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Mo8va8on	  
The existence of the background magnetic field is illustrated in figure 6.2. The

Figure 6.2: A non-central heavy-ion collision showing the magnetic field

green grid represents the reaction plane. The oval orange/red zone represents the

collision participants while the blue partial spheres represent the spectators. The

spectators are highly charged and are moving at speeds close to that of light.

For a mid-central collision with the impact parameter b ∼ .8 times the radius

of the Gold nucleus, each blue partial sphere will contain on average half of

the Gold nucleus’ charge, +39.5e. They clearly constitute an ordinary electro-

magnetic current. This would of course produce a magnetic field at the center of

the collision region which is perpendicular to the current. As one travels away

from the center transverse components to the field will appear. All transverse

components are ignored in this analysis. The B field in the entire interaction

region is taken to be that at the center of the collision and is given by the black

arrow. The magnetic field of both spectator nuclei interfere constructively. The

participant region also contributes to the magnetic field as it is charged and

contains orbital angular momentum as well.
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•  Elliptic flow 
Coordinate-space anisotropy 
 
 
 
Momentum-space anisotropy 
 

 
 

•  Moving spectators consists 
electric current, which produces a 
magnetic field at the center of 
collision region. 

•  Peak magnetic field ~1015 Tesla ! 
       D.E. Kharzeev et al., Nucl. Phys. A 803 (2008) 227	


•  Vacuum fluctuates, chirality 
asymmetry 
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Mo8va8on	  for the signal. We have studied the dependence of the
signal on j!" ! !#j [11], and find that the signal has a
width of about one unit of !.

Physics backgrounds.—We first consider backgrounds
due to multiparticle correlations (3 or more particles)
which are not related to the reaction plane. This contribu-

tion affects the assumption that two particle correlations
with respect to the reaction plane [left-hand side of Eq. (2)]
can be evaluated in practice via three-particle correlations
[right-hand side of Eq. (2)]. Evidence supporting this
assumption comes from the consistency of same-charge
results when the reaction plane is found using particles ‘‘c’’
detected in the TPC, FTPC, or ZDC-SMD, though the
FTPC and (particularly) ZDC-SMD analyses have large
statistical errors in the most peripheral bins. This multi-
particle background should be negligible when the ZDC-
SMD event plane is used, so it can certainly be reduced and
this is an important goal of future high statistics runs. To
study these backgrounds in the current analysis, we use the
heavy-ion event model HIJING [16] (used with default
settings and jet quenching off in all calculations shown in
this Letter) which includes production and fragmentation
of mini jets. We find that the contribution to opposite-
charge correlations of three-particle correlations in HIJING

(represented by the thick solid and dashed lines in Figs. 2
and 4) is similar to the measured signal in several periph-
eral bins. We thus cannot conclude that there is an
opposite-charge signal above possible background. The
same-charge signal predicted by three-particle correlations
in HIJING is much smaller and of opposite sign compared to
that seen in the data.
Another class of backgrounds (which cannot be reduced

by better determination of the reaction plane) consists of

FIG. 4 (color). hcosð$" þ$# ! 2!RPÞi results from 200 GeV
Auþ Au collisions are compared to calculations with event
generators HIJING (with and without an ‘‘elliptic flow after-
burner’’), URQMD (connected by dashed lines), and MEVSIM.
Thick lines represent HIJING reaction-plane-independent back-
ground.

FIG. 3 (color online). Dependence of hcosð$" þ$# !
2!RPÞi on 1

2 ðpt;" þ pt;#Þ calculated using no upper cut on
particles’ pt. Shaded bands represent v2 uncertainty.

FIG. 2 (color). hcosð$a þ$# ! 2!RPÞi in Auþ Au and
Cuþ Cu collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV calculated using
Eq. (2). The thick solid (Auþ Au) and dashed (Cuþ Cu) lines
represent HIJING calculations of the contributions from three-
particle correlations. Shaded bands represent uncertainty from
the measurement of v2. Collision centrality increases from left to
right.

PRL 103, 251601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

18 DECEMBER 2009

251601-5

STAR Phys. Rev. Lett. 103, 251601 (2009)  
           Phys. Rev. C 81, 054908 (2010)  

•  The three-particle correlations 
are directly sensitive to 
predicted local P-violation in 
heavy-ion collisions. 

•  Out-of-plane charge separation 
 same charge < 0 
 opposite charge > 0 

•  The observed signal cannot be 
described by models (HIJING, 
HIJING + v2, URQMD, 
MEVSIM) 
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Chiral Magnetic Effect 

Chiral Separation Effect 

in plane 
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electric�quadruple�deformation�

due�to�the�Chiral Magnetic�Wave�at�finite�baryon�density!

What�would�be�the�measurable�consequence?

•  Y. Burnier, D. E. Kharzeev, J. Liao 
and H-U Yee, Phys. Rev. Lett. 107, 
052303 (2011) 

•  Jinfeng Liao’s talk at STAR 
analysis meeting, Mar. 2011. 
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negative hadrons, and decrease the elliptic flow of positive
hadrons, leading to vþ

2 < v"
2 as demonstrated in Fig. 3.

However, the large differences in the absorption cross
sections of antiprotons and protons, and of negative and
positive kaons in hadronic matter at finite baryon density,
are likely to mask or reverse this difference in the hadron
resonance ‘‘afterburner’’ phase of a heavy ion collision. On
the other hand, the smaller difference in the absorption
cross sections of negative and positive pions potentially
may make it possible to detect the electric quadrupole
moment of the plasma through the difference of elliptic
flows of pions, v2ð!þÞ< v2ð!"Þ.

