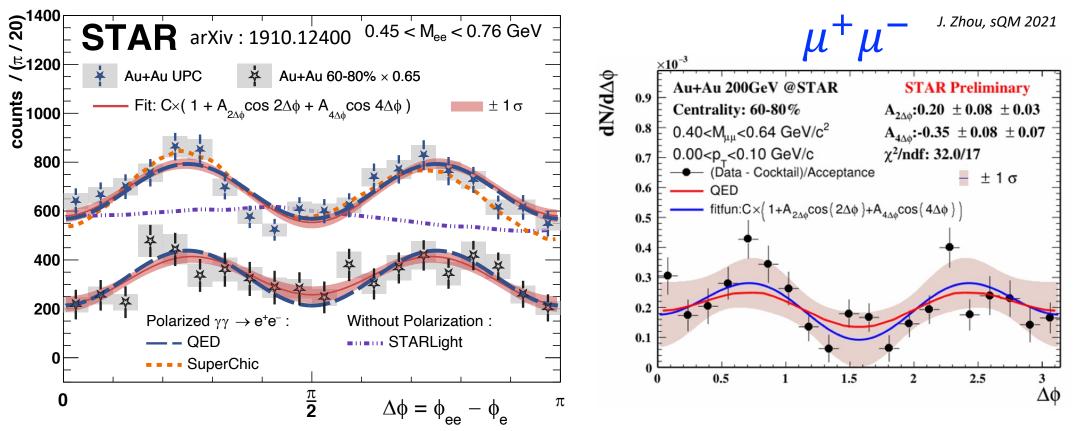
1. Differential Measurement $\Delta \phi$ distribution vs. $M^{\pi\pi}$ and rapidity


- The $\pi^+\pi^-$ spectra includes several interfering states.
- From theoretical side, should this effect the observed interference pattern?
- Should there be any mass dependence?

 $\sigma(p_T, b, y) = |A(p_T, b, y) - A(p_T, b, -y) \exp(i\vec{p}_T \cdot \vec{b})|^2,$ Klein, S. R. & Nystrand, J. *Phys. Rev. Lett.* **84**, 2330–2333 (2000). (1)

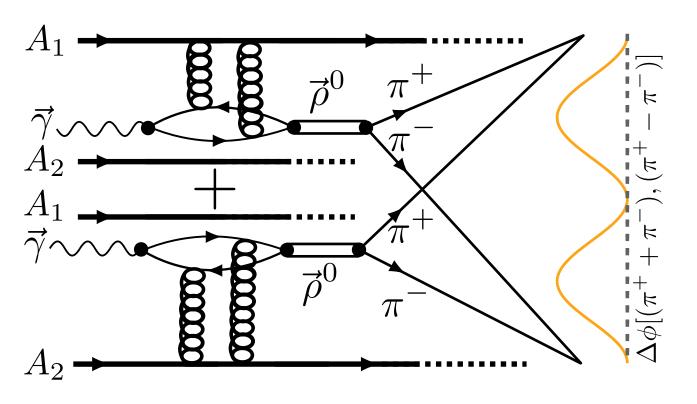
- Interfering amplitudes should depend on rapidity
- Experimentally, need more statistics + coverage

37


Future Tests of Interference Effects

- Large mass of J/ψ provides hard scale for calculations
- Provides test of daughter spin coefficients – further test concept
- J/ψ is a single state, unlike the $\pi^+\pi^-$ where there are multiple interfering states

Future Tests of Interference Effects


3. Measurement $\Delta \phi$ distribution in non-UPC events

Measurement of $\gamma \gamma \rightarrow l^+ l^-$ already shows interference effects in hadronic collisions

Understanding the Effect : Theory

- Currently there are two theory calculations[1,2]
- Both describe effect as <u>a two-source interference pattern</u> resulting from <u>quantum spin-momentum correlations</u>

- Look at both theory calculations in detail
- Compare predictions to the STAR measurements

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).
[2] Zha, W., JDB, Ruan, L. & Tang, Z. Phys. Rev. D 103, 033007 (2021).

