Directed flow of identified hadrons in Au+Au collisions with the STAR experiment at RHIC

Kishora Nayak (for the STAR Collaboration)

Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China, k.nayak1234@gmail.com

Abstract. Rapidity-odd component of the directed flow (v_1) is considered to be sensitive to the early collision dynamics and the equation 2 of state (EoS) of the QCD matter formed in heavy-ion collisions. Hy-3 drodynamic models predict that the double sign change of v_1 slope at mid-rapidity (dv_1/dy) of net-baryon is a signature of the first-order phase 5 transition. The STAR experiment at RHIC shows that the collision en-6 ergy dependences of dv_1/dy of net-proton and net- Λ reach a minimum at 7 $\sqrt{s_{\rm NN}} = 14.5$ GeV, implying the possible softening of the EoS. We fur-8 ther explore such observations with new measurements. A comprehensive transverse momentum $(p_{\rm T})$ dependent v_1 measurement of identified light 10 hadrons $(\pi^+, \pi^-, K^+, K^-, p, \overline{p})$ enables us to test the constituent quark 11 number scaling and provides a better understanding of the coalescence 12 mechanism of particle production. In this proceeding, new results of $p_{\rm T}$ 13 and rapidity dependent v_1 for identified hadrons in Au+Au collisions at 14 $\sqrt{s_{\rm NN}} = 19.6, 27, \text{ and } 54.4 \text{ GeV}$ are presented. These results are com-15 pared to AMPT model calculations. 16

Keywords: Directed flow, QCD phase structure, Quark-gluon plasma

1 Introduction 18

c

17

The beam energy scan program of the STAR experiment at RHIC aims to un-19 derstand the QCD phase diagram of strongly interacting matter produced by 20 the ultra-relativistic heavy-ion collisions [1]. The first-order coefficient of Fourier 21 expansion of emitted particles in the momentum space is called directed flow 22 (v_1) . The rapidity-odd, $v_1(y) = -v_1(-y)$, component of the directed flow is a 23 sensitive probe of the bulk to study the collective phenomenon in the early stage 24 of the collisions dynamics. A first-order phase transition is predicted by various 25 transport and hydrodynamics models [2, 3]. The model calculations show a sign 26 change in the v_1 -slope (dv_1/dy) as function of beam energy for baryons. The 27 QCD lattice calculations also predict the first-order phase transition [4]. 28

The number of constituent quark (NCQ) of elliptic flow (v_2) of identified 29 hadrons in BES energies suggests that the flow is developed in the early stage of 30 collisions and also the hadrons are formed via quarks coalescence [5–7]. However, 31 at lower energies hadronic matter dominates. For the first time a comprehensive 32

2 K. Nayak

 $p_{\rm T}$ dependent study of identified hadrons directed flow at different energies are reported here. The rapidity dependence study in BES energies has been published by the STAR Collaboration [8].

³⁶ 2 Directed flow of identified hadrons

The $p_{\rm T}$ dependent v_1 of π^{\pm} , K^{\pm} , p and \bar{p} in the rapidity region 0.5 < |y| < 1 for 37 10-40% centrality in Au+Au collisions at $\sqrt{s_{\rm NN}} = 27$ GeV along with different 38 tunes of AMPT model calculations are shown in Fig. 1. For all the measured 39 hadrons (except proton), the v_1 values are found to be negative (anti-flow) for 40 $p_{\rm T}$ below 2.5 GeV/c (1.8 GeV/c for proton). The negative v_1 at low $p_{\rm T}$ region 41 suggests that the produced bulk matter and formed hadrons move opposite to 42 each other [9–12]. However, one can not rule out the effect of shadowing in the 43 low $p_{\rm T}$ region [13]. The AMPT calculations are also compared with the corre-44 sponding hadrons. The AMPT-Default configuration qualitatively well describes 45 the hadrons (π^{\pm}, K^+, p) formed by quarks (anti-quarks) contributed from both 46 transported and produced quarks [14]. The produced hadrons such as K^- , \overline{p} are 47 formed from the produced quark and anti-quark. These hadrons are qualitatively 48 well described by AMPT-SM with hadronic interaction time, $t_{\text{max}} = 0.4$ and 30 49 fm/c. 50

Fig. 1. v_1 as a function of p_T for π^{\pm} , K^{\pm} , p and \bar{p} in the rapidity region 0.5 < |y| < 1 for 10-40% centrality Au+Au collisions at $\sqrt{s_{\rm NN}} = 27$ GeV. The black, red and blue shaded bands represents AMPT-Default, AMPT-SM with hadronic interaction time $t_{max} = 0.4$ fm/c and 15 fm/c, respectively [15].

