Jets in heavy ion collisions at RHIC

Jan Kapitán

Nuclear Physics Institute ASCR, Czech Republic

Jan Kapitán

1

Jet quenching : indirect method

inclusive high- p_{τ} hadron suppression (cf. direct γ)

$$R_{\rm AA} = \frac{1}{\langle N_{\rm bin} \rangle} \frac{d^2 N^{\rm AA} / dp_{\rm T} d\eta}{d^2 N^{\rm pp} / dp_{\rm T} d\eta}$$

<u>spectra & di-hadron correlations:</u>

- indirect method to study jet quenching
- surface & fragmentation biases
- limited discrimination of medium parameters

Jan Kapitán

Full jet reconstruction

study the quenching directly with jets:

- access the partonic kinematics
- well calibrated probe (pQCD)
- qualitatively new observables:
 - energy flow
 - fragmentation functions
- expecting R_{AA} = 1 for unbiased jet reconstruction (caveats: EMC effect at large x, possible jet broadening due to medium-induced radiation)

Outline of the talk:

- RHIC experiments
- jet finding techniques for A+A collisions
- probing the initial state (d+Au vs p+p)
- probing the medium (Au+Au, Cu+Cu vs p+p): spectra, fragmentation functions, di-jets

Jan Kapitán

Relativistic Heavy Ion Collider

BNL (Long Island, NY, USA) p+p up to 500 GeV A+A up to 200 GeV

Jan Kapitán

STAR and PHENIX

|η| < 1 at mid-rapidity full azimuthal coverage TPC DAQ rate 50 Hz (till 2008)

|η| < 0.35 at mid-rapidity
90° + 90° in azimuth
multi kHz DAQ rates (!)

jet reconstruction

charged energy (tracks) + neutral energy (elmg.calorimeter towers) missing neutral energy: K⁰, (anti) neutrons

data used: 2005-2008 p+p, d+Au, Cu+Cu, Au+Au $\sqrt{s_{_{NN}}}$ = 200 GeV

Jan Kapitán

5

Jets in A+A collisions

underlying event background in Au+Au central: 45 GeV in cone with R=0.4!

general method:

1. define jets (cone- and recombination- type algorithms)

- 2. subtract underlying event background
- 3. remove contribution from fake jets
- 4. correct (unfold) jet p_{τ} smearing due to background fluctuations: to be able to compare to jets in p+p

despite the large background, we CAN see jets in A+A collisions:

$\sum p_{T \text{ particles}} = p_{T \text{ iet}}$ $\mathsf{R}_{\mathsf{cone}}$ colorless states Hard scattering

ISMD 2009, Gomel

6

Jet finding techniques

STAR jet reconstruction in p+p, d+Au, Au+Au collisions

- kt and anti-kt recombination algorithms from FastJet Cacciari, Salam and Soyez, JHEP0804 (2008) 005, arXiv:0802.1188
- resolution parameter R: 0.2 to 0.5
- background subtraction: $p_{T,jet,observed} = p_{T,jet,true} + \rho * A$ A: active jet area, ρ : median of p_T/A distribution
- statistical subtraction of fake jets (jet finder run at randomized event with jet-leading particles removed, or jet spectra in transverse region)
- unfolding of $p_{\scriptscriptstyle T}$ smearing uses Gaussian widths from Pythia embedded into Au+Au

PH***ENIX** jet reconstruction in p+p, Cu+Cu collisions

- Gaussian filter with $\sigma=0.3$ (Y.S.Lai, B.A.Cole, arXiv: 0806.1499)
 - core of the jet has higher weight: background suppression
 - ideal for limited-acceptance detector
- jet-by-jet fake rejection by Gaussian-filtered (σ =0.1) p_T² sum > cut: Y.S.Lai (PHENIX), arXiv: 0907.4725
 - shouldn't reject quenched jets (PYQUENCH simulation)
- unfolding based on p+p embedded into Cu+Cu