counts (arb. norm.) 1.8-STAR Preliminary 1.6-1.4-

-0.05

• Express ho^0 transverse momentum in STAR: Au+Au at √s_{NN}=200 GeV two-dimensions: • $p_x = p_T \times \cos \phi$ • $p_v = p_T \times \sin \phi$

0.05

 P_{x} (GeV)

2D "Imaging" : Clear difference in p_x vs. p_y

- Clear asymmetry in p_x vs. p_y due to interference effect in both Au+Au and U+U
- Illustrated "2D" tomography
- In principle interference would completely "turn off" in p_{ν} except for resolution effect

-0.05

-0.1_1.-

В

<u>×10⁻³</u>

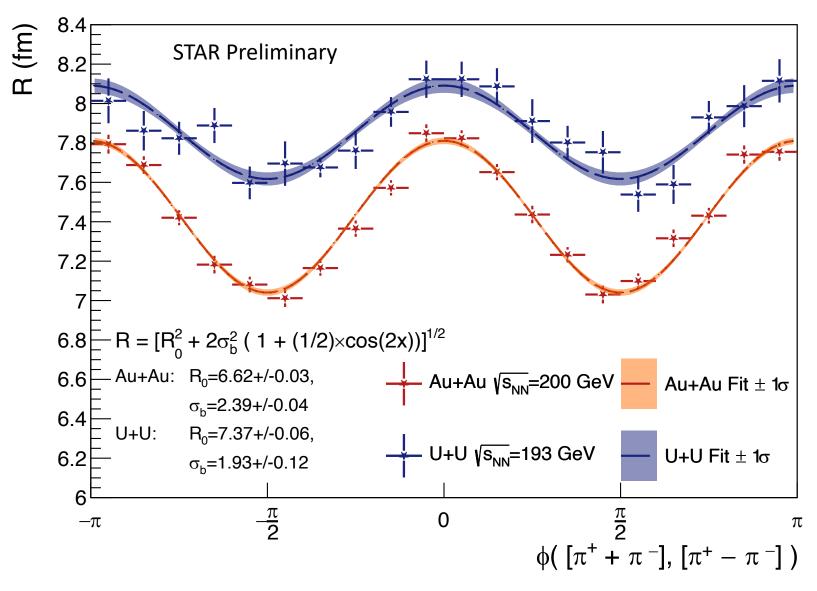
1.2

0.8

0.6

0.4

0.2-


0.1

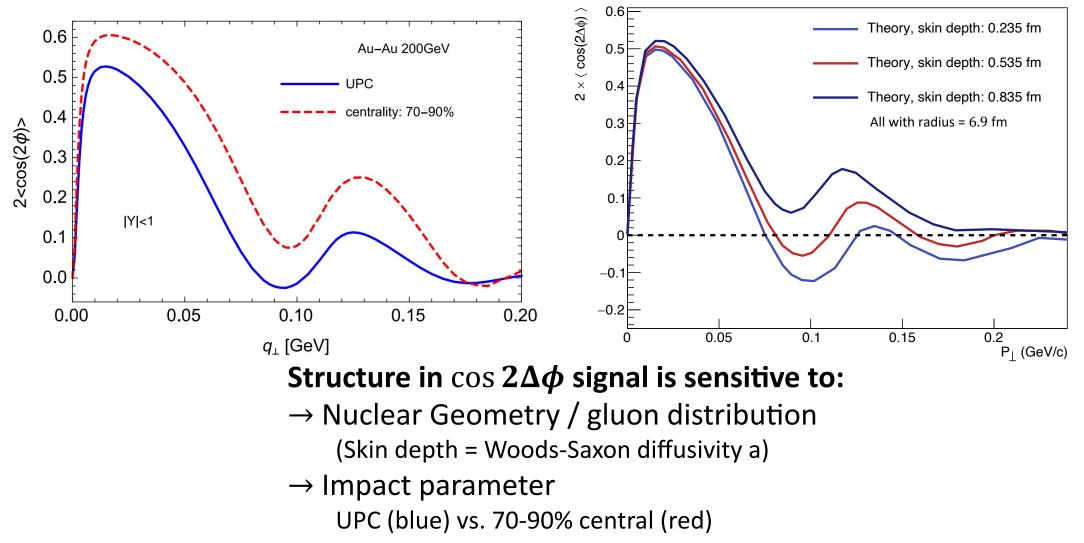
