Jets in STAR

Jan Kapitán (for the STAR Collaboration)

Nuclear Physics Institute ASCR Czech Republic

High- p_{T} Probes of High-Density QCD at the LHC

May 30 - June 1 2011

École Polytechnique, Palaiseau

Full jet reconstruction

high-p_T hadron spectra and correlations:

- established jet quenching phenomena
- limited discrimination power due to:
 - fragmentation biases
 - bias towards least interacting jets (surface)

study the quenching directly with jets:

- access the partonic kinematics
- study energy flow, not individual hadrons
- well calibrated probe (pQCD)
- unbiased jet reconstruction: expecting R_{AA}=1 (caveats: nPDF, medium-induced jet broadening)

HPHD 2011

- jet reconstruction in STAR
- initial state: jet spectra in d+Au, UE in p+p & d+Au
- UE background fluctuations & jet spectra in Au+Au
- di-jet and jet-hadron correlations

Jan Kapitán

STAR experiment at RHIC

solenoidal magnetic field 0.5 T

<u>detectors used (|η|<1, Φ: 2π):</u>

- Time Projection Chamber: tracking
- Barrel EM Calorimeter (BEMC): -neutral energy (towers 0.05x0.05) -trigger

 $p_{T,track/tower} > 0.2 \text{ GeV/c}$

"100% hadronic correction": subtract matched track p_T off tower E_T : avoid doublecounting (MIP, electrons, hadronic showers)

centrality selection – charged multiplicity: Au+Au: $|\eta| < 0.5$, d+Au: -4< η <-2.5

HPHD 2011

data used: 200 GeV p+p (2006), Au+Au (2007), d+Au (2007/2008)

Jan Kapitán

Jet reconstruction

recombination algorithms - FastJet package

Cacciari, Salam and Soyez, JHEP0804 (2008) 005.

- k_{T} , anti- k_{T} : different sensitivity to background
- R: resolution parameter: 0.2 or 0.4
- recombination: E scheme with massless particles

analysis procedure:

- 1. define jets (k_T , anti- k_T), active area A
- 2. estimate background density from k_T jets: $\rho = median\{p_T/A\}$
- 3. subtract the background: $p_{T,jet,true} = p_{T,jet,observed} \rho * A$
- 4. correct for background fluctuations
- 5. correct for detector effects (jet p_T shift & resolution)

jet reconstruction uncertainties:

- Jet Energy Scale (BEMC calibration, TPC tracking efficiency): leading uncertainty in p+p, d+Au
- background fluctuations: leading uncertainty in Au+Au

HPHD 2011

Initial state: p+p & d+Au

10M 0-20% most central events, η-dependent background subtraction
bg. fluctuations & detector effects corrected via Pythia jets embedding

black error band: d+Au JES uncertainty (TPC: 10%, **BEMC: 5%)** <u>red box:</u> $<N_{hin}>$ 12% unc. magenta box: p+p total systematic uncertainty (including jet energy scale) note • different η range different jet algorithm towards jet R_{dau}: decrease syst.uncertainties

HPHD 2011

• extend to higher p_T

→no significant deviation from N_{bin} scaled p+p

Underlying event – all but the jet

information about large angle ISR/FSR >modification of UE by Cold Nuclear Matter in d+Au? **HPHD 2011**

Jet and UE: mean p_{τ}

UE <p₇>:

 \rightarrow largely independent of jet p_{τ} only slightly higher in d+Au than in p+p collisions.

Jet:

 \rightarrow <p_T > rise with jet p_T

d+Au: UE influences significantly the properties of jets and needs to be corrected

p+p, d+Au data at detector level; d+Au: 0-20% highest multiplicity HPHD 2011

UE: <N_{ch}> and ISR/FSR

No large difference between leading jet and di-jet analysis!

c.f.: at $\sqrt{s=1.96}$ TeV, UE $<N_{ch}>$ in leading jet sample $\sim 50\%$ higher than in di-jet sample

in p+p and d+Au collisions at RHIC energies, there's no significant ISR/FSR at large angles

difference between TransMax and TransMin mostly described by Poisson sampling

UE <N
ch> significantly higher in d+Au compared to p+pJan Kapitán9HPHD 2011

UE: Scaling between p+p and d+Au

 $\begin{array}{ll} d{+}Au \ 0{-}20\%: \\ < N_{bin}{>} &= 14.6 \ {\pm}1.7 \ (syst.) \\ < N_{part}{>} &= 15.2 \ {\pm} \ 1.8 \ (syst.) \\ p{+}p \ collisions: \ N_{bin} = 1, \ N_{part} = 2 \end{array}$

Data corrected for reconstruction efficiency in TPC at $< p_T >$ of UE.

