Probing the Nucleus with Linearly Polarized Photons

Daniel Brandenburg (BNL/CFNS)

 \rightarrow for the STAR Collaboration

The VIth conference on the initial stages Of high-energy nuclear collisions

January 10 -15th, 2021

Talk Outline

- 1. Introduction
 - Ultra-peripheral heavy-ion collisions (UPC)
 - Strong electromagnetic fields and transverse linearly polarized photons
- 2. Angular modulations of diffractive $\rho^0 \rightarrow \pi^+\pi^-$ in UPCs
- 3. Comparison between Au+Au and U+U collisions
- 4. Comparison to theoretical models
- 5. Summary

Ultra-Peripheral Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic fields

- $\gamma \gamma \rightarrow l^+ l^-$: photon-photon fusion
 - One photon from the field of each nucleus interacts
 - Second order process in α
 - $Z\alpha \approx 1 \rightarrow$ High photon density with highly charged nuclei
- $\gamma \mathbb{P} \rightarrow \rho^0, J \psi, etc.$: Photo-nuclear production of vector mesons ($J^P = 1^-$)
 - Photon from the EM field of one nucleus fluctuates to a $q\bar{q}$ pair, interacts with pomeron
 - Photon quantum numbers $J^{PC} = 1^{--}$

S. J. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. D **4**, 1532 (1971). M. Vidović, M. Greiner, C. Best, and G. Soff, Phys. Rev. C **47**, 2308 (1993).

Daniel Brandenburg

Transverse linearly polarized photons

- Extreme Lorentz contraction of EM fields \rightarrow Quasi-real photons should be linearly polarized in transverse plane $(\vec{E} \perp \vec{B} \perp \vec{k})$
- Polarization vector : aligned radially with the "emitting" source
- Well defined in the photon position eigenstates
- Event average, <u>washes</u> out polarization effects, since \vec{b} is random from one event to next

Polarization Sensitive Observable

 $\Delta \phi = \Delta \phi[(e^+ + e^-), (e^+ - e^-)]$ $\approx \Delta \phi[(e^+ + e^-), e^+]$ (for small pair p_T)

Sensitive to polarization through **quantum space-momentum correlations**

Birefringence effects:

Recently realized, collision of linearly polarized photons leads to a $\cos(4\Delta\phi)$ modulation in polarized $\gamma\gamma \rightarrow e^+e^-$ process [1]

The corresponding vacuum LbyL scattering[2] is expected to display a $\cos(2\Delta\phi)$ modulation

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
[2] Harland-Lang, L. A., Khoze, V. A. & Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).

Polarization Sensitive Observable

 $\Delta \phi = \Delta \phi[(e^+ + e^-), (e^+ - e^-)]$ $\approx \Delta \phi[(e^+ + e^-), e^+]$ (for small pair p_T)

Sensitive to polarization through B quantum space-momentum correlations

Birefringence effects:

Recently realized, collision of linearly polarized photons leads to a $cos(4\Delta\phi)$ modulation in polarized $\gamma\gamma \rightarrow e^+e^-$ process [1]

The corresponding vacuum LbyL scattering[2] is expected to display a $\cos(2\Delta\phi)$ modulation

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)
[2] Harland-Lang, L. A., Khoze, V. A. & Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).

How can we use linearly polarized photons to study the nucleus?

Measure $\Delta \phi$ observable in $\gamma \mathbb{P} \rightarrow \rho^0 \rightarrow \pi^+ \pi^-$

If the photons are linearly polarized in the transverse plane:

- \rightarrow Expect a cos 2 $\Delta \phi$ modulation in the final state[1]
- Quantized spin is encoded into the orbital angular momentum of the $\pi^+\pi^-$ pair

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

Polarization Interference Effect

- Nuclei "take-turns" emitting photon vs. Pomeron
- Polarization vector : aligned radially with the "emitting" source
- Well defined in the photon position eigenstates

Interference is sensitive to:

→ Nuclear Geometry (gluon distribution)

→ Impact Parameter

Results : $(\cos 2\Delta \phi)$ vs. P_{\perp}

[1] S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258 [2] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