Py Gen

0.05

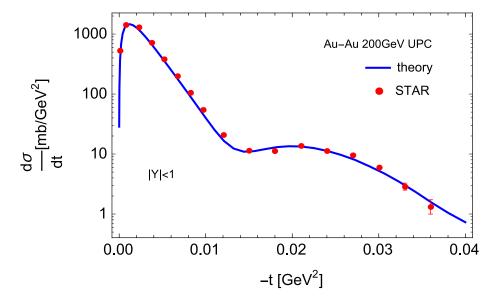
0.1

|t| vs. ϕ , the whole picture?

Extracting the 'true' nuclear radius still requires 2 more corrections:


• Depolarization from finite-size nuclei:

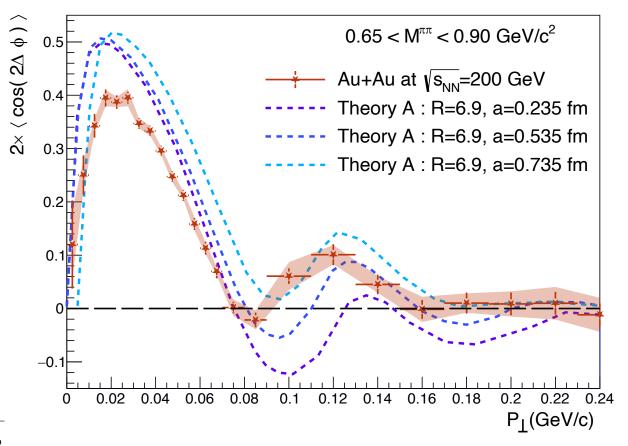
 $1-(R_0/\langle b\rangle)^2/4\approx 4\%$


- The ρ wavefunction has a transverse 'size' (~1.03 fm from HERA) which limits the measurements resolution
- Both are small effects for large nuclei

Theoretical Predictions for $\gamma \mathbb{P} \to \rho^0 \to \pi^+ \pi^-$

Calculation from [1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020). (Theory A)

