Measurements of femtoscopic correlations in high-energy heavy-ion collisions aim to unravel the space-time structure of the particle-emitting source (the quark-gluon-plasma). Recent results indicate, that the pion pair-source exhibits a power-law behavior, and can be described well by a Lévy distribution. In this study, Lévy fits were performed to the measured one-dimensional two-pion correlation functions in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. The three extracted source parameters are the Lévy scale parameter, R, which relates to the size of the source, the correlation strength parameter, λ, and the Lévy exponent, α, which characterizes the power-law tail of the source. In this poster, we report the current status of the analysis of the extracted Lévy source parameters, and present their dependence on average transverse mass, m_T, and on centrality.