The effect can be estimated by noting that a strong radial
flow aligns the momenta of the emitted hadrons along the
direction of the radial flow (see Fig. 3). The asymmetry of
the electric charge distribution in the expanding plasma is
then translated into the asymmetry in the azimuthal distri-
bution of the positive and negative hadrons:

Nþð"Þ " N"ð"Þ /
Z

j0eðR;"ÞRdR: (8)

This asymmetry has a 0th Fourier harmonic (monopole)
originating from a nonzero net charge density:

!# e ¼
Z

RdRd"j0e;B¼0ðR;"Þ: (9)

In addition there is a 2nd harmonic (quadrupole) of the
form 2qe cosð2"Þ due to the CMW contribution:

qe ¼
Z

RdRd" cosð2"Þ½j0eðR;"Þ " j0e;B¼0ðR;"Þ': (10)

The ratio of the two r ( 2qe
!#e
can be used to parametrize the

asymmetry in the azimuthal distributions of positive and
negative hadrons:

Nþð"Þ " N"ð"Þ ¼ ð !Nþ " !N"Þ½1" r cosð2"Þ'; (11)

where !N) are the multiplicities of positive and negative
hadrons. Therefore the hadron azimuthal distributions in-
cluding the ‘‘usual’’ elliptic flow are

dN)
d"

¼ N)½1þ 2v2 cosð2"Þ'

* !N)½1þ 2v2 cosð2"Þ + A)r cosð2"Þ': (12)

In the second line we assume that both v2 and the charge
asymmetry A) ( ð !Nþ " !N"Þ=ð !Nþ þ !N"Þ are small.
The elliptic flow therefore becomes charge dependent:

v)
2 ¼ v2 +

rA)
2

: (13)

The magnitude of the effect: Numerical simulation.—As
described above, we have computed the evolution of the
right and left chiral components of the u and d quarks
according to Eq. (3) (at zero rapidity) in a static plasma.
For simplicity, we assume the temperature to be uniform
within the almond. At the boundary of the plasma, the
chiral symmetry is broken and therefore we set v$ ¼ 0.
In the transverse (with respect to the magnetic field) direc-
tion, we assume a diffusion with a diffusion constant
DT estimated [25] as DT ¼ ð2!TÞ"1 within the Sakai-
Sugimoto model. The difference in the elliptic flows of
positive and negative pions is given, within our approxi-
mation, by Eq. (13). In Fig. 4 we present the ratio r ¼
2qe= !#e as a function of impact parameter b at different
times. In this computation we took the impact parameter
dependence of the magnetic field from [3], with the maxi-
mal value eBjmax ¼ m2

!. To convert this ratio into the
difference of the elliptic flows of positive and negative
pions according to Eq. (13), we also have to estimate the
electric charge asymmetry A) in the quark-gluon plasma
that varies between 0 and 1. We do this using the baryon
chemical potential and temperature at freeze-out extracted
[30] from the data and evaluating the yields of baryons
and charged mesons; for the energy of

ffiffiffi
s

p ¼ 11 GeV we

FIG. 3 (color online). Schematic demonstration of the CMW-
induced electric quadrupole deformation carried by strong
radial flow.
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FIG. 4 (color online). The normalized electric quadrupole mo-
ment r, eBjmax ¼ m2

!, T ¼ 165 MeV.

PRL 107, 052303 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JULY 2011

052303-3

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee,  
Phys. Rev. Lett. 107, 052303 (2011) 
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A± =
N+ − N−

N+ + N−

•  A±: net charge asymmetry 

•                   : number of positive (negative) particle N+ N−( )

Mo8va8on	  

v�2 � v+2 = 2

✓
qe
⇢̄e

◆
A±

•  v2(π-) > v2 (π+) 
•  v2(π-) and v2 (π+) have opposite 

trend as a function of A± 
•  difference between v2(π-) and 

v2 (π+) has a linear relationship 
with A± 



Apr.	  12,	  2012	   7	  WWND	  2012	  

Mo8va8on	  
AMPT + Mean-field potentials 
•  Mean-field potentials lead different 

elliptic flow of particles and anti-
particles 

•  Elliptic flow difference is smaller at 
higher energy 

J. Xu, L-W Chen, C. M. Ko, and Z-W Lin, 
Phys. Rev. C 85, 041901 (2012)  

4

FIG. 4: (Color online) Relative elliptic flow difference between
p and p̄, K+ and K−, and π+ and π− with and without
hadronic potentials U at three different BES energies from
the string melting AMPT model. Results for different species
are slightly shifted in energy to facilitate the presentation.