Strong $\cos 2\Delta \phi$ modulation observed at pair $p_{\perp}^{\pi\pi} < \sim 60 \text{ MeV}/c$

Interference structure visible \rightarrow dip and peak in modulation at higher

- STARLight[1] does not include
- Qualitatively consistent with theoretical calculation including two-source interference effects[2]
- Like-sign pairs roughly illustrate the effect of the STAR acceptance.
- Acceptance effect is very small at low $\dot{\mathbf{p}}_{\perp}^{\pi\pi}$ and grows to $\sim -10\%$ at

Comparison between Au+Au and U+U Collisions

- Clear \(\rho^0\) peak in both
 Au+Au and U+U UPC
 events.
- First measurement of diffractive coherent photonuclear production in U+U collisions.
- Select region around ρ^0 mass with roughly uniform acceptance

Comparison between Au+Au and U+U Collisions

Compare the $\cos 2\Delta\phi$ modulation in ultra-peripheral events from Au+Au at $\sqrt{s_{NN}} = 200$ and U+U at $\sqrt{s_{NN}} = 193$ at low p_T where the modulation is strongest $(p_T < 60 \ MeV/c)$

Quantify the difference in strength for Au+Au vs. U+U via a fit:

 $f(\Delta \phi) = 1 + a \, \cos 2\Delta \phi$

Au+Au :

 $a = 0.292 \pm 0.004$ (stat) ± 0.004 (syst.) U+U : $a = 0.237 \pm 0.006$ (stat) ± 0.004 (syst.)

Difference of 4. 3σ (stat. & syst.):

 Interference effect is sensitive to the nuclear geometry / gluon distribution

$\cos 2\Delta \phi \ vs. p_T$ in U+U at $\sqrt{s_{NN}} = 193$ GeV

- Strong $\cos 2\Delta\phi$ modulation observed at $p_T < \sim 60$ MeV/c – similar to Au+Au
- U+U curve is fully corrected for STAR acceptance
- Systematic uncertainty shown in blue band
- Similar structure observed with respect to Au+Au
- Narrower main peak than Au+Au
- Broader second peak, large uncertainty

$\cos 2\Delta \phi \ vs. p_T$ in U+U and Au+Au

- Strong $\cos 2\Delta\phi$ modulation observed at $p_T < \sim 60$ MeV/c – similar to Au+Au
- U+U curve is fully corrected for STAR acceptance
- Systematic uncertainty shown in blue band
- Similar structure observed with respect to Au+Au
- Narrower main peak than Au+Au
- Au+Au : acceptance and background corrected with syst. uncert.

Quantitative Comparison : Au+Au and U+U

- Fit U+U curve with scaled Au+Au curve ($\alpha p_{\perp} \rightarrow p_{\perp}$)
- Robust best fit for $\alpha =$ 1.194 \pm 0.021 (stat. and syst. uncert) $\rightarrow 9\sigma$ significant difference
- Consistent with ratio of long axes (U/Au) of 1.22 ± 0.02

Theoretical Predictions for $\gamma \mathbb{P} \to \rho^0 \to \pi^+ \pi^-$

Daniel Brandenburg

Summary

- 1. Observed (6.7 σ) cos 4 $\Delta\phi$ angular modulation in linear polarized $\gamma\gamma \rightarrow e^+e^-$ (Breit-Wheeler) process
 - First laboratory evidence for vacuum birefringence
 - Colliding photons are linearly polarized
- 2. First measurement of $\Delta \phi$ modulations in $\gamma \mathbb{P} \rightarrow \rho^0 \rightarrow \pi^+ \pi^-$ process
 - Strong $\cos 2\Delta\phi$ modulations due to photon polarization
 - Strong structure observed vs. pair p_T
 - Measurement in Au+Au and U+U collisions
 - Experimentally demonstrate sensitivity to gluon distribution within nucleus
 - Results are qualitatively consistent with theoretical predictions
 - Sensitive to nuclear geometry \rightarrow gluon density within nucleus
 - Sensitive to "double-slit" interference of photon polarization
- Looking forward to more theoretical developments