Systematic errors:

- reconstruction efficiency: 5% in p+p and d+Au
- scaled p+p: Glauber calculation uncertainty

Charged particle density in UE in d+Au collisions scales approximately with <N_{part}>

Jan Kapitán

Jet spectra: Au+Au vs. p+p

Background fluctuations

current results: Gaussian parametrization based on Pythia embedding

this presentation:

- is Gaussian model appropriate?
- we know there's jet quenching: how does fragmentation (and its modification) influence jet reconstruction in presence of background?
- assess background fluctuations with various fragmentation scenarios

embedding studies with real (central) Au+Au events:

- 1. determine background density with k_T algorithm: $\rho = median\{p_T/A\}$
- 2. embed a "jet" (various options) and run anti- $k_{\scriptscriptstyle T}$ jet finder
- 3. find a cluster containing the embedded jet (> 50% of its energy)

quantify response to background via:

$$\delta p_T = p_T^{cluster} - \rho \cdot A^{cluster} - p_T^{emb}$$

identical to Δp_T in arXiv:1010.1759 (Cacciari, Rojo, Salam, Soyez)

Jan Kapitán

Example of δp_{τ} distribution

embedding single particle with $p_T = 30$ GeV/c, $\eta = -0.2$

same jet embedded into 8M events:

what does δp_{T} depend on?

- jet area A
- → jet p_T
- jet fragmentation pattern

following studies: for R=0.4 jets...

- response over 40 GeV and 5 orders of magnitude
- Gaussian fit to LHS good, non-Gaussian tail in RHS!

Jan Kapitán

Dependence on jet area

anti- $k_{_{T}}$ clustering: area distributions for various $p_{_{T}}{}^{emb}$

area distribution for low p_T probes very broad -> constrain the area:

fixed area: δp_{τ} varies little with p_{τ}^{emb}

indication that specific jet structure is unimportant!

verify this with Pythia, QPythia...

14

δp_{τ} : sensitivity to fragmentation

Outliers from QPYTHIA: •2 out of 30 jets •physics or modeling?

negligible effect for final correction: it's for $\delta p_{\tau} < 0$

Smearing due to background fluctuations ~independent of fragmentation pattern!

Jan Kapitán

Jet-triggered correlations

- use highly biased jet sample: jets containing BEMC tower with E_{τ} >5.4 GeV: "trigger jets"
- strong surface bias
- idea: maximize recoil jet medium path length
- trigger jets reconstructed with p_{T,cut}=2 GeV/c to achieve similar jet energy scale in p+p, Au+Au
- > di-jet correlations
- → jet-hadron correlations

Di-jet correlations

- trigger jet: p_T>20 GeV/c
- look for away-side jet modification:
- construct ratio of Au+Au/p+p spectra of the recoil jets
- test for 2 different p_{T,cut} values for recoil jets
- trigger jet energy uncertainty 2 GeV

Gaussian unfolding of away-jets: $p_{T,cut} = 0.2 \text{ GeV/c}$: $\sigma = 6.5 \text{ GeV}$ $p_{T,cut} = 2 \text{ GeV/c}$: $\sigma = 1.5 \text{ GeV}$

suggestive of energy profile broadening beyond R=0.4

Jan Kapitán

Jet-hadron correlations

- azimuthal correlations of charged hadrons with respect to trigger jet axis
- increased kinematic reach compared to dihadron correlations

initial results – **flat background subtraction**, p_{T,jet} > 20 GeV/c: (J.Putschke, RHIC AGS Users Meeting 2009) **softening & broadening!**

