Measurements of open heavy-flavor hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR experiment

Lukáš Kramárik, for the STAR collaboration
Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

30 July 2020

40th International Conference on High Energy Physics (ICHEP)
28 July – 6 August 2020
virtual conference

Acknowledgement
The work was also supported from European Regional Development Fund-Project “Center of Advanced Applied Science” No. CZ.02.1.01/0.0/0.0/16_019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.
Outline

• Motivation – probing quark-gluon plasma
• The Solenoid Tracker At RHIC
• Heavy flavor energy loss in Au+Au collisions
• Directed and elliptic flow of charm quarks in Au+Au collisions
• Hadronization of charm quarks in Au+Au collisions
Heavy-flavor quarks as a probe of quark-gluon plasma (QGP)

- QGP is hot and dense medium produced in **heavy-ion collisions**
- HF quarks possess **large masses**
 → they are produced primarily at the **early stages of nuclear collisions**
 → they experience the **whole evolution of the system including the QGP phase**
- HF hadrons allow to probe **the quark mass dependence of energy loss** in the QGP
- **Collective behavior** of heavy-flavor quarks
 → sensitive to the degree of thermalization in the QGP
 → constrain the heavy-flavor quark diffusion coefficient

Open charm hadrons are studied via hadronic decays:

- $D^+(c\bar{d}) \to K^-\pi^+\pi^+$, **branching ratio (BR) = (8.98 ± 0.28) %**
- $D^0(c\bar{u}) \to K^-\pi^+$, **$BR = (3.93 ± 0.04) %$**
- $D_s^+(c\bar{s}) \to \Phi\pi^+$, $\Phi \to K^-K^+$, **$BR = (2.27 ± 0.08) %$**
- $\Lambda_c^+(udc) \to K^-\pi^+p$, **$BR = (6.35 ± 0.33) %$**
The **Solenoid Tracker At RHIC**

- Situated at **Relativistic Heavy-Ion Collider at Brookhaven National Laboratory (BNL) in the USA**
- Designed to study the strongly interacting matter
- Excels in **tracking and identification of charged particles** at mid-rapidity with full azimuthal coverage
- Most of the subsystems are immersed in 0.5 T solenoidal magnetic field
The Solenoid Tracker At RHIC

Time Projection Chamber (TPC)
- Main tracking device; momentum determination
- Particle identification via specific energy loss dE/dx
Time Of Flight (TOF)

- Measures particle velocity β
- Improves particle identification in the momentum range of 0.6–3 GeV/c
The **Solenoid Tracker At RHIC**

Forward Meson Spectrometer
- $2.5 < \eta < 4$
- Event plane measurements for flow studies

Barrel ElectroMagnetic Calorimeter
- Trigger on and identify high transverse momentum (p_T) electrons
The Solenoid Tracker At RHIC

Heavy Flavor Tracker (HFT)
- Inner tracking system
- First application of MAPS in collider experiments
- Excellent DCA_{xy} and DCA_z resolution: $\sim 50 \, \mu m$ for kaons at $p_T = 750 \, \text{MeV}/c$
- Significantly improves the signal/background for open HF reconstruction

Energy loss in Au+Au collisions: D⁰

- Nuclear modification factor R_{AA}:

$$ R_{AA} = \frac{dN_{AA} / dp_T}{\langle T_{AA} \rangle d\sigma_{pp} / dp_T} $$

- Yields at high p_T are greatly suppressed in central collisions
- Suppression at high p_T decreases towards more peripheral collisions
- No significant centrality dependence for D⁰ suppression at low p_T
Energy loss in Au+Au collisions: D⁰

- Nuclear modification factor R_{AA}:

$$R_{AA} = \frac{dN_{AA}}{dpt} \frac{\langle T_{AA} \rangle d\sigma_{pp}}{dpt}$$

- Yields at high p_T are **greatly suppressed** in central collisions
- Suppression at high p_T decreases towards more peripheral collisions
- No significant centrality dependence for D⁰ suppression at low p_T

- D⁰ shows **similar suppression to light mesons** at high p_T
- D⁰ R_{AA} is **comparable to that from the LHC** measurements in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
- Models that include both collisional and radiative losses are consistent with data at $p_T > 3$ GeV/c

- Charm quarks lose significant amount of energy when traversing through the QGP

STAR

Energy loss in Au+Au collisions: D^0

- Nuclear modification factor R_{AA}:
 \[
 R_{AA} = \frac{dN_{AA}}{d\rho_T} \cdot \frac{1}{\langle T_{AA} \rangle} \cdot \frac{d\sigma_{pp}}{d\rho_T}
 \]

- Yields at high p_T are **greatly suppressed** in central collisions
- Suppression at high p_T decreases towards more peripheral collisions
- No significant centrality dependence for D^0 suppression at low p_T