Comparison to STAR Measurements

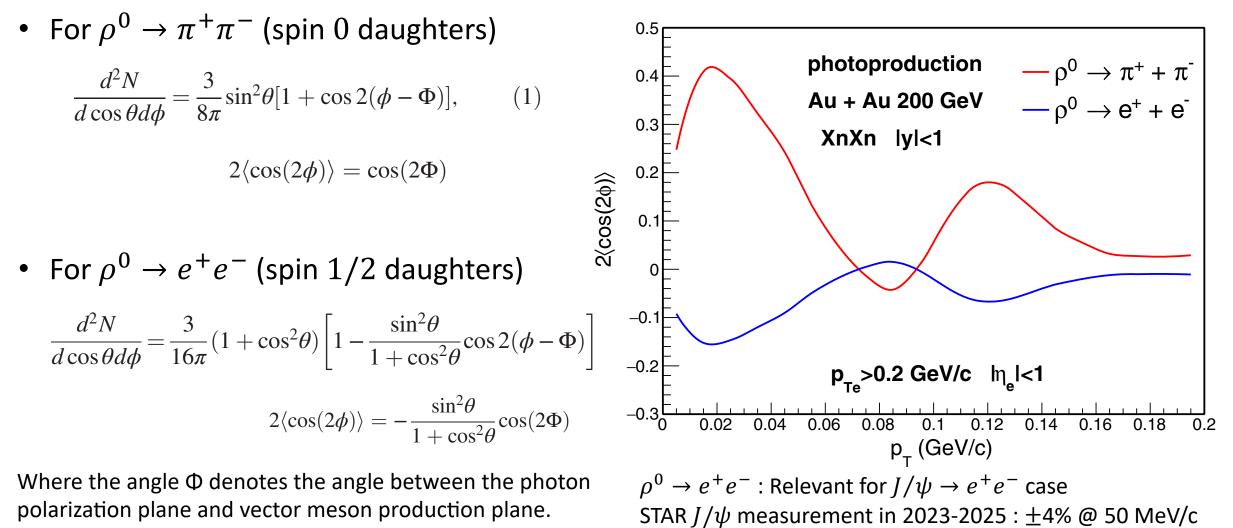

- Simultaneous fit STAR Coherent spectra (incoherent subtracted using dipole FF)
- Good description of total coherent cross section $R_A = 6.9 \text{ fm}$ and a = 0.64 fm $P_{\text{b-Pb}}$

0.5

• ____Gluonit, distribution given the Golec-Biernat and traity: 70-90% • Wu sthoff (GBW) model •

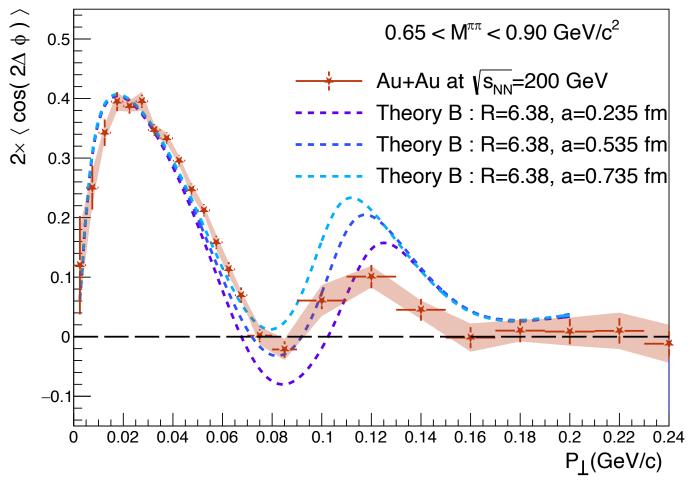
[1] Xing, H.et.al. J. High Energ. Phys. 2020, 64 (2020).

0.0


Good qualitative description of data including structure
Overpredicts strength of main peak

aniel Brandenburg)

Higher p_T region shows strong sensitivity to gluon distribution


Exploring the double-slit interference with linearly polarized photons

Calculation from Zha, W., Brandenburg, J. D., Ruan, L. & Tang, Z. Phys. Rev. D 103, 033007 (2021). (Theory B)

January 25, 2022

Theory & Au+Au Data Comparison

- Qualitative description of the data
 - Large first peak
 - Approximate location of second peak
- Magnitude of 1st peak shows very good agreement
- First peak in the calculation is shifted to slightly lower P_T compared to data
- Second peak ($P_T > 80$ MeV/c) shows strong dependence on details of nuclear geometry (gluon density)
- Looking forward to predictions for U+U data

Interjection: Relation to past measurements

• Detailed measurements of the spin-density matrix elements have been carried out in the past, e.g. at HERA[1] and by STAR[2]

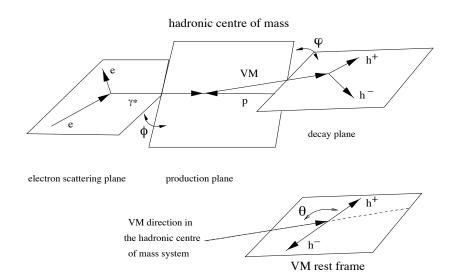
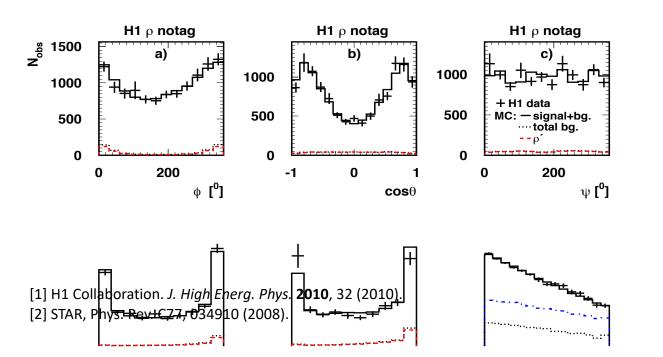


Figure 3: Definition of the angles characterising diffractive VM production and decay in the helicity system.