HPHD 2011

ΔΦ background model

- ZYAM is known to overestimate background level in the presence of broad peaks (central collisions, low p_{T.assoc})
- jet v₂ a-priori unknown (analysis in progress)

in the following, background estimated by fitting: Max. v, uncertainties: $\int_{0}^{\text{jet}} \cos(2\Delta \varphi)$ no v₂ 2 Gaus + B*(1+2* $v_{2}^{assoc}*v_{2})$ nominal v_2 + + 50% $v_2^{jet*}v_2^{assoc}$ {2} $v_{2}{2} (p_{T}=6 \text{ GeV/c})$ $(v_{2}{2}+v_{2}{4})/2$ AuAu, 0-20%, dNMA AuAu, 0-20%, 10 < p_^{jet} < 20 GeV/c $10 < p_{_{T}}^{_{jet}} < 20 \text{ GeV/c}$ $-0.5 < p_a^{assoc} < 1 \text{ GeV/c}$ د ب^{10,4} $4 < p_{\tau}^{assoc} < 6 \text{ GeV/c}$ 57.5 STAR Preliminary 57 STAR Preliminar 0., 56.5 A. Ohlson, QM2011 v_-modulated background A. Ohlson, QM2011

Jan Kapitán

Comparing trigger jets

Comparison of J-H correlations in p+p, Au+Au \rightarrow are trigger jets are similar?

Expected differences are corrected (p+p adjusted):
detector effects (different tracking efficiencies)
background fluctuations (embedding into minimum bias events used)

Shapes of trigger jet spectra don't quite match...

Jan Kapitán

Comparing trigger jets

Comparison of J-H correlations in p+p, Au+Au \rightarrow are trigger jets are similar?

Expected differences are corrected (p+p adjusted):
detector effects (different tracking efficiencies)
background fluctuations (embedding into minimum bias events used)

Shapes of trigger jet spectra don't quite match...

include $\Delta E = -1 \text{ GeV}/c$ energy shift included in systematic uncertainties to account for possible trigger jet energy mismatch.

Jan Kapitán

Nearside I_{AA}

→high-p_T suppression observed in the nearside I_{AA} → consistent with apparent ΔE (-1 GeV spectrum shift) →possible low-p_T enhancement

Jan Kapitán

Nearside energy balance: D_{AA}

Jan Kapitán

Maximum trigger jet energy uncertainties

Shift to match trigger jet spectrum with embedding \rightarrow corresponds to scenario in which Au+Au trigger jets are p+p-like (even for jet constituents below p_r=2 GeV/c)

"low p_assoc enhancement is bulk"

Shift to get $\Delta B = 0 \rightarrow$ energy mismatch is due to jet modification "low p_assoc enhancement is jet"

With these two extreme cases covered, we can now move to the awayside!

Awayside Gaussian width & I_{AA}

 → significant enhancement at low p_T^{assoc} and suppression at high p_T^{assoc} on the awayside
 > significant broadening of awayside jets in Au+Au

Significant broadening of awayside jets in Au+Au compared to p+p

Awayside energy balance: D_{AA}

$$D_{AA}(p_T^{assoc}) = Y_{AA}(p_T^{assoc}) \cdot p_{T,AA}^{assoc} - Y_{pp}(p_T^{assoc}) \cdot p_{T,pp}^{assoc}$$

$$\Delta B = \int dp_T^{assoc} D_{AA}(p_T^{assoc})$$

 → significant part of energy "lost" at high p_T shows up at lower p_T and at larger distance from the jet axis
 → jet quenching in action Jan Kapitán 26 HPHD 2011

d+Au jet spectrum:

no significant Cold Nuclear Matter effects observed

UE in p+p and d+Au:

 $\Rightarrow < p_T >$ in UE only slightly higher in d+Au compared to p+p \Rightarrow no significant ISR/FSR at large angles $\Rightarrow < N_{ch} >$ in UE scales approximately with $< N_{part} >$ from p+p to d+Au

Au+Au jet spectrum:

R = 0.4 jet R_{AA} close to 1 with large uncertainties
 consistent with jet broadening from R=0.2 to R=0.4

background fluctuations - δp_τ:

largely independent of fragmentation pattern of the probe

di-jet suppression suggestive of awayside broadening

jet-hadron correlations:

 $\makebox{-}$ softening, broadening and $\mbox{p}_{\mbox{\tiny T}}$ redistribution observed

measured jet modification disfavors black-and-white e-loss picture
 Jan Kapitán 27 HPHD 2011

Thank you!