Figure 2 shows the v_1/n_q as a function of $(m_T - m_0)/n_q$ for π^+ , K^+ , p_{52} (upper row) and π^- , K^- , \bar{p} (lower row) in the rapidity 0.5 < |y| < 1 for 10-40%

⁵³ centrality in Au+Au collisions at $\sqrt{s_{\rm NN}} = 19.6$ (left panel), 27 (middle panel) ⁵⁴ and 54.4 (right panel) GeV. It is observed that NCQ scaling does not hold well ⁵⁵ for the particles (π^+ , K^+ and p) in all the measured energies. The magnitude ⁵⁶ of the violation also increases with decrease in energy as the transported quark ⁵⁷ contribution to the form hadrons increases. However, the NCQ scaling holds ⁵⁸ better for produced hadrons like K^- and \bar{p} as these are formed via coalescence ⁵⁹ for quarks and anti-quarks [16].

Fig. 2. v_1/n_q vs $(m_T - m_0)/n_q$ for π^+ , K^+ , p (upper row) and π^- , K^- , \bar{p} (lower row) in the rapidity 0.5 < |y| < 1 for 10-40% centrality in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$, 27 and 54.4 GeV in the left, middle and right column, respectively.

Figure 3 shows the centrality dependence of v_1/n_q as a function of $(m_T - m_0)/n_q$ for π^- , K^- , \overline{p} in 40-80% (left), 10-40% (middle) and 0-10% (right) panel in Au+Au collisions at $\sqrt{s_{\rm NN}} = 27$ GeV (upper row) and 54.4 GeV (lower row). The NCQ scaling holds better for produced hadrons such as K^- annd \overline{p} in all three centralities in the low- m_T region.

65 3 Conclusion

First comprehensive measurements of $p_{\rm T}$ dependence directed flow of identified 66 hadrons $(\pi^{\pm}, K^{\pm}, p \text{ and } \overline{p})$ in the rapidity region of 0.5 < |y| < 1.0 for various 67 collision centralities in Au+Au at $\sqrt{s_{\rm NN}} = 19.6, 27$ and 54.4 GeV are reported. 68 In the low- $p_{\rm T}$ region, anti-flow is observed in the measured rapidity region 0.5 69 $\langle |y| \rangle \langle 1$ for all hadrons in these energies. The NCQ scaling is observed for 70 71 produced hadrons $(K^- \text{ and } \overline{p})$ which suggests that coalescence is the dominant mechanism of particle formation for these hadrons. For other hadrons such as 72 π^{\pm}, K^{+} and p, the NCQ scaling is violated as they also receive contribution from 73

Fig. 3. $m_{\rm T}$ scaling for π^- , K^- , \overline{p} in 0.5 < |y| < 1 for 40-80% (left), 10-40% (middle) and 0-10% (right) centrality in Au+Au at 27 (upper row) and 54.4 (lower row) GeV.

⁷⁴ transported quarks along with the primary produced quarks. The contribution of

transported quarks increases with decrease in energy and hence deviation fromthe NCQ scaling increases.

77 4 Acknowledgments

78 This work is supported in part by the National Natural Science Foundation of

⁷⁹ China under Grants No. 11890711, National Key Research and Development

 $_{\tt 80}$ $\,$ Program of China under Grant No. 2020 YFE0202002 and China Postdoctoral

⁸¹ Science Foundation under Grant No. 2019M662681.

82 References

- 1. J. Adams et al. (STAR Collaboration); Nucl. Phys. A 757, 102 (2005).
- ⁸⁴ 2. H. Stöcker, Nucl. Phys. A 750, 121 (2005).
- 85 3. C. Zhang et al., Phys. Rev. C 97, 064913 (2018).
- ⁸⁶ 4. Z. Fodor and S. D. Katz, JHEP 0203, 014 (2002); JHEP 0404, 050 (2004).
- 5. L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 110, 142301 (2013).
- 88 6. L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, 062301 (2016).
- ⁸⁹ 7. S. Shi, Adv. High Energy Phys., 1987432 (2016).
- 90 8. L. Adamczyk et al. (STAR Collaboration): Phys. Rev. Lett. 120, 062301 (2018).
- 91 9. E. E. Zabrodin *et al.*, Phys. Rev. C 63, 034902 (2001).
- ⁹² 10. S. A. Voloshin, Nucl. Phys. A 638, 455-458 (1998).
- ⁹³ 11. L. V. Bravina *et al.*, Eur. Phys. J. A 52, 245 (2016).
- ⁹⁴ 12. S. A. Voloshin, Phys. Rev. C 55, R1630(R) (1997).
- ⁹⁵ 13. R. J. M. Snellings *et al.*, Phys. Rev. Lett. 84, 2803-2805 (2000).
- 96 14. J. C. Dunlop et al., Phys. Rev. C 84, 044914 (2011).
- 97 15. K. Nayak et al. Phys. Rev. C 100, 054903 (2019).
- 98 16. Md. Nasim and S. Singha, Phys. Rev. C 97, 064917 (2018).