Jet studies in 200 GeV p+p and d+Au collisions from the STAR experiment at RHIC

Jan Kapitán

Nuclear Physics Institute ASCR, Czech Republic (for the STAR Collaboration)

Hard Probes 2010, October 10-15, Eilat, Israel

Outline

- motivation
- STAR experiment at RHIC
- jet reconstruction technique
- di-jets in p+p and d+Au collisions
- jet p_T spectrum from d+Au collisions

Motivation

jets:

- well calibrated probe (pQCD)
- access to partonic kinematics
- Heavy-Ion collisions: direct study of jet quenching

Jan Kapitán (STAR)

Motivation

jets:

- well calibrated probe (pQCD)
- access to partonic kinematics
- Heavy-Ion collisions: direct study of jet quenching

d+Au: estimate initial state effects

- di-jet correlations and jet $\boldsymbol{p}_{\scriptscriptstyle T}$ spectrum
- compare to p+p collisions
- possible effects due to modified PDF and parton rescattering in cold nuclear matter (CNM)

Jan Kapitán (STAR)

STAR experiment at RHIC

solenoidal magnetic field 0.5 T

detectors used ($|\eta| < 1$, Φ : 2π):

- Time Projection Chamber: tracking
- Barrel EM Calorimeter (BEMC): -neutral energy (towers 0.05x0.05) -trigger

"100% hadronic correction": subtract matched track p_T off tower E_T : avoid double-counting (MIP, electrons, hadronic showers)

d+Au centrality: selected 20% highest multiplicity events using East FTPC

data used in this analysis: 200 GeV p+p & d+Au run 8 (2007/2008)

Jan Kapitán (STAR)

Jet reconstruction

recombination algorithms - FastJet package

Cacciari, Salam and Soyez, JHEP0804 (2008) 005.

- $d_{ij} = min(p_{Ti}^{n}, p_{Tj}^{n}) (\Delta \eta^{2} + \Delta \phi^{2})/R^{2}_{j} d_{i} = p_{Ti}^{n}_{j}$
- min(d_i,d_{ii}): d_i -> new jet, d_{ii} -> merge i,j
- n=2: kt, n=-2: anti-kt
- R: resolution parameter
- recombination: E scheme with massless particles

kt algorithm:

- starts with low p_T particles
- sensitive to background!

anti-kt algorithm:

Cacciari, Salam and Soyez, JHEP0804 (2008) 063.
starts with high p_T particles
resilient w.r.t. soft radiation
flexible w.r.t. hard radiation

less sensitive to background!

Jet reconstruction

recombination algorithms - FastJet package

Cacciari, Salam and Soyez, JHEP0804 (2008) 005.

- $d_{ij} = min(p_{Ti}^{n}, p_{Tj}^{n}) (\Delta \eta^2 + \Delta \phi^2)/R^2$, $d_i = p_{Ti}^{n}$
- min(d_i,d_{ii}): d_i -> new jet, d_{ii} -> merge i,j
- n=2: kt, n=-2: anti-kt
- R: resolution parameter
- recombination: E scheme with massless particles

kt algorithm:

- starts with low p_τ particles
 sensitive to background!
-

anti-kt algorithm:

Cacciari, Salam and Soyez, JHEP0804 (2008) 063. • starts with high p_T particles

- resilient w.r.t. soft radiation
- flexible w.r.t. hard radiation
- Iess sensitive to background!

active jet area A: using ghost particles

Hard Probes 2010

Jan Kapitán (STAR)

d+Au background

underlying event background

- reduction: lower R (0.4 or 0.5 rather than 0.7), p_{T} cuts (tracks/towers)
- estimation: background density constructed event-by-event as $\rho = median \{p_T/A\}$ using kt algorithm

• subtraction: $p_{T,jet,true} = p_{T,jet,reconstructed} - \rho * A$

spectra ratio: bg-subtracted / raw

Jan Kapitán (STAR)

d+Au background

underlying event background

- reduction: lower R (0.4 or 0.5 rather than 0.7), p_T cuts (tracks/towers)
- estimation: background density constructed event-by-event as $\rho = median \{p_T/A\}$ using kt algorithm
- subtraction: $p_{T,jet,true} = p_{T,jet,reconstructed} \rho * A$

