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Full jet reconstruction

study the quenching directly with jets: 
● access the partonic kinematics
● study energy flow, not individual hadrons
● well calibrated probe (pQCD)
● unbiased jet reconstruction: expecting RAA=1 

(caveats: nPDF, medium-induced jet broadening)

high-pT hadron spectra and correlations:

● established jet quenching phenomena
● limited discrimination power due to:

● fragmentation biases
● bias towards least interacting jets (surface)

Renk & Eskola, Phys.Rev.C75 (2007) 054910
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Outline

● jet reconstruction in STAR

● initial state: jet spectra in d+Au, UE in p+p & d+Au

● UE background fluctuations & jet spectra in Au+Au

● di-jet and jet-hadron correlations

200 GeV
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STAR experiment at RHIC
solenoidal magnetic field 0.5 T

detectors used (|η|<1, Φ: 2π):
● Time Projection Chamber: tracking
● Barrel EM Calorimeter (BEMC):

-neutral energy (towers 0.05x0.05)
-trigger

pT,track/tower > 0.2 GeV/c

“100% hadronic correction”: subtract 
matched track pT off tower ET: avoid double-
counting (MIP, electrons, hadronic showers)

centrality selection – charged multiplicity:
Au+Au: |η|<0.5, d+Au: -4<η<-2.5

data used: 200 GeV p+p (2006), Au+Au (2007), d+Au (2007/2008)

EAST WEST

η=1η=-1

SVT,SSD
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Jet reconstruction

recombination algorithms - FastJet package
    Cacciari, Salam and Soyez, JHEP0804 (2008) 005.

● kT, anti-kT: different sensitivity to background
● R: resolution parameter: 0.2 or 0.4
● recombination: E scheme with massless particles

analysis procedure:
1. define jets (kT, anti-kT), active area A
2. estimate background density from kT jets: ρ = median{pT/A}
3. subtract the background: pT,jet,true  = pT,jet,observed  -  ρ * A
4. correct for background fluctuations
5. correct for detector effects (jet pT shift & resolution)  

jet reconstruction uncertainties:
● Jet Energy Scale (BEMC calibration, TPC tracking efficiency): leading 

uncertainty in p+p, d+Au
● background fluctuations: leading uncertainty in Au+Au
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Initial state: p+p & d+Au 
● 10M 0-20% most central events, η-dependent background subtraction
● bg. fluctuations & detector effects corrected via Pythia jets embedding

black error band: d+Au JES 
uncertainty (TPC: 10%, 
BEMC: 5%)
red box: <Nbin> 12% unc. 
magenta box: p+p total 
systematic uncertainty 
(including jet energy scale)

note
● different η range
● different jet algorithm

towards jet RdAu:
● decrease syst.uncertainties
● extend to higher pT

➔no significant deviation from Nbin scaled p+p

p+p: PRL 97 (2006) 252001

STAR Preliminary
J.Kapitan, arXiv: 1012.0362

(Nbin)
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Underlying event – all but the jet
UE in p+p:

Multiple Partonic Interactions
Initial & Final State Radiation (ISR, FSR)
Beam-beam remnants

transverse region is split to two parts:
➔TransMax: transverse region with highest ∑pT, ∑Ntrack

 enhanced probability of containing hard ISR/FSR component
➔TransMin transverse region with least ∑pT, ∑Ntrack

                sensitive to beam-beam remnants and multiple parton interactions

Two types of analysis:
➔leading jet in the acceptance
➔di-jet: |∆φ|>150o, pT

away/pT
leading>0.7 (suppression of ISR, FSR)

➔compare TransMax from leading jet and di-jet samples: 
information about large angle ISR/FSR

➔modification of UE by Cold Nuclear Matter in d+Au?

access to UE: transverse region with respect 
to a leading jet / di-jet
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Jet and UE: mean p
T

UE <pT>: 
➔largely independent of jet pT

➔only slightly higher in d+Au than 
in p+p collisions.

Jet:
➔<pT> rise with jet pT

➔d+Au: UE influences significantly the 
properties of jets and needs to be 
corrected

p+p, d+Au data at detector level; d+Au: 0-20% highest multiplicity

J.Bielcikova, QM2011 poster H. Caines, arXiv: 1012.5008
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UE: <N
ch

> and ISR/FSR
Data at detector level No large 

difference 
between 
leading jet and 
di-jet analysis!

c.f.: at √s=1.96 
TeV, UE <Nch> 
in leading jet 
sample ~50% 
higher than in 
di-jet sample

in p+p and d+Au collisions at RHIC energies, there's no 
significant ISR/FSR at large angles

difference between TransMax and TransMin mostly 
described by Poisson sampling

UE <Nch> significantly higher in d+Au compared to p+p

J.Bielcikova, QM2011 poster H. Caines, arXiv: 1012.5008
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UE: Scaling between p+p and d+Au

d+Au 0-20%:
     <Nbin>   = 14.6 ±1.7 (syst.)
     <Npart>  = 15.2 ± 1.8 (syst.)
p+p collisions: Nbin =1, Npart =2

Data corrected for reconstruction 
efficiency in TPC at <pT> of UE.

