Study of low p_T non-photonic electron production in 200 GeV Au+Au collisions in STAR Experiment at RHIC

Kunsu OH (kunsuoh@gmail.com)

Kunsu OH for the STAR Collaboration Pusan National University

the 4th Asian Triangle Heavy Ion Conference November 16, 2012

Motivation

- STAR Experiment
- Status of NPE analysis in detail
 - Inclusive electrons

 - Reconstruction of photonic electrons background Partner finding efficiency
 - Inclusive / photonic electron ratio
- Summary and outlooks

Kunsu OH (kunsuoh@gmail.com)

Outline

Motivation

- Heavy Flavor in heavy-ion collisions Created mostly in initial parton-parton hard scatterings Study flavor dependence of parton energy loss machanisms. • Interaction with hot and dense *QCD* matter differently from that of light

 - quarks.

• Non-photonic electrons (NPE)

- Semileptonic channel have higher B.R. than the hadronic channels of open heavy flavor mesons.
- Easy for triggering.
- Does not suffer from large combinational background.

Inclusive electrons (after electron PID)

Non-photonic electrons(NPE)

 D^0 . D^{\pm} . B. Λ_c ...

ATHIC 2012 PUSAN

Photonic electrons(PE)

 $\gamma, \pi^0, \eta \dots$

Motivation

- Production of NPE suppressed at high p_T.
- measurements.

Kunsu OH (kunsuoh@gmail.com)

• Complementary to the measurement via hadronic decay channels. • Low p_T NPE measurement is important for total charm quark cross section

Kunsu OH (kunsuoh@gmail.com)

Kunsu OH (kunsuoh@gmail.com)

ATHIC 2012 PUSAN

5

Inclusive electrons

- Au+Au 200 GeV 0-80% VPDMinBais dataset : 217M events
 - electron found event : 37M events
- Inclusive electron identified by **TOF+TPC** $\rightarrow |1/\beta - 1| < 0.025$ cut
- After selecting very high purity hadrons from TOF information (mass²) and electron from e^+e^- pair mass cut, the $n\sigma_e$ shapes are used for the **fitting** to obtain yield.
- Inclusive electron purity estimation ~ 96% Kunsu OH (kunsuoh@gmail.com)

* $n\sigma_e$ is deviation of the dE/dx from Bichsel function

yes
yes
≤ 1.0
≥ 20
≥ 0.52
≥ 15
(-0.025, 0.025)
(-0.5, 0.5)
(0.2, 20)

Inclusive electrons

After selecting hadrons very high purity, the $n\sigma_e$ shape for hadrons are used for the fitting.

Kunsu OH (kunsuoh@gmail.com)

Inclusive electrons

After selecting hadrons very high purity, the $n\sigma_e$ shape for hadrons are used for the fitting.

Kunsu OH (kunsuoh@gmail.com)

purit

electron

cross-over p dEdx band

cross-over k dEdx band

e/all ~ 96.5%

Photonic background

- photonic electrons to inclusive electrons.
- - $\gamma \rightarrow e^+e^-$ photon conversion in the material in STAR detector.
 - ▶ $\pi^0 \rightarrow \gamma e^+ e^- (1.174 \pm 0.035)\%$

Kunsu OH (kunsuoh@gmail.com)

• We used the "reconstruction method" to statistically subtract the contribution of

• pair invariant mass < 0.15 GeV/ c^2 cut to obtain photonic electron yield

• Photonic electrons needed partner finding (photonic electrons reconstruction) efficiency.

Photonic background

1.3 < |φ| < 1.9 region has many conversions. Beam pipe and supporting structure make many photonic electrons.

Kunsu OH (kunsuoh@gmail.com)

Partner finding efficiency

collisions.

Kunsu OH (kunsuoh@gmail.com)

Partner finding efficiency is 15~50% in minimum-bias Au+Au

Kunsu OH (kunsuoh@gmail.com)

Raw NPE spectrum

Summary and Outlook

• Summary :

ion collisions is being studied.

• Outlook :

- Nuclear modification factor.

Kunsu OH (kunsuoh@gmail.com)

• Low pT non-photonic electron production in heavy-

• Obtain NPE invariant yield as a function of p_T. • Centrality dependence of NPE invariant yield. • Obtain NPE invariant yield in p+p collisions.

Thank you.

ATHIC 2012 PUSAN

12

Backup slides

Kunsu OH (kunsuoh@gmail.com)

ATHIC 2012 PUSAN

13

Photonic electrons cuts in detail

Kunsu OH (kunsuoh@gmail.com)

	Cuts	Tagged e	Global Partner 1	Global Partner 2	Global Partner 3	
	Primary track?	yes		no		
	TOF hits matched?	yes	no	yes	yes	
	ylocal	(-1.9, 1.9)	-	(-1.9, 1.9)	(-1.9, 1.9)	
	zlocal	(-3.2, 3.2)	-	(-3.2, 3.2)	(-3.2, 3.2)	
	global DCA [cm]	≤ 1.0	_	-	_	
	nFitPts [#]		≥ 2	20		
<u></u> 0.4 0.45 0.5	nFitPts/nMax		> 0.52			
	ndEdxFitPts [#]	≥20		-		
	p _T [GeV/c]	(0.2, 20)				
	pseudo-rapidity	-		(-1, 1)		
	rapidity	(-0.5, 0.5)		_		
	1/beta - 1	(-0.025, 0.025)	-	(-0.025, 0.025)	-	
	nSigE	(0, 2)		(0, 2)		
0.4 0.45 0.5	φ	(0, 1.3), (1.9, π)		-		
Illee						