

Dilepton production in p+p, Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV and U+U collisions at $\sqrt{s_{NN}}=193$ GeV

DANIEL BRANDENBURG
RICE UNIVERSITY
FOR THE STAR COLLABORATION

In This Talk

Part I

• Very low p_T e⁺e⁻ invariant mass spectra in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV and U+U collisions at $\sqrt{s_{NN}}=193$ GeV

See Shuai Yang's Poster: Poster ID 340

Part II

• First look at $\mu^+\mu^-$ invariant mass spectra with the Muon Telescope Detector at STAR in p+p collisions at $\sqrt{s}=200$ GeV and peripheral Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV

Motivation: Low $p_T J/\psi$ Enhancement

- →STAR and ALICE have observed significant excess production of J/ψ in peripheral A+A collisions at low p_T (p_T < 300 MeV/c)
- → Cannot be described by hadronic production modified by medium / cold nuclear matter effects
- → May be due to coherent photoproduction?
- →Observed in collisions with impact parameter b < 2 R

Motivation to measure e⁺e⁻ pair production over a wider invariant mass range

See Wangmei Zha's poster Poster ID 258

STAR Detector

STAR e⁺e[−] in Au+Au & U+U STAR ★

- →Significant excess in 60-80% central Au+Au and U+U collisions for M_{ee} < 4 GeV/c²
- →Excess becomes less significant in more central collisions

STAR e^+e^- in Au+Au & U+U

- →Excess is consistent in Au+Au and U+U
- →Excess cannot be explained by hadronic contributions modified by medium
- → Can this excess be explained by coherent photoproduction?

STAR e⁺e[−] in Au+Au & U+U STAR ★

- →Good agreement with hadronic cocktail contributions for $p_T > 0.2 \text{ GeV/c}$
- \rightarrow Excess is found entirely below p_T < 0.2 GeV/c

STAR e⁺e[−] in Au+Au & U+U STAR ★

- \rightarrow Low p_T shape very similar to that from coherent photoproduction in **Ultra Peripheral Collisions**
- → Can this excess in e⁺e⁻ be explained by coherent photoproduction?

Photon Interactions in A+A Collisions

→What is coherent photoproduction?

Photoproduction in Ultra Peripheral Collisions (UPC)

C. Bertulani, S. Klein, J. Nystrand Ann. Rev. Nucl. Part. Sci.55:271(2005)

Coherent:

- →Emitted photon/pomeron interacts with the nucleus as a whole
- \rightarrow Strong coupling (Z $\alpha_{FM} \sim 0.6$) results in large cross sections
- →Photon wavelength $\lambda = h/p > R_A$
- $\rightarrow p_T < h/R_A \sim 30 \text{ MeV/c for heavy ions}$

Photon Interactions in A+A Collisions

• We can gain insight into the production mechanism through the $t=p_T^2$ distribution due to interference effects

Coherent photon-nucleus interaction:

- → Photon can be emitted from A₁ or A₂, ie. two indistinguishable processes
- → For a vector meson, the amplitudes from each process have opposite signs
- → Results in strong destructive interference at very low p_T
- Experimentally distinguish by looking at dN/dp_T^2 distribution at very low p_T

Coherent Photoproduction in UPCs STAR *

- →What does this look like in the UPC case?
- →Coherent production characterized by large slope parameter for small |t|

SLOPE =
$$426 \pm 2 (GeV/c)^{-2}$$

→Interference visible as downturn for very low values of |t|

See Spencer Klein's Talk

Ultra-peripheral collisions and hadronic structure, 10 Feb 2017, 18:00

Coherent Photoproduction in UPCs STAR *

- →What does this look like in the UPC case?
- →Coherent production characterized by large slope parameter for small |t|

SLOPE =
$$426 \pm 2 (GeV/c)^{-2}$$

→Interference visible as downturn for very low values of |t|

See Spencer Klein's Talk

Ultra-peripheral collisions and hadronic structure, 10 Feb 2017, 18:00

Photon Interactions in 60-80% A+A?

Photon Interactions in 60-80% A+A?

Photon Interactions in 60-80% A+A?

Novel Probe of the Medium? STAR *

 \rightarrow Vector meson (ρ^0 , J/ψ) is coherently produced with very low p_T

Novel Probe of the Medium? STAR

- → Vector meson (ρ^0 , J/ψ) is coherently produced with very low p_T
- → Medium is produced by strong interaction

Novel Probe of the Medium? STAR

- → Vector meson (ρ^0 , J/ψ) is coherently produced with very low p_T
- → Medium is produced by strong interaction
- \rightarrow Meson has very low p_T \rightarrow it remains in the medium until it decays to an l^+l^- pair

Novel Probe of the Medium? STAR *

- \rightarrow Vector meson (ρ^0 , J/ψ) is coherently produced with very low p_T
- → Medium is produced by strong interaction
- \rightarrow Meson has very low p_T \rightarrow it remains in the medium until it decays to an l^+l^- pair
- →Since leptons are unaffected by the strong force, they carry information to the final state
- → Provide a clean probe of medium

In This Talk

Part I

• Very low p_T e^+e^- invariant mass spectra in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV and U+U collisions at $\sqrt{s_{NN}}=193$ GeV

Part II

• First look at $\mu^+\mu^-$ invariant mass spectra with the Muon Telescope Detector at STAR in p+p collisions at $\sqrt{s}=200$ GeV and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV

STAR Detector

Motivation for STAR $\mu^+\mu^-$

 STAR's Muon Telescope Detector allows for new studies of the dimuon continuum at RHIC energies with STAR.

Species	Energy (GeV)	~Sampled Luminosity
p+p (63% MTD)	500	28 pb ⁻¹
p+p	200	122 pb ⁻¹
p+Au	200	409 nb ⁻¹
d+Au	200	94 nb ⁻¹
Au+Au 2014	200	14 nb ⁻¹
Au+Au 2016	200	12 nb ⁻¹

Why measure $\mu^+\mu^-$ in central heavy ion collisions?

- →Low mass excess is sensitive to the lifetime of the medium
- →Rho meson broadening may be a probe of chiral symmetry restoration
- →Intermediate mass region is sensitive to QGP thermal radiation.

Measurements of $\mu^+\mu^-$ in p+p collisions :

→ Baseline for Au+Au measurements

$\mu^{+}\mu^{-}$ in Run15 p+p @ \sqrt{s} = 200 GeV STAR *

$\mu^+\mu^-$ in Run14 Au+Au @ $\sqrt{s_{NN}}$ = 200 GeVSTAR \bigstar

Data Triggered by dedicated Dimuon Trigger

In 60-80% Au+Au:

→Clear ϕ and J/ψ peaks

$$\rightarrow$$
 S/B > ~1/10 (~1/100 to 1/250 in e^+e^-)

Significantly more data in semicentral and central collisions

 \rightarrow Expect exciting new $\mu^+\mu^-$ results from STAR

Summary

Low $p_T e^+ e^-$ measurements in Au+Au and U+U

- Significant excess yield with respect to hadronic sources observed across wide invariant mass range (M_{ee} <4 GeV/ c^2)
- Shape and slope of t distribution show evidence of interference
- Large slope parameter is evidence for UPC-like coherent photoproduction mechanism
- Future studies will help clarify production mechanism
- May provide a novel probe of the medium

First look at $\mu^+\mu^-$ invariant mass spectra from the Muon Telescope Detector at STAR

- New measurements possible at STAR with MTD
- Clear ω , ϕ , J/ ψ , ψ (2S) signal in p+p collisions @ \sqrt{s} = 200 GeV
- Expect exciting new $\mu^+\mu^-$ results from STAR

Thank you