H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
 STAR, Phys. Rev. C77, 034910 (2008).

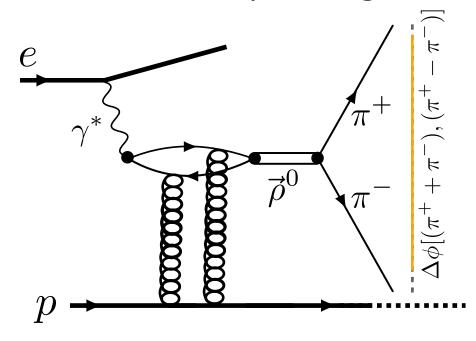
A few points to consider:

- 1. The $\Delta \phi$ angle is related to the ϕ angle in the spin-density formalism
- 2. At HERA the outgoing electron was tagged
 - The photon momentum vector is known
 - Provides event-by-event alignment of angular distributions
- 3. In *ep* the photon is high Q^2 and predominately longitudinally polarized $\langle \xi_{long} \rangle \approx 0.98$

Interjection: Relation to past measurements

• Detailed measurements of the spin-density matrix elements have been carried out in the past, e.g. at HERA[1] and by STAR[2]

A few points to consider:


- 1. The $\Delta \phi$ angle is related to the ϕ angle in the spin-density formalism
- 2. At HERA the outgoing electron was tagged
 - The photon momentum vector is known
 - Provides event-by-event alignment of angular distributions
- 3. In *ep* the photon is high Q^2 and predominately longitudinally polarized $\langle \xi_{long} \rangle \approx 0.98$

P~

ቤ

Interjection: Relation to past measurements

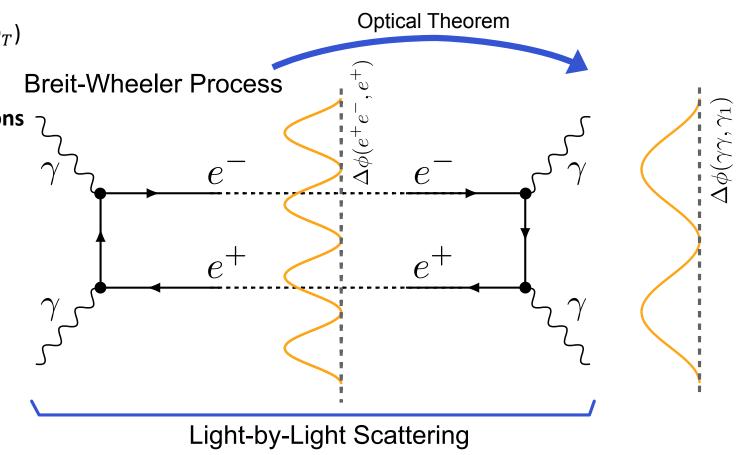
• Detailed measurements of the spin-density matrix elements have been carried out in the past, e.g. at HERA[1] and by STAR[2]

H1 Collaboration. J. High Energ. Phys. 2010, 32 (2010).
 STAR, Phys. Rev. C77, 034910 (2008).