Systematic errors:
• reconstruction efficiency: 5% in 
p+p and d+Au

• scaled p+p: Glauber calculation 
uncertainty

Charged particle density in UE in d+Au collisions
scales approximately with <Npart>   

J.Bielcikova, QM2011 poster
Di-jet data sample
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Jet spectra: Au+Au vs. p+p

uncertainty of
jet energy scale

pion RAA

M. Ploskon, Nucl.Phys.A830:255c-258c,2009

lines: unfolding uncertainty
M.Ploskon, Nucl.Phys.A830:255c-258c,2009

● RAA of R=0.4 jets close to 1
● consistent with jet broadening from R=0.2 to R=0.4

R>0.4 difficult to measure due to bg. fluctuations
➔ di-jet and jet-hadron correlations (last part of the talk)
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Background fluctuations
current results: Gaussian parametrization based on Pythia embedding

this presentation:
● is Gaussian model appropriate?
● we know there's jet quenching: how does fragmentation (and its 

modification) influence jet reconstruction in presence of background? 
● assess background fluctuations with various fragmentation scenarios

embedding studies with real (central) Au+Au events:
1. determine background density with kT algorithm: ρ = median{pT/A}
2. embed a “jet” (various options) and run anti-kT jet finder
3. find a cluster containing the embedded jet (> 50% of its energy)

quantify response to background via:

identical to ΔpT in arXiv:1010.1759 (Cacciari, Rojo, Salam, Soyez)
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Example of δp
T 
distribution

embedding single particle with pT = 30 GeV/c, η = -0.2

same jet embedded into 8M events:

➔ response over 40 GeV and 5 orders of magnitude
➔ Gaussian fit to LHS good, non-Gaussian tail in RHS!

what does δpT depend on?
➔ jet area A
➔ jet pT

➔ jet fragmentation pattern

following studies:
for R=0.4 jets...

P. Jacobs, arXiv:1012.2406
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Dependence on jet area

anti-kT clustering: area distributions for various pT
emb

0.1 GeV/c 5.0 GeV/c 10.0 GeV/c

area distribution for low pT probes very broad -> constrain the area:

fixed area: δpT varies little with pT
emb

indication that specific jet 
structure is unimportant!

A>0.4
pT

emb: 0.0, 10.0 GeV/c

➔ verify this with Pythia, QPythia...

P. Jacobs, arXiv:1012.2406

P. Jacobs, Hard Probes 2010

P. Jacobs, arXiv:1012.2406P. Jacobs, arXiv:1012.2406
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δp
T
: sensitivity to fragmentation 

Outliers from QPYTHIA:
•2 out of 30 jets
•physics or modeling?

● 30 different jets
● each embedded into ~8M 

background events

Centroid shift ~±1 GeV

negligible effect for final 
correction: it's for δpT < 0

to do:
● fully characterize δpT 
distribution

● implement in unfolding

fluctuation distribution 
~universal: independent 
of pT

emb, fragmentation 
within factor 2 at 30 GeV/c

Smearing due to background fluctuations 
~independent of fragmentation pattern!

P. Jacobs, arXiv:1012.2406
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Jet-triggered correlations

● use highly biased jet sample: jets containing 
BEMC tower with ET>5.4 GeV: “trigger jets”

● strong surface bias

● idea: maximize recoil jet medium path length

● trigger jets reconstructed with pT,cut=2 GeV/c to 
achieve similar jet energy scale in p+p, Au+Au

➔ di-jet correlations

➔ jet-hadron correlations

Renk & Eskola, Phys.Rev.C75 (2007) 054910
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Di-jet correlations

Gaussian unfolding of away-jets:
pT,cut=0.2 GeV/c: σ = 6.5 GeV
pT,cut=2 GeV/c: σ = 1.5 GeV

➔ suggestive of energy profile 
broadening beyond R=0.4

● trigger jet: pT>20 GeV/c

● look for away-side jet modification:

● construct ratio of Au+Au/p+p 
spectra of the recoil jets

● test for 2 different pT,cut values for 
recoil jets

● trigger jet energy uncertainty 2 GeV Elena Bruna, arXiv:1010.3184

recoil jet spectra ratio AuAu/pp
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Jet-hadron correlations

➔ azimuthal correlations of charged hadrons 
with respect to trigger jet axis

➔ increased kinematic reach compared to di-
hadron correlations

initial results – flat background subtraction, pT,jet > 20 GeV/c:
(J.Putschke, RHIC AGS Users Meeting 2009)

suppression

enhancement

softening & broadening!
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ΔΦ background model
● ZYAM is known to overestimate background level in the presence of 

broad peaks (central collisions, low pT,assoc)
● jet v2 a-priori unknown (analysis in progress)

in the following, background estimated by fitting:

(v2{2}+v2{4})/2 v2{2} (pT=6 GeV/c)

Max. v2 uncertainties:
no v2

nominal v2 + 
+ 50% v2

jet*v2
assoc{2}

A. Ohlson, QM2011

A. Ohlson, QM2011
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Comparing trigger jets
Comparison of J-H correlations in p+p, Au+Au → are trigger jets are similar?

Expected differences are corrected (p+p adjusted):
➔detector effects (different tracking efficiencies)
➔background fluctuations (embedding into minimum bias events used)

Anti-kT, R = 0.4, 
p

T

track,tower > 2 GeV/c

p
T

jet calculated from 

particles above 2 GeV/c

Shapes of trigger jet 
spectra don't quite 
match...

A. Ohlson, QM2011
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Comparing trigger jets
Comparison of J-H correlations in p+p, Au+Au → are trigger jets are similar?

Shapes of trigger jet 
spectra don't quite 
match...

include ΔE = -1 GeV/c 
energy shift included in 
systematic uncertainties to 
account for possible 
trigger jet energy 
mismatch.  

Anti-kT, R = 0.4, 
p

T

track,tower > 2 GeV/c

p
T

jet calculated from 

particles above 2 GeV/c

A. Ohlson, QM2011

Expected differences are corrected (p+p adjusted):
➔detector effects (different tracking efficiencies)
➔background fluctuations (embedding into minimum bias events used)
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Nearside I
AA

➔high-p
T
 suppression observed in the nearside I

AA 
→ consistent with 

apparent ΔE (-1 GeV spectrum shift)
➔possible low-p

T
 enhancement

A. Ohlson, QM2011

IAA = YA+A/Yp+p

Y: per-trigger 
yield
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Nearside energy balance: D
AA

p
T

jet 

(GeV/c)

NS ΔB 
(GeV/c)

10-15

15-20

20-40

0.6−1.1−0.5
1.90.5

1.7−1.0−1.7
1.90.6

1.9−1.1−1.1
2.10.4

v2+det.unc.
unc.due 
to shifts

For 10 < p
T

jet < 20 GeV/c:                                 (syst.) GeV/c

Include trigger jet energy shift (+ΔB*3/2) in systematic uncertainties to 
achieve ΔB ~ 0

B=0.6−1.0−0.5
1.90.5

ΔB small → good matching of trigger jet energies

A. Ohlson, QM2011
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Maximum trigger jet energy 
uncertainties

Shift to match trigger jet spectrum with embedding → corresponds to 
scenario in which Au+Au trigger jets are p+p-like (even for jet 
constituents below pT=2 GeV/c)

“low p
T
assoc enhancement is bulk”

Shift to get ΔB = 0 → energy mismatch is due to jet modification
“low p

T
assoc enhancement is jet”

With these two extreme cases covered, 
we can now move to the awayside!
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Awayside Gaussian width & I
AA

➔ significant enhancement at low p
T
assoc and suppression at 

high p
T

assoc on the awayside
➔ significant broadening of awayside jets in Au+Au 

compared to p+p

n.b.: this is not z!
A. Ohlson, QM2011 A. Ohlson, QM2011
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Awayside energy balance: D
AA

➔ significant part of energy “lost” at high pT shows up at 
lower pT and at larger distance from the jet axis

➔ jet quenching in action

p
T

jet 

(GeV/c)

AS ΔB 
(GeV/c)

10-15

15-20

20-40

1.7−0.3−0.5
1.50.5

2.4−0.5−1.4
1.70.5

2.5−0.8−1.3
2.00.4

A. Ohlson, QM2011
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Conclusions
d+Au jet spectrum: 
➔ no significant Cold Nuclear Matter effects observed

UE in p+p and d+Au:
➔<pT> in UE only slightly higher in d+Au compared to p+p
➔no significant ISR/FSR at large angles
➔<Nch> in UE scales approximately with <Npart> from p+p to d+Au

Au+Au jet spectrum:
➔ R = 0.4 jet RAA close to 1 with large uncertainties
➔ consistent with jet broadening from R=0.2 to R=0.4

background fluctuations - δpT:
● largely independent of fragmentation pattern of the probe

di-jet suppression suggestive of awayside broadening

jet-hadron correlations: 
➔ softening, broadening and pT redistribution observed
➔ measured jet modification disfavors black-and-white e-loss picture
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Thank you!
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Backup



The Effect of v
3
 on the Nearside

• Do jets to have a non-zero v
3
?  If yes, must include a cos(3Δφ) in 

background subtraction.  

