

Search for Muonic Atoms at RHIC

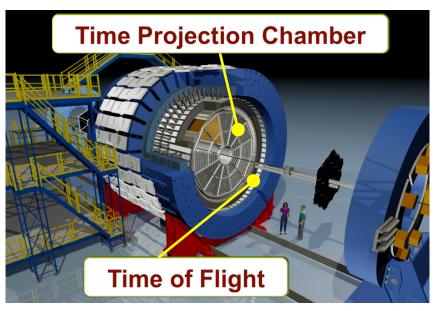
Kefeng Xin (for the STAR Collaboration)

Rice University

24-29 August 2014

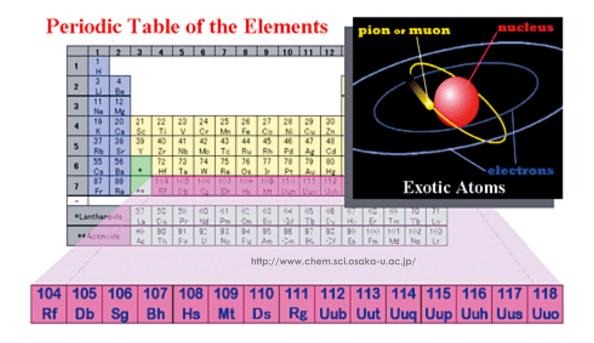
Outline

- ♦ Motivation
- ♦ Particle identification
- ♦ Invariant mass
 - Background determination
 - ♦ Coulomb rejection
 - ♦ Signal extraction
- Correlation functions
 - Coulomb revealing
 - ♦ Double ratio



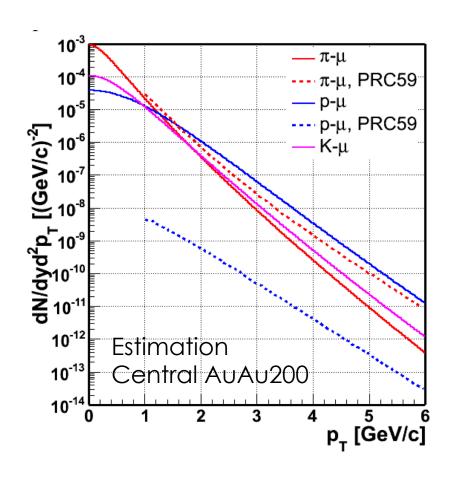
Motivation

Potential discovery of new atoms



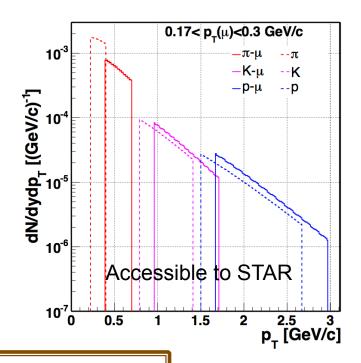
p+- μ -	K +- μ -	π^+ - μ^-
anti-p-μ+	K μ +	π μ+

Theory Estimations



Estimation based on:

$$\frac{dN_{\text{atom}}}{dyd^{2}p_{\perp,\text{atom}}} = 8 \pi^{2} \zeta(3) \alpha^{3} m_{\text{red}}^{2} \frac{dN_{h}}{dyd^{2}p_{\perp,h}} \frac{dN_{l}}{dyd^{2}p_{\perp,l}}.$$



In heavy-ion physics, this study provides a direct measurement of **early produced muon** emission, which is sensitive to the early stage of the collisions.

Kapusta&Mocsy PRC 59 2937 2010 STAR Decadal Plan

Muonic Atom Detection at STAR

1) Dissociation of the atoms before the detector

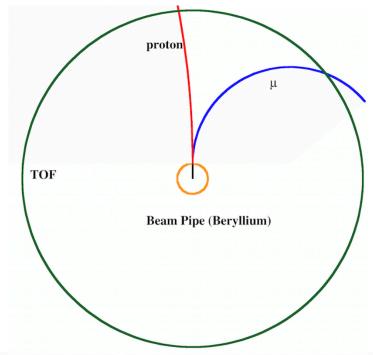
tracking at beryllium beam pipe

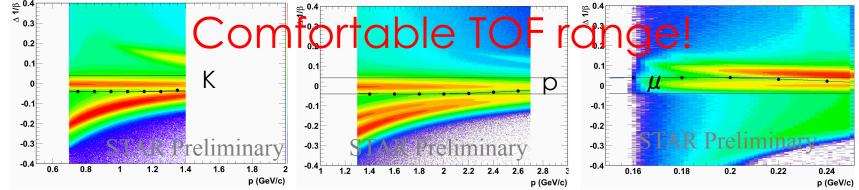
2) Particle Identification

STAR Run10 AuAu 200GeV 231M Central Triggered Events

Particle Momentum (GeV/c)