Jan Kapitán (STAR)

Pythia simulation

- Pythia 6.410, GEANT, STAR simulation & reconstruction software
- PyMC (particle level), PyGe (detector level)
- PyBg: reconstructed Pythia jet event inserted into real d+Au event to estimate residual background effect (looking at matched jets: $\Delta R < 0.2$)

jet p₊ spectrum:

- very sensitive to Jet Energy Scale
- precise determination of tracking efficiency needed
- lowered the tracking efficiency in Pythia jet simulation to match the one from realistic detector simulation ("embedding") for run 8

systematic uncertainty:

- run 8 tracking efficiency in jets under study now
- current worst case uncertainty is 10%
- taken this as the systematic uncertainty on the charged fraction of jets

k_T and di-jets in d+Au collisions

- k_{τ} effect (di-jet $\Delta \Phi$ broadening):
- intrinsic k_{τ} + ISR,FSR (+CNM effects)
- radiation:
 - soft: Gaussian shape
 - hard(NLO): power-law tails
- can be measured through azimuthal component of $\vec{k_{\tau}}$

Jan Kapitán (STAR)

k_T and di-jets in d+Au collisions

- k_{T} effect (di-jet $\Delta \Phi$ broadening):
- intrinsic k_{τ} + ISR,FSR (+CNM effects)
- radiation:
 - soft: Gaussian shape
 - hard(NLO): power-law tails
- can be measured through azimuthal component of $\vec{k_{\tau}}$

- data: High Tower (HT) trigger: $E_{T,tower} > 4.3 \text{ GeV}$
- anti-kt, R=0.5, $p_{T,track/tower} > 0.5$ GeV/c
- 2 highest energy jets in event: $p_{T,1} > p_{T,2}$

clear back-to-back di-jet peak

Hard Probes 2010

Jan Kapitán (STAR)

Measurement of k_{τ} effect

- measure in d+Au collisions and compare to p+p
- $\mathbf{k}_{T,raw} = \mathbf{p}_{T,1} * \sin(\Delta \Phi)$, $|\sin(\Delta \Phi)| < 0.5$, Gaussian fit
- sensitive mostly to intrinsic $\boldsymbol{k}_{\!\scriptscriptstyle T}$ and soft radiation

detector effects on $\boldsymbol{k}_{\!\scriptscriptstyle T}$ measurement:

...resulting detector effects are small, due to interplay of jet p_T and di-jet $\Delta \Phi$ resolutions

Hard Probes 2010

Jan Kapitán (STAR)

Do we see CNM effects on k_{τ} ?

• the same analysis technique in p+p and d+Au (run 8, HT trigger)

 p_T – averaged values: $\sigma_{kT,raw} (p+p) = 2.8 \pm 0.1 \text{ GeV/c}$ $\sigma_{kT,raw} (d+Au) = 3.0 \pm 0.1 \text{ GeV/c}$

systematic uncertainties:

- neglecting detector effects
- BEMC calibration
- TPC tracking efficiency
- in total expected to be less than 10%
- evaluation under way...

no strong effect on jet k, broadening seen

Jan Kapitán (STAR)

Towards jet p_{τ} spectrum

200 GeV d+Au data:

- 20% most central collisions from minimum bias trigger data sample
- 10M events after cuts
- p_T reach ~30 GeV/c

<u>jets:</u>

- anti-kt algorithm, R = 0.4
- p_{T,track/tower} > 0.2 GeV/c

• $|\eta_{jet}| < 0.55$

Towards jet p_{τ} spectrum

200 GeV d+Au data:

- 20% most central collisions from minimum bias trigger data sample
- 10M events after cuts
- p_T reach ~30 GeV/c

bin-by-bin correction:

- ratio of jet p_T spectra PyMC/PyBg
- generalized efficiency:
 - efficiency of jet level cuts
 - p_{T} resolution
- applicable only if real data $p_{\rm T}$ spectrum and simulation (PyBg) have the same shape

jets:

- anti-kt algorithm, R = 0.4
- $p_{T,track/tower} > 0.2 \text{ GeV/c}$

• |η_{jet}| < 0.55

Towards jet p_{τ} spectrum

200 GeV d+Au data:

- 20% most central collisions from minimum bias trigger data sample
- 10M events after cuts
- p_T reach ~30 GeV/c

bin-by-bin correction:

- ratio of jet p_T spectra PyMC/PyBg
- generalized efficiency:
 - efficiency of jet level cuts
 - p_T resolution
- applicable only if real data $p_{\rm T}$ spectrum and simulation (PyBg) have the same shape

jets:

- anti-kt algorithm, R = 0.4
- $p_{T,track/tower} > 0.2 \text{ GeV/c}$

• |ŋ_{jet}| < 0.55

Jan Kapitán (STAR)

Jet cross section & relation to p+p

<u>compare to STAR p+p jet</u> cross section:

Mid Point Cone algorithm

number of binary collision scaling:

if there are no nuclear effects, hard processes scale according to $< N_{bin} >$

for 20% most central run 8 d+Au collisions, $<\!N_{\rm bin}\!>$ = 14.6 \pm 1.7 from MC Glauber

d+Au: jet yield normalised per event rescaling p+p to this level: $Y_{jet,p+p (d+Au \ level)} = \sigma_{jet,p+p} / \sigma_{inel,p+p} * < N_{bin} >$

 $\sigma_{inel,p+p} = 42 \text{ mb is } p+p \text{ inelastic cross}$ section

Jan Kapitán (STAR)

d+Au jet p_{τ} spectrum, p+p comparison

systematic errors:

black error band: d+Au JES uncertainty (TPC: 10%, BEMC: 5%)

red box: <N_{bin}> 12% uncertainty

magenta box: p+p total systematic uncertainty (including jet energy scale)

note

- different η range
- different jet algorithm

→d+Au: no significant deviation from N_{bin} scaled p+p
 →further studies of systematics ongoing

Jan Kapitán (STAR)

13

Conclusion

Di-jet measurement in 200 GeV d+Au and p+p collisions: • no strong CNM effects on k_{T} broadening observed

Inclusive jet p_T spectrum in 200 GeV d+Au collisions:

- no significant deviation from N_{bin} scaled p+p
- large systematic uncertainties
- improvements under way:
 - jet embedding
 - run 8 p+p data
- moving towards jet R_{dAu}

Jan Kapitán (STAR)

Number of particles per jet

Hard Probes 2010

Jan Kapitán (STAR)

Jet spectrum: effect of correction

Jan Kapitán (STAR)

Phi and ΔPhi acceptance

big effect on single jets, small effect on di-jets...

Jan Kapitán (STAR)

Modified nuclear PDF

Figure 2: The nuclear modification factors R_V^A , R_S^A and R_G^A for C, Ca, Sn, and Pb at $Q_0^2 = 1.69 \,\text{GeV}^2$. The DIS ratio $R_{F_2}^A$ is shown for comparison.

K. J. Eskola, H. Paukkunen, C. A. Salgado, JHEP 0807:102,2008

Jan Kapitán (STAR)

Single particle spectra

from BRAHMS Collaboration, Phys.Rev.Lett.93 242303 (2004)

Jan Kapitán (STAR)

anti-kt comparison to kt

kt $\sim 10\%$ higher, consistent with kt jets having slightly bigger area!

Jan Kapitán (STAR)

year 8 luminosities, raw HT spectra

note: no event (VertexZ), d+Au centrality cuts

d+Au, HT trigger (bht2): 8 nb^-1 (p+p equvalent 3.2 pb^-1)

p+p, HT trigger (bht2): 2.7 pb^-1

Jan Kapitán (STAR)

resolution parameter

Jan Kapitán (STAR)

Effect of jet algorithm

different jet algorithms: same value of "R" doesn't mean result is the same (as with JES uncertainty, small shift in jet p_{τ} is huge shift in spectrum)

Jan Kapitán (STAR)

Pseudorapidity acceptance

jet dN/dη not flat: focusing towards $\eta=0$ for high jet p_{τ}

 $|\eta| < 0.55 \text{ vs } 0.2 < |\eta| < 0.8$: 50% effect at 50 GeV/c, negligible below 20 GeV/c:

Hard Probes 2010

Jan Kapitán (STAR)

k_⊤ and jet energy resolution