K−, respectively [4]. Similar to the experimental data,
the relative v2 difference between π+ and π− is negative
at all energies after including their potentials, although
ours have smaller magnitudes. We have also found that,
as seen in the experiments [4], the relative v2 difference
between Λ hyperons and Λ̄ is smaller than that between
p and p̄, because the Λ(Λ̄) potential is only 2/3 of the
p(p̄) potential.
To summarize, we have studied the elliptic flows of

p, K+, π+ and their antiparticles in heavy ion colli-
sions at BES energies by extending the string melting
AMPT model to include their mean-field potentials in
the hadronic stage. Because of the more attractive p̄ than
p potentials, the attractive K− and repulsive K+ poten-
tials, and the slightly attractive π+ and repulsive π− po-
tentials in the baryon- and neutron-rich matter formed
in these collisions, smaller elliptic flows are obtained for
p̄, K−, and π+ than for p, K+, and π−. Also, the dif-
ference between the elliptic flows of particles and their

antiparticle is found to decrease with increasing collision
energy as a result of decreasing baryon chemical potential
of the hadronic matter. Although our results are qual-
itatively consistent with the experimental observations,
they somewhat underestimated the relative elliptic flow
difference between p and p̄ as well as that between π− and
π+ and overestimated that between K+ and K−. In our
studies, we have, however, not included other effects that
may affect the v2 difference between particles and their
antiparticles. For example, we may have overestimated
the annihilation between baryons and antibaryons as this
could be screened by other particles in the hadronic mat-
ter [34]. Including the screening effect would increase the
duration of the attractive potential acting on antibaryons
and thus reduces their elliptic flow, leading therefore to
an increase in the difference between the elliptic flows
of baryons and antibaryons. Also, the different elliptic
flows between particles and their antiparticles are as-
sumed in the present study to come entirely from the
hadronic mean-field potentials. As shown in Ref. [35],
the collective flow of partons can also be affected by their
mean-field potentials in the partonic matter. If quarks
and antiquarks have different mean-field potentials in the
partonic matter, this would then lead to different ellip-
tic flows for particles and their antiparticles in the initial
stage of the hadronic phase after hadronization. It will
be of great interest to include in future studies these ef-
fects as well as the effect due to different elliptic flows
between produced and transported partons [6] and the
chiral magnetic effect [7] in order to understand more
quantitatively the different elliptic flows between parti-
cles and their antiparticles observed in relativistic heavy
ion collisions.

This work was supported in part by the U.S. Na-
tional Science Foundation under Grants No. PHY-
0758115 and No. PHY-106857, the Welch Foundation
under Grant No. A-1358, the NNSF of China under
Grant Nos. 10975097 and 11135011, Shanghai Rising-
Star Program under grant No. 11QH1401100, and ”Shu
Guang” project supported by Shanghai Municipal Ed-
ucation Commission and Shanghai Education Develop-
ment Foundation.
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Quark transport 
•  Quark coalesce 
•  In mid-rapidity range, u and d quarks 

are transported from the entrance 
channel 

•  Transported quarks have stronger 
flow than produced quarks 

•  More transported d quarks than 
transported u quarks 

Conclusions: 
•    

 
 
•  Net Charge Asymmetry dependency 

of v2 difference needs further study 
J. C. Dunlop, M. A. Lisa, and P. Sorensen, 

Phys. Rev. C 84, 044914 (2011) 

CONSTITUENT QUARK SCALING VIOLATION DUE TO . . . PHYSICAL REVIEW C 84, 044914 (2011)
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FIG. 2. (Color online) The same as in Fig. 1, but the produced
strange quarks have 10% less intrinsic v2 than do the produced light
quarks. See text for details.

finds

v2[π− = dū] > v2[π+ = ud̄],

v2[K+ = us̄] > v2[K− = ūs],

v2[p = uud] > v2[p̄ = ūūd̄], (9)

v2[" = uds] > v2["̄ = ūd̄ s̄],

v2[p = uud] > v2[" = uds],

(v2[p = uud] − v2[p̄ = ūūd̄])

> (v2[" = uds] − v2["̄ = ūd̄ s̄]).

It is interesting that the ordering of v2 for positive and
negative pions is the same as that predicted due to chiral-
magnetic-wave effects [22]. We also find that the charge
ordering for kaons (v2[K+] > v2[K−]) is opposite to that for
pions. The chiral-magnetic-wave effect would generate the
same charge ordering for pions as for kaons, thus providing
a testable distinction between the chiral-magnetic model and
our stopping-based model. However, hadronic effects (e.g., the
smaller cross section for K−) may complicate the interpretation
of such a test [35].

A comparison of the anisotropies of particles and their an-
tipartners, as listed in Eq. (9), is straightforward and relatively
unambiguous. The details of cross-species comparisons can
depend more on the particular functional forms used for the
quark flow profiles and the weighting factors XqT

i
, and whether

the latter depend on pT . For the simple case that we have
considered, v2[p]

3 > v2[π±]
2 , the entire species dependences can

be seen in Figs. 1(d) and 2(d).

Our primary points have been made already in this simple
model, but we mention an additional complication. If there is
insufficient rescattering to fully thermalize the light produced
quarks, then the heavier strange produced quarks are likely to
be even less thermalized. In this case, vsP

2 < vuP ,dP

2 ; similar
considerations have been discussed by Lin and Ko [36].
Figure 2 shows the situation when the functional form of
Eq. (8) describes the flow of all quarks, as before, but
now M = 0.045 for the strange quarks. In this case, the
degeneracies (e.g., v2[K−] = v2[φ]) seen in Fig. 1 and listed
in its caption are broken; all hadrons have distinct elliptic flow
curves.

Additional reasonable complications can be considered.
Clearly, the functional forms used for the quark flow can be
varied from the simple form [Eq. (8)] used here. Furthermore,
one may reasonably argue that the fraction of light quarks
arising from transport (XqT

i
) should depend on pT ; we have

treated it as a constant for simplicity. The exploration of such
considerations amounts to tuning the model. We leave such
explorations for later comparison and fitting when data become
available.

