

Searching for Muonic Atoms

Kefeng Xin / Rice University (for the STAR Collaboration)

Abstract

Hydrogen-like muonic atoms are Coulomb bound states of a muon and a hadron. In ultrarelativistic heavy -ion collisions, due to the produced high particle multiplicities, a produced muon can be directly bound to a charged hadron, and form an atom. With muon identification at low transverse momentum from the Time-of-Flight (TOF) detector, STAR provides an great opportunity to search for the muonic atoms with exotic cores, such as anti-matter or strange cores. This is also an ideal tool to measure the thermal emission from the Quark-Gluon Plasma (QGP) via a direct measurement of the single muon spectrum. Because only thermal muons or muons from resonance decays are capable to form atoms, the background muons from weak decay are cleanly excluded.

STAR Detector and Dataset

The data set used is $Vs_{NN} = 200 \text{GeV Au} + \text{Au}$ central events in Run 10. A total of 230 million events have been analyzed. The two main detectors for particle identification are the Time-**Projection Chamber** and the **Time-Of-Flight Detector**.

Two Particle Correlation

- \mathbf{k}^* the magnitude of the three-momentum of either \bullet particle in the pair rest frame.
- $C(k^*)$ the ratio of the k* distribution constructed with particles from the same event with the particles from mixed event

Correlation Functions (CFs) show the magnitude of Coulomb effect. The product of CFs at low k* from models (Blast-Wave and RQMD) show negative Coulomb residue (<1), while data (blue and black) show positive Coulomb residue.

Previous Measurements

To from atoms, two particles from a same atom must be close in phase-space ^[1]

$$\alpha = \frac{|\vec{p}_1 - \vec{p}_2|}{|\vec{p}_1 + \vec{p}_2|} = \frac{|m_1 \vec{v}_1 - m_2 \vec{v}_2|}{|m_1 \vec{v}_1 + m_2 \vec{v}_2|} = \frac{m_1 - m_2}{m_1 + m_2}$$

Pion-muon atoms have been observed in K_1^0 decay at BNL and Fermilab^{[3][4]}.

Particle Identification

Low transverse momentum muons are identified by first applying a tight TPC cut, $n\sigma_{muon}$ (-0.5,-3), and then applying the TOF cut

The corresponding kaons (p>0.70 GeV/c and p<1.17 GeV/c) and protons (p>1.33 GeV/c and p<2.22 GeV/c) are at TOF comfortable ranges. After $n\sigma_{kaon}$ and $n\sigma_{proton}$ (-2,2)

- Pions that are emitted closer to the center of the source, pions with a larger velocity will tend to catch up with kaons. The Coulomb correlation strength will be enhanced compared to the case where pions are slower than kaons. Hence, the correlation function C_+ will show a larger deviation from unity than C^[5]
- Muons and Kaons show $C+/C-\sim 1$ at low k*, meaning they are emitted at the same time and position, suggestive of atoms

Atom formation occurs well after freeze-out through particle coalescence. It is only sensitive to the particle distribution at freeze-out ^[1]

$$\frac{dN_{\text{atom}}}{dyd^2p_{\perp,\text{atom}}} = 8 \pi^2 \zeta(3) \alpha^3 m_{\text{red}}^2 \frac{dN_h}{dyd^2p_{\perp,h}} \frac{dN_l}{dyd^2p_{\perp,l}}.$$

Muonic atom yields estimation with muon momentum accessible to STAR, calculated with STAR acceptance and the formula^{[2][3]}:

Invariant Mass

Invariant mass background is studied with the two background subtraction methods

Same Event Like-Sign Method: Every muon is paired with every Kaon, if they have the same charge. The background is then corrected for acceptance difference between like-sign and unlike-sign pairs.

$$LSpncorr = \sqrt{LS_{++}LS_{--}} \frac{ME_{+-}}{\sqrt{ME_{++}ME_{--}}}$$

Mixed Event Unlike-Sign Method: Every muon is paired with Kaons from similar events, if they have opposite charges, to produce uncorrelated background.

- Coulomb effect exists in same event method, like-sign and unlike-sign

Summary and Outlook

- Invariant mass is studied for kaon-muon pairs.
- Kaon-pion correlation functions show coulomb residue is not completely removed.
- Muons and kaons that are close to each other in phase space are emitted at the same time, suggestive of atoms
- Run11 data will be analyzed to increase statistics
- More particle pairs will be studied. p-mu, pi-mu and their anti-matter pairs
- Alpha distributions will be studied

pt ranges for muonic atoms accessible to STAR^[3].

Atom	$\mu \ p_T \ ({\rm GeV/c})$	Hadron p_T	Atom p_T	dN/dy
$\mu - \pi$	[0.17, 0.3]	[0.22, 0.4]	[0.39, 0.7]	9×10^{-5}
$\mu - K$	[0.17, 0.3]	[0.8, 1.4]	[0.97, 1.7]	1×10^{-5}
$\mu - \overline{p}$	[0.17, 0.3]	[1.5, 2.7]	[1.7, 3.0]	4×10^{-6}
$\mu - \pi$	> 1.5	> 2	> 3.5	3×10^{-9}

With the large amount of thermal (anti-)hadrons and muons, RHIC is producing all six of the following (anti-)atoms

- Coulomb effect increase the phase space separation of likesign pairs, and reduce the separation of unlike-sign pairs, both giving larger and wider peak.
- Like-sign and Unlike-Sign have opposite Coulomb contributions, the product can cancel the major effect

 $(SEpn \times LSpncorr)/MEpn^{2}$

The mass peak width is much larger than simulation

References

- G. Baym et al., Phys. Rev. D 48 (1993) 9;
- . Kapusta, A.Mocsy, Phys. Rev. C 59 (1998) 2937;
- 2010 STAR Decadal Plan;
- 4. Coombes et al., Phys. Rev. Lett. 37(1976)249;
- M. Schwartz et al. Phys. Rev. Lett. 37(1976)249;
- 6. S.H. Aronson et al. Phys. Rev. Lett. 48(1982)1078;
- 7. J. Adams et al., Phys. Rev. Lett. 91(2003)072304.

* This work is supported by the US Department of Energy under grant DE-FG02-10ER41666