Jan Kapitán

7

k₊ effect: jets in d+Au

- run 8 RHIC data: p+p, d+Au 20% most central; R = 0.5
- select two highest energy jets in event: $p_{T,1} > p_{T,2}$
- use cut on p_{τ_2} to suppress background/fake jets
- di-jet $\Delta \Phi$ broadening (k_r): intrinsic k_r + ISR,FSR (incl. CNM)

$\mathbf{k}_{T,raw} = \mathbf{p}_{T,1} * \mathbf{sin}(\mathbf{\Delta \Phi}), |sin(\mathbf{\Delta \Phi})| < 0.5, Gaussian fit:$

"Trigger" Jet

"Awav" Jet

Jan Kapitán

Do we see Cold Nuclear Matter effects?

• the same analysis technique in p+p and d+Au collisions • average over 2 $p_{T,2}$ bins and 2 algorithms: kt, anti-kt

J. Kapitán (STAR), EPS HEP 2009.

 $\sigma_{kT,raw} (p+p) = 2.8 \pm 0.1 \text{ GeV/c}$ $\sigma_{kT,raw} (d+Au) = 3.0 \pm 0.1 \text{ GeV/c}$?decrease at high p_T (quark jets?): higher jet energies to be studied

systematic uncertainties:

- neglecting detector effects, p_T-dependence
- BEMC calibration and TPC tracking at high luminosity: under study
- Iargely correlated between p+p and d+Au

conclusion: no strong Cold Nuclear Matter effect on jet k₊ broadening seen

Jan Kapitán

Medium modification of jet p_{τ} spectra

- different sensitivity of algorithms
- R=0.4: indication of energy recovery (cf. pion R_{AA})
- R=0.2 jets suppressed
- → is R=0.4 enough to achieve jet $R_{AA} = 1$?

- significant jet suppression
- >jet broadening -> energy shift
- ?feature of fake jet rejection algorithm

Jan Kapitán

Jet energy profile

- modified jets are lost
- their energy shifted out of "jet cone" (large angle radiation)

R>0.4 not accessible due to large background, but can compare R=0.2 and R=0.4 jets

- p+p: "narrowing" of jet structure
- Au+Au: indication of jet broadening (deficit of energy in R=0.2)

Fragmentation functions

- trigger jet: leading hadron $E_{T} > 5.4 \text{ GeV}$
- maximizing medium path-length of the recoil jet
- R=0.4 and recoil jet: measure of jet energy $(p_{t,rec})$
- R=0.7 used for charged hadrons (p_t^{hadron}) and bg subtracted

significant suppression of recoil jets: ?energy shift due to jet broadening ?are those that we see non-interacting (eg tangential emission?) Jan Kapitán 12

no significant modification of FF: ?dominated by non-interacting jets ?artificial hardening of Au+Au FF due to energy shift

ISMD 2009, Gomel

Trigger jet

Jet-hadron correlations 0-20% Au+Au vs. p+p

High Tower Trigger (HT): tower 0.05x0.05 ($\eta x \varphi$) with E_t> 5.4 GeV

 $\Delta \phi = \phi_{\text{Jet}} - \phi_{\text{Assoc.}}$

 ϕ_{Jet} = HT trigger jetaxis found by Anti-kt with R=0.4, $p_{t,cut}$ >2 GeV and $p_{t,rec}(jet)$ >20 GeV

- Significant broadening and softening visible on the recoil side
- "Modified fragmentation function"
- "Not" visible in di-jets, suggesting that current jet-finding approach is biased towards less interacting jets and/or underestimation of jet energy
 jet v₂ to be subtracted? (under study)

Jan Kapitán

Di-jet azimuthal correlations

Gaussian widths of Δφ distributions are consistent across different centralities:

not expected for quenched jets (k_{T} broadening)

algorithm feature? (preferential selection of unquenched jets?)