IV. DISCUSSION AND SUMMARY

The success of NCQ scaling of elliptic flow at
√

sNN=
200 GeV has been one of the most striking observations
at RHIC, strongly suggesting the creation of a flowing,
thermalized bulk system of quarks that coalesce into hadrons.
Hence, observing the violation of this scaling as

√
sNN is

decreased could be of crucial importance, both for validating
the simple dynamical constituent quark model and for pin-
pointing the conditions required to undergo the deconfinement
phase transition. Furthermore, recent theoretical predictions
suggest that a chiral-magnetic-wave effect may reveal itself by
inducing a different flow for positive and negative pions [22].
The observation of NCQ scaling violations would thus be
potentially far reaching.

It is important, therefore, to explore less exotic reasons for
any scaling violations. We have discussed one simple scenario
here, which requires neither a fundamental difference in the
phase of QCD matter in the measured energy range nor a new
exotic effect.

The model predicts an unavoidable species-dependent
pattern for the breakdown of NCQ scaling and depends on
only two assumptions. First, it assumes that, just as at top
RHIC energies, the system can be described in terms of
constituent quarks that coalesce into hadrons as the system
cools. Second, it assumes that quarks transported from beam
rapidity to midrapidity suffer more violent scatterings than do
quarks produced at midrapidity at low

√
sNN . We simplified

the situation by treating the system as two distinct quark
populations, but our main points do not depend on this
simplification.

[Baryon transport from the entrance channel is another
important ingredient of the model, but its relevance is far from
an assumption; the phenomenon of stopping is well known
and the isospin effect (XdT > XuT ) is obvious and based on
data, as discussed in Sec. II.]

044914-5



The sign of the difference in integrated v2 agrees with predictions. 
What about the net charge asymmetry (A±) dependency? 
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•  Different elliptic flow of 
particle and anti-particle is 
observed 

•     v2 (⇤) > v2
�
⇤̄
�

v2 (p) > v2 (p̄)

v2
�
K+

�
> v2

�
K��

v2
�
⇡+

�
< v2

�
⇡��

STAR Preliminary 
CPOD2011 
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STAR detector 

 Time Projection Chamber      (0<ϕ<2π, |η|<1 ) 
      Tracking – momentum 
      Ionization energy loss – dE/dx (particle identification)  
 Time Of Flight detector          (0<ϕ<2π, |η|<0.9) 
      Timing resolution <100ps  -  significant improvement for 
PID 

STAR TOF 

STAR TPC 
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Large acceptance 
TPC: Full azimuthal coverage, (|η|<1.0)    

STAR	  Experiment	  

TOF 
BEMC Magnet 

TPC 

upVPD 
BBC 

EEMC 



Par8cle	  iden8fica8on	  at	  STAR	  
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STAR Time Projection Chamber Ionization energy loss 

nσπ =
1
R
log dE dxmeasured

dE dx
π

dE/dx Particle Identification:  
(π, K): p ~ 0.6 GeV/c; (π/K, p): p ~ 1.0 GeV/c 



Analysis	  Details	  
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Ø Data Set 
•  Au + Au 200 GeV, MiniBias, 0 – 80%, ~238M events 

Ø  Pion Selection 
•  PID: |nσπ| < 2 
•  0.15 < pT < 0.5 GeV/c 
•  |η| < 1.0 

Ø  Particles for net charge asymmetry 
•  charged particle 
•  0.15 < pT < 12 GeV/c 
•  |η| < 1.0 
•  exclude (anti)protons with pT < 0.4 GeV/c 
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Q-‐Cumulants	  Method	  
1. Flow vectors: 

PHYSICAL REVIEW C 83, 044913 (2011)

Flow analysis with cumulants: Direct calculations

Ante Bilandzic,1,2 Raimond Snellings,2 and Sergei Voloshin3

1Nikhef, Science Park 105, NL-1098 XG Amsterdam, The Netherlands
2Utrecht University, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands

3Wayne State University, 666 West Hancock Street, Detroit, Michigan 48201, USA
(Received 6 October 2010; published 26 April 2011)

Anisotropic flow measurements in heavy-ion collisions provide important information on the properties of
hot and dense matter. These measurements are based on analysis of azimuthal correlations and might be biased
by contributions from correlations that are not related to the initial geometry, so-called nonflow. To improve
anisotropic flow measurements, advanced methods based on multiparticle correlations (cumulants) have been
developed to suppress nonflow contribution. These multiparticle correlations can be calculated by looping over
all possible multiplets, however, this quickly becomes prohibitively CPU intensive. Therefore, the most used
technique for cumulant calculations is based on generating functions. This method involves approximations, and
has its own biases, which complicates the interpretation of the results. In this paper we present a new exact
method for direct calculations of multiparticle cumulants using moments of the flow vectors.

DOI: 10.1103/PhysRevC.83.044913 PACS number(s): 25.75.Ld, 25.75.Gz, 05.70.Fh

I. INTRODUCTION

Anisotropic flow is a response of the system created in a
heavy-ion collision to the anisotropies in the initial geometry.
Thus, anisotropic flow is very sensitive to the properties of the
system at an early time of its evolution. The sizable azimuthal
momentum-space anisotropy observed at relativistic heavy-ion
collider (RHIC) energies (for a review, see Refs. [1] and [2])
is the main evidence for the nearly perfect liquid behavior
[3,4] of the created matter. Quantitatively, anisotropic flow
is characterized by coefficients in the Fourier expansion of
the azimuthal dependence of the invariant yield of particles
relative to the reaction plane [5,6]:

E
d3N

d3p
= 1

2π

d2N

pt dpt dy

(

1 +
∞∑

n=1

2vn cos [n (φ − #R)]

)

.