A few points to consider:

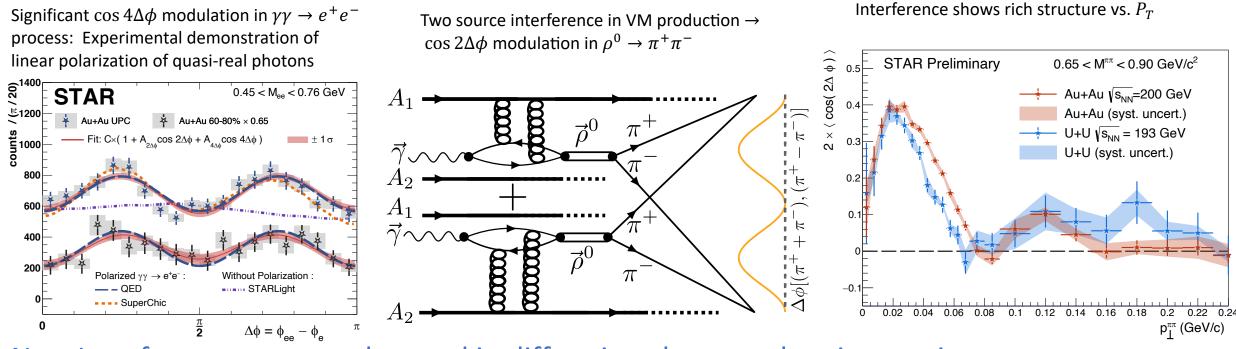
- 1. The $\Delta \phi$ angle is related to the ϕ angle in the spin-density formalism
- 2. At HERA the outgoing electron was tagged
 - The photon momentum vector is known
 - Provides event-by-event alignment of angular distributions
- 3. In *ep* the photon is high Q^2 and predominately longitudinally polarized $\langle \xi_{long} \rangle \approx 0.98$
- 4. There is only one contributing amplitude no interference effect

Polarization Sensitive Observable


 $\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$ $\approx \Delta \phi [(e^+ + e^-), e^+]$ (for small pair p_T)

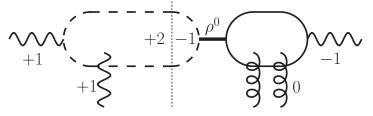
Sensitive to polarization through B quantum space-momentum correlations

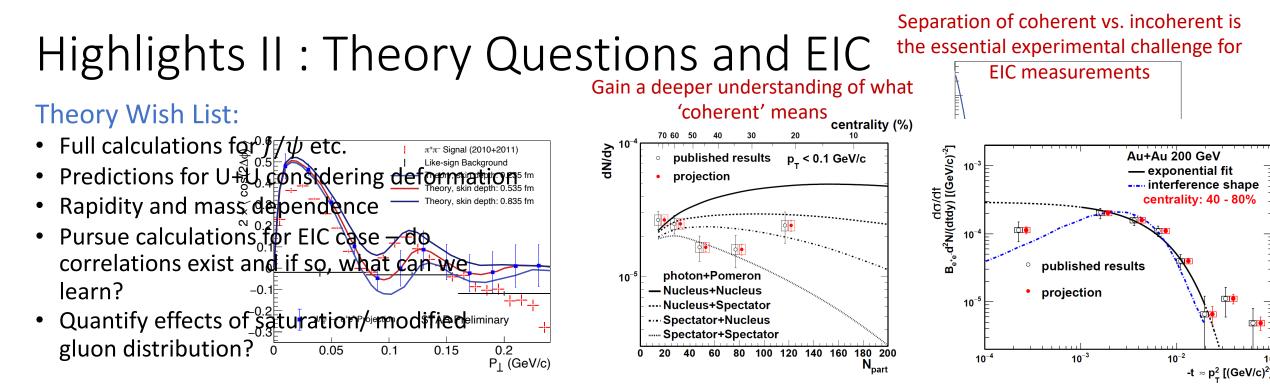
Birefringence effects:


Recently realized, collision of linearly polarized photons leads to a $cos(4\Delta\phi)$ modulation in polarized $\gamma\gamma \rightarrow e^+e^-$ process [1]

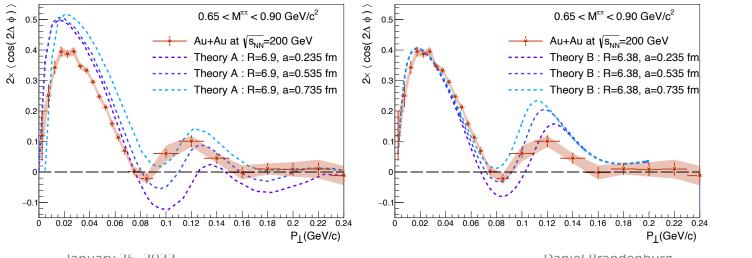
The corresponding vacuum LbyL scattering[2] is expected to display a $\cos(2\Delta\phi)$ modulation

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
[2] Harland-Lang, L. A., Khoze, V. A. & Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).