The Effect of v_3 on the Nearside

- Do jets to have a non-zero v_3 ? If yes, must include a cos($3\Delta \phi$) in background subtraction.
- Maximum v_3^{jet} assumption: $v_3^{jet} = v_3(p_T = 5 \text{ GeV}/c)$
- Under this assumption, HT trigger jets in AuAu become quite pp-like.
- For $10 < p_T^{jet} < 20 \text{ GeV}/c$: NS $\Delta B \sim -0.6 \text{ GeV}/c$ (errors not calculated)
- Note: Error bars on v_3 points (red triangles) are statistical only.

The Effect of v_{3} on the Awayside

- For $10 < p_T^{jet} < 20 \text{ GeV}/c$: AS $\Delta B \sim -0.8 \text{ GeV}/c$ (errors not calculated)
- Even with extreme v_3^{jet} assumption, the qualitative conclusions about quenching on the awayside hold: low- p_T enhancement, high- p_T suppression, p_T redistribution

Algorithms details

recombination algorithms - FastJet package

Cacciari, Salam and Soyez, JHEP0804 (2008) 005.

- $d_{ii} = min(p_{Ti}^{n}, p_{Ti}^{n}) (\Delta \eta^{2} + \Delta \phi^{2})/R^{2} d_{i} = p_{Ti}^{n}$
- min(d_i,d_{ij}): d_i -> new jet, d_{ij} -> merge i,j
- n=2: kt, n=-2: anti-kt
- R: resolution parameter
- recombination: E scheme with massless particles

Jan Kapitán

dAu details

HPHD 2011

Jet cross section & relation to p+p

<u>compare to STAR p+p jet number of binary collision scaling:</u>

<u>cross section:</u>

- Mid Point Cone algorithm
- R = 0.4

if there are no nuclear effects, hard processes scale according to $< N_{bin} >$

for 20% most central run 8 d+Au collisions, $<\!N_{\mbox{\tiny bin}}\!>$ = 14.6 \pm 1.7 from MC Glauber

d+Au: jet yield normalised per event rescaling p+p to this level: $Y_{jet,p+p (d+Au \ level)} = \sigma_{jet,p+p} / \sigma_{inel,p+p} * < N_{bin} >$

 $\sigma_{inel,p+p} = 42 \text{ mb is } p+p \text{ inelastic cross}$ section

Jan Kapitán

Pseudorapidity acceptance

jet dN/dη not flat: focusing towards $\eta=0$ for high jet p_{τ}

 $|\eta| < 0.55 \text{ vs } 0.2 < |\eta| < 0.8$: 50% effect at 50 GeV/c, negligible below 20 GeV/c:

Jan Kapitán

Jet spectra - unfolding

Gaussian widths – smearing/unfolding from Pythia embedding:

R=0.4: 6.8 GeV R=0.2: 3.7 GeV

systematic uncertainty (bands): +-1 GeV

Jan Kapitán

UE at Tevatron

R. Field et al. (CDF), hep-ph/0510198

Jan Kapitán

AuAu jets & theory

QPYTHIA...

Jan Kapitán

False Jets

- Definition: Residual contribution of correlated background to the distribution of true jets after background subtraction
- Note 1: the pT irresolution caused by the background non-uniformities introduces false hard component to the reconstructed spectra (low pT objects are smeared and populate higher pT bins)
- Note 2: ideal unfolding procedure and complete knowledge of the background should revert the process -> retract the background objects from the pT spectrum leaving out only the true population of energy flow from hard scatterings

- Ideal de-convolution case: NO FALSE JETS

• False jet yield is nothing but an estimate of how much of the residual background correlations are contaminating the reported jet yield -> precision of the unfolding matrix crucial(!)

Simple background model: uncorrelated particle emission

Inclusive single particle distribution:

$$\frac{d\sigma}{dp_T} = b^2 p_T^{p-1} e^{-bp_t}$$

M. Tannenbaum

Phys. Lett. B498 (2001) 29

 E_T fluctuations in finite acceptance via *n*-fold convolution:

$$F_n\left(\delta p_T\right) = \frac{b}{\Gamma\left(np\right)} \cdot \left[b\left(\delta p_T + \frac{np}{b}\right)\right]^{np-1} \cdot e^{-b\left(\delta p_T + \frac{np}{b}\right)}$$

- No hard scattering
- No correlations
- Two parameters: *np*, *b*
 - $< p_T > = 2 \text{ GeV}/b \sim 500 \text{ MeV}$
 - *n*~740/2~370 "sources"

Simple uncorrelated-emission model can account for the bulk of background fluctuations (!)

Hard Probes 2010