(1)

Here E is the energy of particle, pt is the transverse
momentum, φ is its azimuthal angle, y is the rapidity, and #R

the reaction plane angle (see Fig. 1).The first coefficient, v1,
is usually called directed flow, and the second coefficient, v2,
is called elliptic flow. In general, the vn = 〈cos[n(φ − #RP )]〉
coefficients are pt and y dependent—in this context we refer
to them as differential flow. The integrated flow is defined as
a weighted average with the invariant distribution used as a
weight:

vn ≡
∫ ∞

0 vn(pt ) dN
dpt

dpt
∫ ∞

0
dN
dpt

dpt

. (2)

Since the reaction plane #R is not known experimentally,
the anisotropic flow is estimated using azimuthal correlations
between the observed particles. For example, using two-
particle azimuthal correlations,

〈cos[n(φ1 − φ2)]〉 = 〈ein(φ1−φ2)〉 =
〈
v2

n

〉
+ δn, (3)

where the first term, 〈v2
n〉, is the part due to anisotropic flow,

and δn represents the so-called nonflow contribution that comes

from correlations not related to the initial system geometry. If
nonflow is small, Eq. (3) can be used to measure vn, but in
general the nonflow contribution is not negligible. To suppress
nonflow one can exploit the collective nature of anisotropic
flow using multiparticle correlations. The method based on
multiparticle cumulants (genuine multiparticle correlations) to
measure anisotropic flow was proposed in Refs. [7–10]. This
method allows to subtract nonflow effects from flow measure-
ments order by order. Note that some experimental artifacts,
such as track splitting, in the analysis also contribute to the two-
particle correlation; in this respect multiparticle techniques are
also valuable, as they suppress such contributions as well.

One of the problems in using multiparticle correlations
is the computing power needed to go over all possible
particle multiplets, which practically prohibits calculations
of correlations of order larger than k = 3 (three-particle
correlations). To avoid this problem, it was suggested in
Ref. [7] to express cumulants in terms of moments of the
magnitude of the corresponding flow vector Qn, defined as

Qn ≡
M∑

i=1

einφi , (4)

where M is the number of particles. Unfortunately, flow
estimates from cumulants constructed in such a way were
systematically biased by the interference between various
harmonics. An improved cumulant method using the
formalism of generating functions suggested in Refs. [8] and
[9] fixed the problem of interfering harmonics while keeping
the number of operations still linear with multiplicity M . For
this approach the analytical calculations become rather tedious
and therefore the solutions are obtained using interpolation
formulas. Unfortunately this introduces numerical
uncertainties and requires tuning of interpolating parameters
for different values of the flow harmonics vn and multiplicity.
More recently a Lee-Yang Zero method (sum generating
function) [11–14] has been developed to suppress nonflow
contribution to all orders. Closely related to that are methods
of Fourier and Bessel transforms of the Q distributions [15],
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The generalized second-order cumulant which can also be
used for detectors with nonuniform acceptance is

cn{2} = 〈〈2〉〉 − Re{[〈〈cos nφ1〉〉 + i〈〈sin nφ1〉〉]
× [〈〈cos nφ2〉〉 − i〈〈sin nφ2〉〉]}

= 〈〈2〉〉 − 〈〈cos nφ1〉〉2 − 〈〈sin nφ1〉〉2, (19)

where for the last line we have used the fact that, for instance,
〈〈cos nφ1〉〉 and 〈〈cos nφ2〉〉 are the same quantities apart from
the trivial relabeling. Remarkably, only two additional terms
appear in Eq. (19), namely, 〈〈cos nφ1〉〉2 and 〈〈sin nφ1〉〉2,
which counterbalance the bias to 〈〈2〉〉 coming from very
general detector inefficiencies. Further details on treating the
acceptance effects, including formulas for the fourth-order
cumulant are provided in Appendix C.

IV. DIFFERENTIAL FLOW

Once the reference flow has been estimated with the help
of the formalism from the previous section, we proceed to the
calculation of differential flow. For that, all particles selected
for flow analysis are labeled as reference flow particle (RFP)
and/or particle of interest (POI). These labels are needed
because flow analysis is being performed in two steps. In the
first step one estimates the reference flow by using only the
RFPs, while in the second step we estimate the differential
flow of POIs with respect to the reference flow of the RFPs
obtained in the first step.

A. Reduced multiparticle azimuthal correlations

For reduced single-event average two- and four-particle
azimuthal correlations we use the following notations and
definitions:

〈2′〉 ≡ 〈ein(ψ1−φ2)〉

≡ 1
mpM − mq

mp∑

i=1

M∑

j=1

′ein(ψi−φj ), (20)

〈4′〉 ≡ 〈ein(ψ1+φ2−φ3−φ4)〉

≡ 1
(mpM − 3mq)(M − 1)(M − 2)

×
mp∑

i=1

M∑

j,k,l=1

′
ein(ψi+φj −φk−φl ), (21)

where mp is the total number of particles labeled as POI (some
of which might have been also labeled additionally as RFP),
mq is the total number of particles labeled both as RFP and
POI, M is the total number of particles labeled as RFP (some
of which might have been also labeled additionally as POI) in
the event, ψi is the azimuthal angle of the ith particle labeled as
POI and taken from the phase window of interest (taken even
if it was also additionally labeled as RFP), φj is the azimuthal
angle of the j th particle labeled as RFP (taken even if it was
also additionally labeled as POI). #′, as before, denotes the
sum with all indices taken different.

