Probing Extreme Electromagnetic fields with the Breit-Wheeler Process

J. D. Brandenburg ${ }^{1,2}$
For the STAR Collaboration
${ }^{1}$ Shandong University
${ }^{2}$ Brookhaven National Laboratory

Ultra-relativistic heavy ion collisions are expected to produce some of the strongest magnetic fields ($10^{13}-10^{16}$ Tesla) in the Universe[1]. Recently, there has been increased interest in the magnetic fields produced by heavy ion collisions and their possible observational impacts through emergent magnetohydrodynamical phenomena in Quantum Chromodynamics[2]. The initial strong electromagnetic fields produced in heavy ion collisions have been proposed as a source of linearly-polarized, quasi-real photons[3] that can interact via the Breit-Wheeler process to produce $e^{+} e^{-}$pairs[4].

In this talk I will present STAR measurements of $e^{+} e^{-}$pair production in ultraperipheral and peripheral $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. A comprehensive study of the pair kinematics is presented to distinguish the $\gamma \gamma \rightarrow e^{+} e^{-}$ process from other possible production mechanisms. Furthermore, I will present and discuss the first observation of a 4th-order azimuthal modulation of $e^{+} e^{-}$ pairs produced in heavy-ion collisions. The striking fourth-order angular modulation is a direct result of vacuum birefringence[5], a phenomenon predicted in 1936 in which empty space can split light according to its polarization components when subjected to a strong magnetic field. These measurements and their implications for the magnetic field produced in heavy-ion collisions will be discussed.
[1] V. Skokov, A. Illarionov, and V. Toneev. International Journal of Modern Physics A 24 (2009): 5925-32.
[2] Kharzeev, D. E., et al. Prog. Part. Nucl. Phys., 88 (2016)1-28
[3] C. Weizsäcker, Zeitschrift für Physik 88 (1934): 612-25.
[4] G. Breit and J. A. Wheeler. Physical Review 46 (1934): 1087
[5] Heisenberg, W., and H. Euler. Zeitschrift für Physik, (1936) arXiv: physics/0605038