- D^0 shows **similar suppression to light mesons** at high p_T
- D^0 R_{AA} is **comparable to that from the LHC** measurements in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
- Models that include both collisional and radiative losses are consistent with data at $p_T > 3$ GeV/c

- **Charm quarks lose significant amount of energy when traversing through the QGP**
- p_T-integrated D^0 cross-section is independent of centrality, and smaller than that in p+p collisions
Energy loss in Au+Au collisions: D±

- Similar level of suppression and centrality dependence for D± and D⁰ mesons
- D±/D⁰ yield ratios are compatible with PYTHIA
Energy loss in Au+Au collisions: heavy-flavor decayed electrons

- Measurement of electrons from **charm and beauty** hadron decays
- Extract charm and bottom decayed **electron fractions**
 - background from photonic electrons and hadrons
 → template fitting to Distance of Closest Approach (DCA) distribution (enabled thanks to HFT)

- Charm-decayed electrons show suppression at high-p_T of $R_{AA} \sim 0.4$
- Data consistent with DUKE model prediction
- Beauty-decayed electrons suppression is smaller than charm-decayed electrons with ≥ 3σ significance
 - **Evidence of mass dependence of energy loss**
\(\Lambda_c/D_0 \) yield ratio in Au+Au collisions

- Helps to understand charm quark hadronization
- \(\Lambda_c/D_0 \) is comparable with baryon-to-meson ratios for light and strange flavor hadrons
- Data can be used to constrain model calculations

- Increase towards more central collisions:
 - Similar to those for light and strange-flavor hadrons
 - Consistent with the Catania model calculation including both coalescence and fragmentation hadronization
D_s/D_0 yield ratio in Au+Au collisions

- D_s/D_0 yield ratio probes **strangeness enhancement** and **coalescence of charm** quarks with strange quarks in QGP

- Significantly larger than fragmentation baseline (PYTHIA p+p)
- No significant centrality dependence

- PYTHIA calculation consistent with ALICE p+p results at $\sqrt{s} = 7$ TeV
- STAR measurements at high p_T are consistent with ALICE Pb+Pb results at $\sqrt{s_{NN}} = 5.02$ TeV
D_s/D_0 yield ratio in Au+Au collisions

- D_s/D_0 yield ratio probes **strangeness enhancement and coalescence of charm** quarks with strange quarks in QGP

- Significantly larger than fragmentation baseline (PYTHIA $p+p$)
- No significant centrality dependence

- Catania model calculation with only coalescence hadronization describes data for $p_T > 4$ GeV/c
- Catania model calculation with both coalescence and fragmentation hadronization describes data for lower p_T
- **Tsinghua model with sequential coalescence hadronization** qualitatively describes data

- Enhancement of D_s meson in Au+Au collisions suggests that **charm quarks also participate in coalescence hadronization** in the QGP
The charm quark cross-section in \textbf{Au+Au collisions}, scaled by the number of binary nucleon-nucleon collisions, is consistent with that measured in \textbf{p+p collisions} within the uncertainties.

\begin{itemize}
 \item Redistributed of charm quarks among open-charm hadron species.
\end{itemize}
Fourier expansion of the particle yield with respect to the event plane:

\[
E \frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{dp_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos \left[n(\phi - \psi_{RP}) \right] \right)
\]

- Light flavor \(v_2 \) suggests hydrodynamic behavior of a strongly interacting matter

- \(p_T < 2 \text{ GeV/c} \): clear mass ordering of \(v_2 \)
- \(p_T > 2 \text{ GeV/c} \): \(D^0 v_2 \) consistent with light mesons

- \(D^0 v_2 \) follows number of constituent quarks scaling → suggesting that charm quarks flow with the QGP
Charm-decayed electrons

- Measured $D^0 \nu_2$ folded to decayed electron ν_2 with semi-leptonic decays simulated in EvtGen
- **Charm electron ν_2 consistent with folded $D^0 \nu_2$** and DUKE model

Beauty-decayed electrons

- First observation of **non-zero bottom electron ν_2**
 - TPC event plane measurement with full non-flow subtraction significant at 3.4σ
- Forward Meson Spectrometer ($2.5 < \eta < 4$) as event plane detector reduces non-flow to 0.5%
Comparison of HF decayed electron v_2 in Au+Au collisions at $\sqrt{s_{NN}} = 27, 54.4$ and 200 GeV

- Results in 54.4 GeV Au+Au collisions show v_2 comparable to that in 200 GeV
- Hint for lower v_2 in Au+Au collisions at 27 GeV than those at 54.4 and 200 GeV

- Comparable to light flavor meson v_2 at 54.4 GeV

- HF quarks interact strongly with the medium in 54.4 GeV Au+Au collisions
Charm quark directed flow ν_1

- Important to study **initial conditions** of heavy-ion collisions

- **Hydro models:**
 - ν_1 magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk

- **Initial electromagnetic field:**
 - opposite effects for c and \bar{c}
 - induce larger ν_1 for charm quarks than for light flavor quarks, due to the early production of charm quarks
Charm quark directed flow v_1

- Important to study **initial conditions** of heavy-ion collisions

- **Hydro models:**
 - v_1 magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk

- **Initial electromagnetic field:**
 - opposite effects for c and \bar{c}
 - induce larger v_1 for charm quarks than for light flavor quarks, due to the early production of charm quarks

- Measured $D^0 v_1$ slope is \sim5-20 times larger than that for kaons
- Tilted source models **predict the correct sign** of dv_1/dy, but the v_1 magnitudes are lower than data
 - **Help to constrain initial conditions**
Charm quark directed flow ν_1

- Important to study **initial conditions** of heavy-ion collisions
- **Hydro models:**
 - ν_1 magnitude depends on viscous drag on charm quarks and initial tilt of QGP bulk
- **Initial electromagnetic field:**
 - opposite effects for c and \bar{c}
 - induce larger ν_1 for charm quarks than for light flavor quarks, due to the early production of charm quarks
 - Measured $D^0\nu_1$ slope is \sim5-20 times larger than that for kaons
 - Tilted source models **predict the correct sign** of $d\nu_1/dy$, but the ν_1 magnitudes are lower than data
 → **Help to constrain initial conditions**
- ν_1 magnitude of **charm-decayed electrons is consistent with D^0 mesons**
Charm quark directed flow v_1

- c and \bar{c} v_1 magnitude probed by both charmed-decayed electrons and D^0 mesons
- Within the uncertainties, no splitting due to electromagnetic field

![Graph showing directed flow vs rapidity]
Conclusions

• D meson production is **strongly suppressed** in central Au+Au collisions compared to that in p+p collisions
 → strong charm-medium interactions
 → less suppression of beauty-decayed electrons compared to charm-decayed ones

• D^0 meson and charm-decayed electrons exhibit similar v_2 as light flavor in Au+Au collisions
 → charm quarks **have gained significant flow** in the QGP
 → charm quarks may have **achieved local thermal equilibrium**

• Directed **flow v_1 of D^0 is significantly larger** than that for light hadrons
 → constraints for the geometric and transport parameters of the hot QCD medium
 → observed no c and \bar{c} splitting due to electromagnetic field within uncertainties

• Charm quarks participate in **coalescence hadronization** in the QGP
 → Total per-NN charm quark cross section consistent with p+p, but **charm hadrochemistry significantly modified**
Thank you for your attention

STAR at ICHEP 2020:

• Measurements of J/ψ photoproduction in ultra-peripheral collisions at RHIC
 • Jaroslav Adam, 29 July 2020 (Wednesday), 19:18

• Overview of upsilon production studies performed with the STAR experiment
 • Leszek Kosarzewski, 30 July 2020 (Thursday), 09:12

• Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC
 • Rafal Sikora, 30 July 2020 (Thursday), 10:25

• Production of D$^+$ mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at the STAR experiment
 • Jan Vaněk (poster), 30 July 2020 (Thursday), 13:39

• Study of the central exclusive production of $\pi^+\pi^-$, K^+K^- and $p\bar{p}$ pairs in proton-proton collisions at $\sqrt{s_{NN}} = 510$ GeV with the STAR detector at RHIC
 • Tomáš Truhlář (poster), 31 July 2020 (Friday), 13:30

Acknowledgement

The work was supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.
BACKUP
D⁰ elliptic anisotropy compared to theory

![Graph showing anisotropy parameter, v₂, as a function of p_T (GeV/c)](graph.png)

- **SUBATECH**: pQCD + hard thermal loops
 H. Berrehrah et al., PRC 91 054902 (2015)

- **TAMU**: non-perturbative T-matrix approach
 M. Heet al, EPJ C (2016) 76: 107

- **Linearized Boltzmann Transport (LBT)**: Jet transport model extended to heavy quarks
 S. Cao et al., PRC 94 014909 (2016)

- **Duke**: transport properties tuned to LHC data
 S. Cao et al., PRC 92 024907 (2015)

- **Parton-Hadron-String Dynamics (PHSD)**:
 Effective potential of c-quarks
 H. Berrehrah et al., PRC 90 051901 (2014)

- **3D viscous hydro**: tuned to light hadrons

- **TAMU model with no charm quark diffusion and Duke model are inconsistent with data**

- **3D viscous hydro calculation agrees with data, suggesting that charm quarks may have achieved thermal equilibrium**

- **Charm quark diffusion coefficient:**
 \[(2πT)D_s ≈ 2 - 12 \]
Measurement of electrons from charm and beauty hadron decays

- Goal is to extract beauty and charm-decayed electron from the background of photonic electrons and hadrons
 → template fitting to Distance of Closest Approach (DCA) distribution (enabled thanks to HFT)