Finally, event averaged reduced two- and four-particle
correlations are given by

〈〈2′〉〉 ≡
∑

events(w〈2′〉)i〈2′〉i∑
events(w〈2′〉)i

, (22)

〈〈4′〉〉 ≡
∑

events(w〈4′〉)i〈4′〉i∑
events(w〈4′〉)i

. (23)

In our calculations we use event weights w〈2′〉 and w〈4′〉
defined as

w〈2′〉 ≡ mpM − mq, (24)

w〈4′〉 ≡ (mpM − 3mq)(M − 1)(M − 2). (25)

B. Differential cumulants

We derive equations for the differential cumulants with the
help of p and q vectors, the former built out of all POIs (mp in
total), and the second only from POI labeled also as RFP (mq

in total):

pn ≡
mp∑

i=1

einψi , (26)

qn ≡
mq∑

i=1

einψi . (27)

The q vector is introduced here in order to subtract effects of
autocorrelations. Using the p and q vectors, we have obtained
the following equations for the average reduced single- and
all-event two-particle correlations:

〈2′〉 = pnQ
∗
n − mq

mpM − mq

, (28)

〈〈2′〉〉 =
∑N

i=1(w〈2′〉)i〈2′〉i∑N
i=1(w〈2′〉)i

. (29)

For detectors with uniform azimuthal acceptance the
differential second-order cumulant is given by

dn{2} = 〈〈2′〉〉, (30)

where again we use notation from Ref. [8]. We present
equations for the case of detectors with nonuniform acceptance
in Appendix C.

Estimates of differential flow v′
n are being denoted as v′

n{2}
and are given by [8]

v′
n{2} = dn{2}√

cn{2}
. (31)

Below we present the corresponding formulas for reduced
four-particle correlations:

〈4′〉 = [pnQnQ
∗
nQ

∗
n − q2nQ

∗
nQ

∗
n − pnQnQ

∗
2n

− 2 · MpnQ
∗
n − 2 · mq |Qn|2 + 7 · qnQ

∗
n

−Qnq
∗
n + q2nQ

∗
2n + 2 · pnQ

∗
n + 2 · mqM

− 6 · mq]
/

[(mpM − 3mq)(M − 1)(M − 2)], (32)

〈〈4′〉〉 =
∑N

i=1(w〈4′〉)i〈4′〉i∑N
i=1(w〈4′〉)i

. (33)
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weights, which are used to minimize the effect of multiplicity
variations in the event sample on the estimates of two- and
four-particle correlations. In general, the optimal choice of
weights would be determined by the multiplicity dependence
of vn. The best approach might be to calculate the cumulants
at fixed M and then average over the entire event sample. In
our calculations, with vn independent of multiplicity, we use

W〈2〉 ≡ M(M − 1), (9)

W〈4〉 ≡ M(M − 1)(M − 2)(M − 3). (10)

The above choice for the event weights takes into account the
number of different two- and four-particle combinations in an
event with multiplicity M .

The general formalism of cumulants was introduced for
flow analysis by Ollitrault et al. [7–9]. We will use below
the notations from those papers. The second-order cumulant,
cn{2}, is simply an average of two-particle correlation defined
in Eq. (7):

cn{2} = 〈〈2〉〉. (11)

As was pointed out first in Ref. [8], the genuine four-particle
correlation (i.e., four-particle cumulant) is given by

cn{4} = 〈〈4〉〉 − 2 · 〈〈2〉〉2. (12)

Expressions (11) and (12) are applicable only for detec-
tors with uniform acceptance and will be generalized in
Appendix C to extend their applicability for detectors with
nonuniform acceptance.

Different order cumulants provide independent estimates
for the same reference harmonic vn. In particular [8],

vn{2} =
√

cn{2}, (13)

vn{4} = 4
√

−cn{4}, (14)

where the notation vn{2} is used to denote the reference flow
vn estimated from the second-order cumulant cn{2}, and vn{4}
stands for the reference flow vn estimated from the fourth-order
cumulant cn{4}.

III. REFERENCE FLOW

To obtain the second-order cumulant it suffices to separate
diagonal and off-diagonal terms in |Qn|2:

|Qn|2 =
M∑

i,j=1

ein(φi−φj ) = M +
∑

i,j

′ein(φi−φj ), (15)

which can be trivially solved to obtain 〈2〉:

〈2〉 =
|Qn|2 − M

M(M − 1)
. (16)

The event averaging is being performed via Eq. (7). The
resulting expression for 〈〈2〉〉 is than used to estimate the
second-order cumulant [see Eq. (11)], which in turn is used
to estimate the reference flow harmonic vn by making use of
Eq. (13).