• Maximum v
3

jet assumption: v
3

jet = v
3
(p

T
 = 5 GeV/c)

• Under this assumption, HT trigger jets in AuAu become quite pp-like.  

• For 10 < p
T

jet < 20 GeV/c: NS ΔB ~ -0.6 GeV/c (errors not calculated)

• Note: Error bars on v
3
 points (red triangles) are statistical only.  



The Effect of v
3
 on the Awayside

• For 10 < p
T

jet < 20 GeV/c: AS ΔB ~ -0.8 GeV/c (errors not calculated)

• Even with extreme v
3

jet assumption, the qualitative conclusions about 

quenching on the awayside hold: low-p
T
 enhancement, high-p

T
 

suppression, p
T
 redistribution
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Algorithms details

recombination algorithms - FastJet package
    Cacciari, Salam and Soyez, JHEP0804 (2008) 005.

● dij = min(pTi
n,pTj

n) (Δη2+Δφ2)/R2
,
  di = pTi

n

● min(di,dij):  di -> new jet, dij -> merge i,j

● n=2: kt, n=-2: anti-kt
● R: resolution parameter
● recombination: E scheme with massless particles
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dAu details

jet fiducial
acceptance

d+Au 200 GeV
STAR Preliminary

background 
density ρ

STAR 
Preliminary

200 GeV
anti-kt, R = 0.4
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Jet cross section & relation to p+p

compare to STAR p+p jet 
cross section:
● Mid Point Cone algorithm
● R = 0.4

number of binary collision scaling:

if there are no nuclear effects, hard 
processes scale according to <Nbin>

for 20% most central run 8 d+Au 
collisions, <Nbin> = 14.6 ± 1.7 from MC 
Glauber

d+Au: jet yield normalised per event
rescaling p+p to this level:
Yjet,p+p (d+Au level) =  σjet,p+p / σinel,p+p * <Nbin>

σinel,p+p = 42 mb is p+p inelastic cross 
section

12



35Jan Kapitán HPHD 2011

Pseudorapidity acceptance
jet dN/dη not flat: focusing towards η=0 for high jet pT

|η|<0.55 vs 0.2<|η|<0.8: 50% effect at 50 GeV/c, negligible below 20 GeV/c:

Pythia simulation
STAR Preliminary
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Jet spectra - unfolding

Gaussian widths – 
smearing/unfolding 
from Pythia 
embedding:

R=0.4: 6.8 GeV 
R=0.2: 3.7 GeV

systematic 
uncertainty (bands
): +-1 GeV
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UE at Tevatron
R. Field et al. (CDF), hep-ph/0510198
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AuAu jets & theory

QPYTHIA...



False Jets
• Definition: Residual contribution of correlated background to the 

distribution of true jets after background subtraction
• Note 1: the pT irresolution caused by the background non-uniformities 

introduces false hard component to the reconstructed spectra (low pT 
objects are smeared and populate higher pT bins)

• Note 2: ideal unfolding procedure and complete knowledge of the 
background should revert the process -> retract the background objects 
from the pT spectrum leaving out only the true population of energy flow 
from hard scatterings
– Ideal de-convolution case: NO FALSE JETS

• False jet yield is nothing but an estimate of how much of the residual 
background correlations are contaminating the reported jet yield -> 
precision of the unfolding matrix crucial(!)

Hard Probes 2010 HI Jets in STAR 39

smear unfold

~0 GeV/c >> 0 GeV/c ~0 GeV/c



Simple background model: 
uncorrelated particle emission

Hard Probes 2010 HI Jets in STAR 40

M. Tannenbaum  
Phys. Lett. B498 (2001) 29

ET fluctuations in finite acceptance via n-fold convolution:

Inclusive single particle distribution:

• No hard scattering
• No correlations
• Two parameters: np, b

• <pT>=2 GeV/b~500 MeV
• n~740/2~370 “sources”

Simple uncorrelated-emission model 
can account for the bulk of 
background fluctuations (!) 
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