Jan Kapitán

Conclusions

Cold Nuclear Matter effects:
 no strong evidence of k_T broadening in d+Au collisions

- Medium modification through jets in Cu+Cu collisions:
 - jets show suppression similar to π^0
 - no centrality dependence observed in di-jet Δφ width
 >algorithm preferentially selects unquenched jets?
 >observed effects could be due to jet broadening?
- Medium modification through jets in central Au+Au collisions:
 - significant suppression of R=0.2 jets observed
 - R=0.2/R=0.4 p_T spectra ratio qualitatively different from p+p
 - recoil jets: significant suppression & no strong FF modification
 - jet-hadron correlations: away side jet structure broadening
 quenching leads to jet broadening!

New rich set of observables to confront with theory!
 Jan Kapitán
 15
 ISMD 2009, Gomel

Thank you!

Jan Kapitán

Connection to theory

analytical calculations:

N. Borghini, arXiv: 0902.2951.

strong transverse broadening of parton shower w.r.t. jet axis! may depend on p_{τ} cuts?

<u>IR safe observables – subjet distributions:</u>

K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, U. A. Wiedemann arXiv:0804.3568.

medium induced radiation -> coarser jet structure

ISMD 2009, Gomel

Jan Kapitán

Theory: Jet quenching – Energy Loss

Elastic energy loss: Bjorken '82 Bremsstrahlung: Gyulassy, Wang, Plumer '92 jet quenching measures color charge density, plasma transport coefficients

But quantitative analysis of data requires model building Current status: large discrepancies (factor~10) in extracted medium parameters (transport coefficients) \rightarrow ongoing efforts to resolve this

YaJEM (Renk): medium increases virtuality of partons during evolution

PYQUEN (Lokhtin, Snigriev): PYTHIA afterburner reduces energy of final state partons and adds radiated gluons according to BDMPS expectations.

PQM (Dainese, Loizides, Paic): MC implementation of BDMPS quenching weights

HIJING (Gyulassy, Wang): jet and mini-jet production with induced splitting

JEWEL (Zapp, Ingelman, Rathsman, Stachel, Wiedemann): parton shower with microscopic description of interactions with medium

q-PYTHIA (Armesto, Cunquiero, Salgado, Xiang): includes BDMPS-like radiation in modified splitting function

Jan Kapitán

Jet finding

Jan Kapitán

Jet spectra - unfolding

Gaussian widths – smearing/unfolding from Pythia embedding:

R=0.4: 6.8 GeV R=0.2: 3.7 GeV

systematic uncertainty (bands): +-1 GeV

Jan Kapitán

Fragmentation functions

Jan Kapitán

22

Hadron – jet correlations

high- p_T hadron - BEMC cluster: $p_t^A > 6$ GeV/c recoil jet with leading particle: $p_t^B > 6$, 4, 2 GeV/c normalised per number of trigger di-hadrons

<u>small suppression for p_t > 6 GeV/c</u>: this highly exclusive di-hadron trigger selects non-interacting jets!

n.b.: trigger itself IS suppressed!

Jan Kapitán

Jets in d+Au collisions

- run 8 RHIC d+Au data: 20% most central collisions
- compare to run 8 p+p data
- } similar systematics • trigger: BEMC tower $E_T > 4.3$ GeV (p+p, d+Au)
- using $p_{\tau} > 0.5$ GeV/c, R = 0.5, fiducial jet acceptance $|\eta| < 0.9$ -R

Pythia simulation for d+Au corrections

- Pythia 6.410, GEANT, STAR reconstruction software
- PyMC (particle level), PyGe (detector level), PyBg (detector level + bg)

jet p_{T} resolution:

roughly 20% shift: unobserved neutral energy, tracking efficiency, dead towers

very good angular resolution

Jan Kapitán

di-jet dphi acceptance...

J.Kapitán (STAR), EPS HEP 2009.

Jan Kapitán

Fake jet rejection through filter

PHENIX centrality-depedent R_{AA}

Y.S.Lai (PHENIX), RHIC AGS 2009.

Jan Kapitán