To obtain the fourth-order cumulant we start with identify-
ing the four-particle correlations in the decomposition of |Qn|4

(for details, see Appendix A):

|Qn|4 = QnQnQ
∗
nQ

∗
n =

M∑

i,j,k,l=1

ein(φi+φj −φk−φl ). (17)

This sum contains terms corresponding to four distinct
combinations of the indices i, j , k, and l: (1) They are all
different (four-particle correlation), (2) three are different,
(3) two are different, or (4) they are all the same. Explicit
expressions for all the terms are given in Eq. (A6). Note
that the case of three different indices corresponds to the
so-called mixed harmonics three-particle correlations, in many
analyses of great interest by themselves [18,19]. Equations for
three-particle correlations are provided in Appendix A. Taking
everything into account, we obtain the following analytic result
for the single-event average four-particle correlation defined
in Eq. (6):

〈4〉 = |Qn|4 + |Q2n|2 − 2 · Re[Q2nQ
∗
nQ

∗
n]

M(M − 1)(M − 2)(M − 3)

−2
2(M − 2) · |Qn|2 − M(M − 3)
M(M − 1)(M − 2)(M − 3)

. (18)

The reason why the originally proposed cumulant analysis [7]
was biased lies in the fact that the terms consisting of Q
vectors evaluated in different harmonics (for instance, terms
|Q2n|2 and Re[Q2nQ

∗
nQ

∗
n]) have been neglected. As seen from

Eq. (18), such terms do appear in the analytic results and are
crucial in disentangling the interference between harmonics. In
particular, if a higher harmonic v2n is present, then |Qn|4 picks
up an additional contribution depending on that harmonic,
namely, v2

2nM(M − 1) + v2
nv2n2M(M − 1)(M − 2), which is

exactly canceled out with the contribution of harmonic v2n

to |Q2n|2 and Re[Q2nQ
∗
nQ

∗
n], which read Mv2

2n(M − 1) and
M(M − 1)(M − 2)v2

nv2n + M(M − 1)v2
2n, respectively.

The final, event-averaged four-particle azimuthal correla-
tion, 〈〈4〉〉, is then obtained by making use of Eqs. (8) and
(10). Using 〈〈4〉〉 and 〈〈2〉〉 one can calculate the fourth-order
cumulant from Eq. (12).

The reference flow is mainly used to calculate differential
flow. Therefore, one can optimize the calculation of reference
flow to minimize the uncertainties in the final results. This
is done by using different weights (e.g., particle transverse
momentum) in the definition of flow vectors used in reference
flow calculations. We provide all the equations necessary for
calculations with weights in Appendix B.

The equations so far are applicable for an analysis with a
detector with full uniform azimuthal coverage. In a nonideal
case one needs to take into account the acceptance corrections
[12,20]. Acceptance affects the cumulants in three ways:
(i) contributions from additional terms, e.g., proportional to
〈〈cos nφ〉〉 or 〈〈sin nφ〉〉, that for a detector with full uniform
azimuthal coverage are identical to zero, (ii) contributions from
other flow harmonics, and (iii) the cumulant might be rescaled,
which at the end can affect the final extracted flow values. We
refer to Refs. [12] and [20] for a more complete discussion of
acceptance effects. In practice, the most important correction
is the first one, for which we provide the full set of equations
for a two- and four-particle cumulant analysis.
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The generalized second-order cumulant which can also be
used for detectors with nonuniform acceptance is

cn{2} = 〈〈2〉〉 − Re{[〈〈cos nφ1〉〉 + i〈〈sin nφ1〉〉]
× [〈〈cos nφ2〉〉 − i〈〈sin nφ2〉〉]}

= 〈〈2〉〉 − 〈〈cos nφ1〉〉2 − 〈〈sin nφ1〉〉2, (19)

where for the last line we have used the fact that, for instance,
〈〈cos nφ1〉〉 and 〈〈cos nφ2〉〉 are the same quantities apart from
the trivial relabeling. Remarkably, only two additional terms
appear in Eq. (19), namely, 〈〈cos nφ1〉〉2 and 〈〈sin nφ1〉〉2,
which counterbalance the bias to 〈〈2〉〉 coming from very
general detector inefficiencies. Further details on treating the
acceptance effects, including formulas for the fourth-order
cumulant are provided in Appendix C.

IV. DIFFERENTIAL FLOW

Once the reference flow has been estimated with the help
of the formalism from the previous section, we proceed to the
calculation of differential flow. For that, all particles selected
for flow analysis are labeled as reference flow particle (RFP)
and/or particle of interest (POI). These labels are needed
because flow analysis is being performed in two steps. In the
first step one estimates the reference flow by using only the
RFPs, while in the second step we estimate the differential
flow of POIs with respect to the reference flow of the RFPs
obtained in the first step.

A. Reduced multiparticle azimuthal correlations

For reduced single-event average two- and four-particle
azimuthal correlations we use the following notations and
definitions:

〈2′〉 ≡ 〈ein(ψ1−φ2)〉

≡ 1
mpM − mq

mp∑

i=1

M∑

j=1

′ein(ψi−φj ), (20)

〈4′〉 ≡ 〈ein(ψ1+φ2−φ3−φ4)〉

≡ 1
(mpM − 3mq)(M − 1)(M − 2)

×
mp∑

i=1

M∑

j,k,l=1

′
ein(ψi+φj −φk−φl ), (21)

where mp is the total number of particles labeled as POI (some
of which might have been also labeled additionally as RFP),
mq is the total number of particles labeled both as RFP and
POI, M is the total number of particles labeled as RFP (some
of which might have been also labeled additionally as POI) in
the event, ψi is the azimuthal angle of the ith particle labeled as
POI and taken from the phase window of interest (taken even
if it was also additionally labeled as RFP), φj is the azimuthal
angle of the j th particle labeled as RFP (taken even if it was
also additionally labeled as POI). #′, as before, denotes the
sum with all indices taken different.