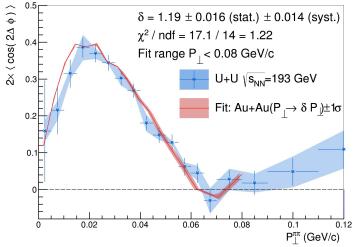

Highlights I : Polarized Photon-Gluon Collisions



New Interference pattern observed in diffractive photo-nuclear interactions


- Experimental demonstration of <u>sensitivity to gluon distribution</u> and that <u>incoherent does not</u> <u>contribute to interference pattern</u>
- New measurement possibilities:
 - J/ψ , which provides hard scale for theoretical calculations,
 - Measurements in non-UPC, comparison of $\rho^0 \rightarrow \pi^+\pi^- \text{vs.} J/\psi \rightarrow l^+l^-$ to see if interference exists in both
 - Differential measurements w.r.t. mass, rapidity to test interference characteristics
 - Observation of Coulomb-Nuclear Interference
 January 25, 2022

Coulomb-Nuclear Interference



Continue to pursue theory – gain quantitative agreement

Why are we sensitive primarily to the 'long'-axis

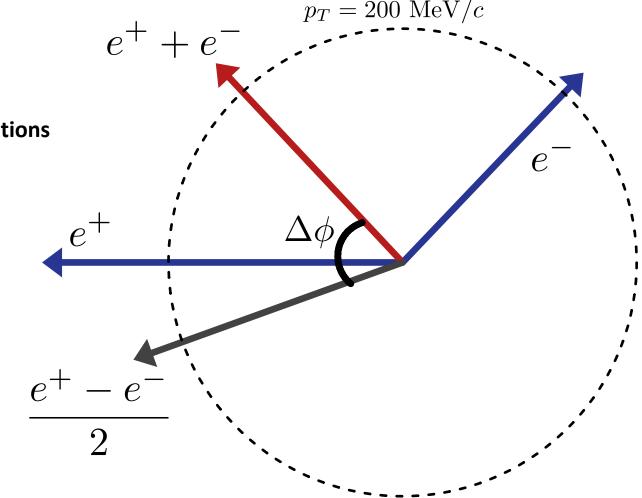
Experimental Signature of Linearly Polarized Photons

- The different helicity amplitude combinations for linear polarization leads to a splitting of the angular distribution
- Parallel photon polarizations $\vec{\xi}_1 \parallel \vec{\xi}_2 \rightarrow \underline{\text{Negative}}$ $\cos 4\Delta \phi$ modulation
- Perpendicular photon polarizations $\vec{\xi}_1 \perp \vec{\xi}_2 \rightarrow \underline{Positive} \cos 4\Delta \phi$ modulation

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

Polarization Sensitive Observable

 $\Delta \phi = \Delta \phi[(e^+ + e^-), (e^+ - e^-)]$ $\approx \Delta \phi[(e^+ + e^-), e^+]$ (for small pair p_T)


Sensitive to polarization through quantum space-momentum (spin-momentum) correlations

Recently realized, collision of linearly polarized photons leads to a $\cos(4\Delta\phi)$ modulation in polarized $\gamma\gamma \rightarrow e^+e^-$ process [1]

The corresponding vacuum LbyL scattering[2] is expected to display a $\cos(2\Delta\phi)$ modulation at midrapidity

These effects are related to vacuum birefringence[3]

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
[2] Harland-Lang, L. A., Khoze, V. A. & Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).
[3] John S. Toll "The Dispersion relation for light and its application to problems involving electron pairs", Princeton (1952)