Finally, event averaged reduced two- and four-particle
correlations are given by

〈〈2′〉〉 ≡
∑

events(w〈2′〉)i〈2′〉i∑
events(w〈2′〉)i

, (22)

〈〈4′〉〉 ≡
∑

events(w〈4′〉)i〈4′〉i∑
events(w〈4′〉)i

. (23)

In our calculations we use event weights w〈2′〉 and w〈4′〉
defined as

w〈2′〉 ≡ mpM − mq, (24)

w〈4′〉 ≡ (mpM − 3mq)(M − 1)(M − 2). (25)

B. Differential cumulants

We derive equations for the differential cumulants with the
help of p and q vectors, the former built out of all POIs (mp in
total), and the second only from POI labeled also as RFP (mq

in total):

pn ≡
mp∑

i=1

einψi , (26)

qn ≡
mq∑

i=1

einψi . (27)

The q vector is introduced here in order to subtract effects of
autocorrelations. Using the p and q vectors, we have obtained
the following equations for the average reduced single- and
all-event two-particle correlations:

〈2′〉 = pnQ
∗
n − mq

mpM − mq

, (28)

〈〈2′〉〉 =
∑N

i=1(w〈2′〉)i〈2′〉i∑N
i=1(w〈2′〉)i

. (29)

For detectors with uniform azimuthal acceptance the
differential second-order cumulant is given by

dn{2} = 〈〈2′〉〉, (30)

where again we use notation from Ref. [8]. We present
equations for the case of detectors with nonuniform acceptance
in Appendix C.

Estimates of differential flow v′
n are being denoted as v′

n{2}
and are given by [8]

v′
n{2} = dn{2}√

cn{2}
. (31)

Below we present the corresponding formulas for reduced
four-particle correlations:

〈4′〉 = [pnQnQ
∗
nQ

∗
n − q2nQ

∗
nQ

∗
n − pnQnQ

∗
2n

− 2 · MpnQ
∗
n − 2 · mq |Qn|2 + 7 · qnQ

∗
n

−Qnq
∗
n + q2nQ

∗
2n + 2 · pnQ

∗
n + 2 · mqM

− 6 · mq]
/

[(mpM − 3mq)(M − 1)(M − 2)], (32)

〈〈4′〉〉 =
∑N

i=1(w〈4′〉)i〈4′〉i∑N
i=1(w〈4′〉)i

. (33)
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3. Cumulants: 

cn{2} = �2�
dn{2} = �2′�

Q-Cumulants method improvements: 
•  Need only one pass over tracks 
•  Comprehensive detector inefficiency corrections 
 A. Bilandzic, R. Snellings, and S. Voloshin, Phys. Rev. C 83, 044913 (2011) 

4. Flow estimation: 

Reference flow: 

Differential flow: 

vn{2} =�cn{2}
v′n{2} = dn{2}�

cn{2}
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Q-‐Cumulants	  Method	  

RP	   POI	  

Sub-event a 
(Qa, pa) 

Basic track cuts  
0.15 < pT < 2.0 GeV/c, -1 < η < -0.3  

π+/π- 
0 < η < 1 

Sub-event b 
(Qb, pb) 

Basic track cuts  
0.15 < pT < 2.0 GeV/c, 0.3 < η < 1 

π+/π- 

-1 < η < 0 

h2i = Qa
n ·Qb

n
⇤

MaMb

h20i = pan ·Qb
n
⇤

ma
pMb

v′n = dn{2}�
cn{2} =

�2′���2�
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•        and       : number of 
positive and negative 
particles 

•  observed A± 

 
•  Each bin has roughly the 

same number of events 
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•  π+/π- v2 integrated over 
0.15 < pT < 0.5 GeV/c 

 

•  bin mean  
       <observed A±> 

STAR Preliminary 
•  v2(π-) > v2 (π+) 
 

•  v2(π-) and v2 (π+) have opposite 
trend as a function of A± 

•  difference between v2(π-) and v2 
(π+) has a linear relationship with 
A± 

All of the furthers above are 
consistent with predictions made in 
Phys. Rev. Lett. 107, 052303 (2011) 
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•  Only statistical uncertainties 
are shown 	
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Slope	  vs.	  Centrality	  

•  Centrality-b relation comes from 	

      STAR Phys. Rev. C 79, 034909 (2009) 	
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•  Only statistical uncertainties 
are shown 	


•  The slope parameters have 
the same order of magnitude 
as theoretical prediction 
based on Chiral Magnetic 
Wave 	


•  Centrality dependency of 
slope parameter is different 
from prediction based on 
CMW	


Compare to the theoretical predictions based on 
Chiral Magnetic Wave (CMW), which are shown 
by solid lines. 
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Ø  The difference between v2(π-) and v2 (π+) shows a linear 
dependency on net charge asymmetry in Au + Au collisions 
at √sNN = 200 GeV, as predicted based on Chiral Magnetic 
Wave. 

 
Ø  Slope parameters have the same order of magnitude as 

predicted based on CMW, but the centrality dependency is 
different. 

 
Ø Outlook 

•  Systematic uncertainties 
•  Lower energies 
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