Atom	μ	Hadron
p-µ	0.15-0.25	1.3-2.2
K-µ	0.15-0.25	0.7-1.17





Foreground and Backgrounds

- Foreground method:
 - UnLike-sign (**UL**) foreground: tracks with the different charges are paired
- Background method:

0

- Mixed-Event (**ME**): tracks from different events are paired
- Like-Sign (**LS**): tracks with the same charge are paired

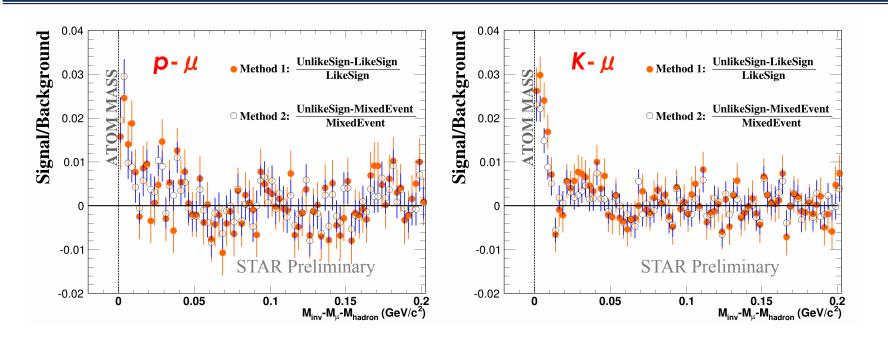
 $LS_{+-(corrected)} = \sqrt{LS_{++}LS_{--}} \frac{ME_{+-}}{\sqrt{ME_{+-}ME}}$ Acceptance correction: **32**20000 18000 16000 Like-Sign Background, Acceptance Corrected. **Mixed-Event Background** 14000 12000 10000 STAR Preliminary 8000 6000 4000 2000 0 0.02 0.08

0.06

 M_{inv} - M_{μ} - M_{hadron} (GeV/c²)

0.04

Invariant Mass



- ✓ Observed sharp peaks for atoms at expected mass M_{inv}-M_µ-M_h= 0 GeV/c² from both background subtraction methods
- ✓ Good background methods -- Flat at higher mass (0.05~0.2 GeV/c²)
- ✓ Like-Sign (LS) background has repulsive **Coulomb** contribution, and thus underestimates the background, leading to a higher "signal" than Mixed-Event (ME)

Invariant Mass

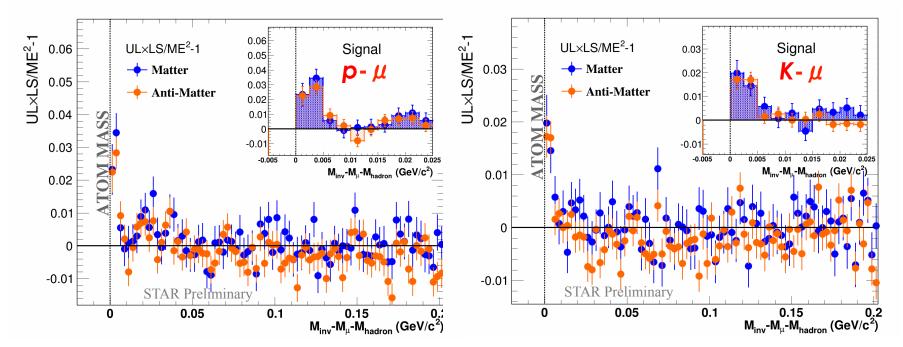
In pair invariant mass method:

UnLike-sign pairs have different charges -- attractive Coulomb

Like-Sign pairs have same charges -- repulsive Coulomb

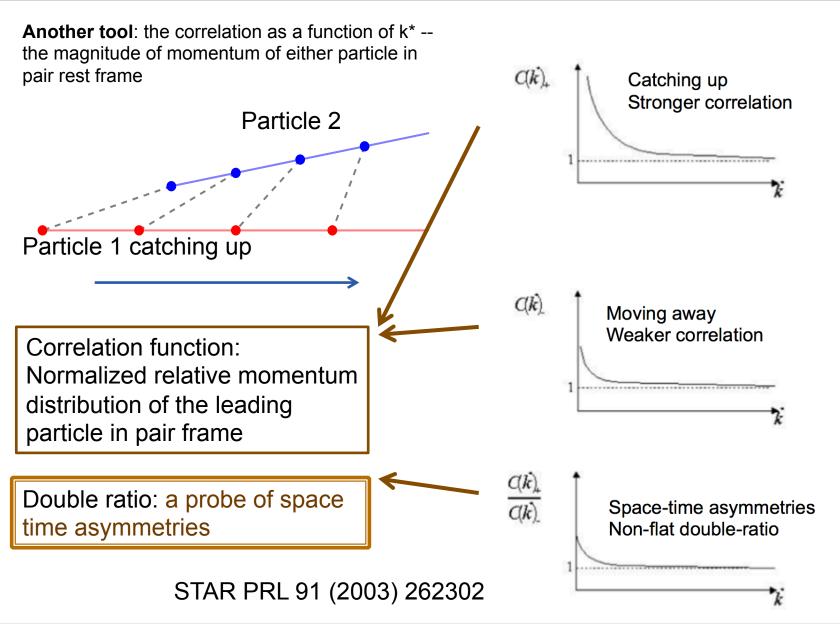
Mixed-Event pairs – no Coulomb

We adopt the observable $(UL \times LS) / ME^2 - 1$ to reject Coulomb

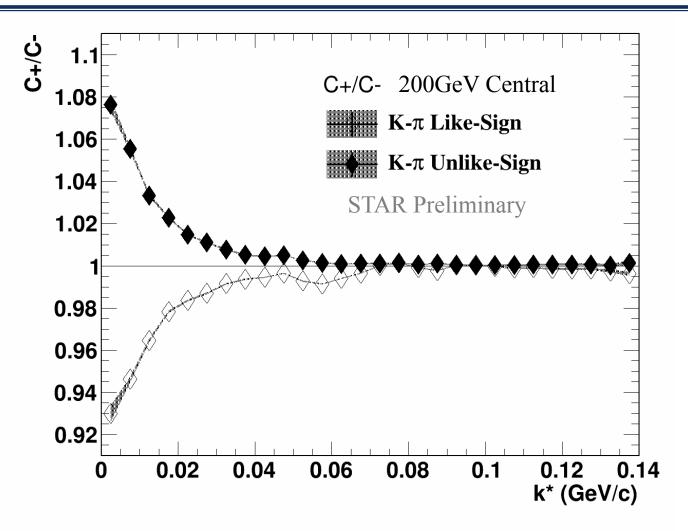


Sharp peaks observed at the signal region.

Correlation Functions



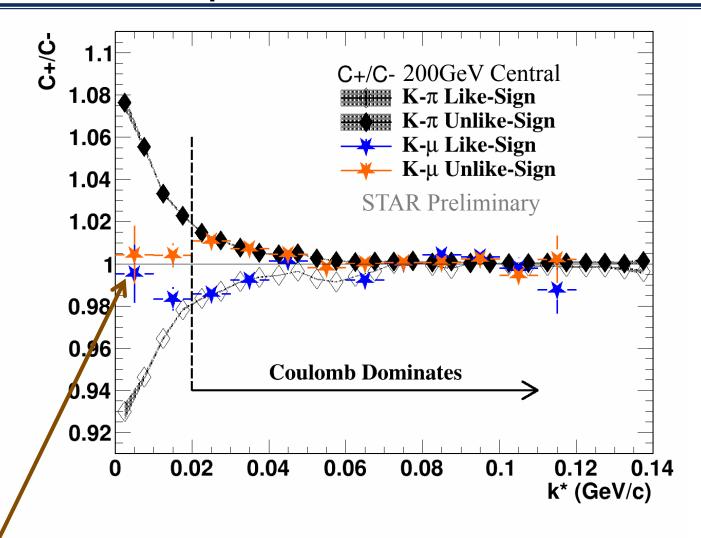
K-π Correlations



Take K-π system as a reference in which Coulomb dominates:

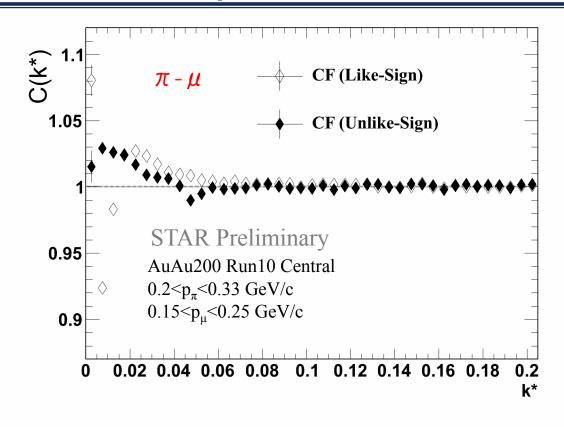
- Enhancement in Unlike-Sign
- Suppression in Like-Sign

K-µ Correlations



Signature of muonic atoms disassociation: two particles are **emitted at the same position and time**.

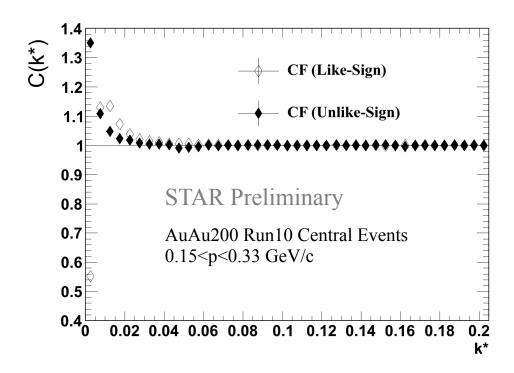
π-μ Correlations



If there are only final state coulomb interactions,

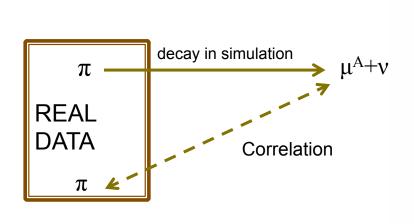
- Like-Sign CF should be <1, and increase monotonically approaching 1
- Unlike-Sign CF should be >1, and decrease monotonically approaching 1

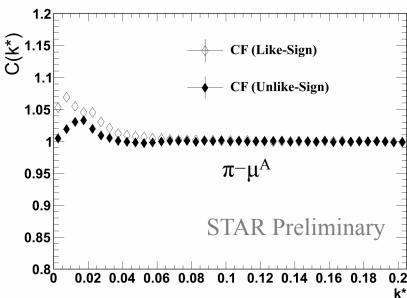
π-π Correlations



- ♦ In like-sign pairs, the correlations come from rejecting Coulomb force.
- ♦ In like-sign pairs, the correlations come from: [STAR PRC 83 064905 2011]
 - ♦ Bose-Einstein quantum statistics ↑
 - ♦ Coulomb final state interaction

π-μ^A Correlations



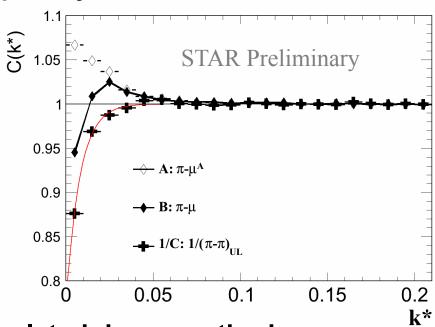


- 1) Use two pions from real data
- 2) Let one π decay to μ +v, based on energy momentum conservation only
 - 1) Let decay in π center-of-mass frame
 - 2) boost decay products using β_{π}
- 3) Calculate the correlation between the "artificial" muon (μ^A) and the other π

Three Correlation Functions

- □ A: π-μ^A weak-decay only
- B: π-μ_{measured} weak-decay & primary
- \Box C': π- $\mu_{primary}$ -- primary only

$$B = \alpha^*C' + \beta^*A$$
$$=> B = \alpha^*1/C + \beta^*A$$

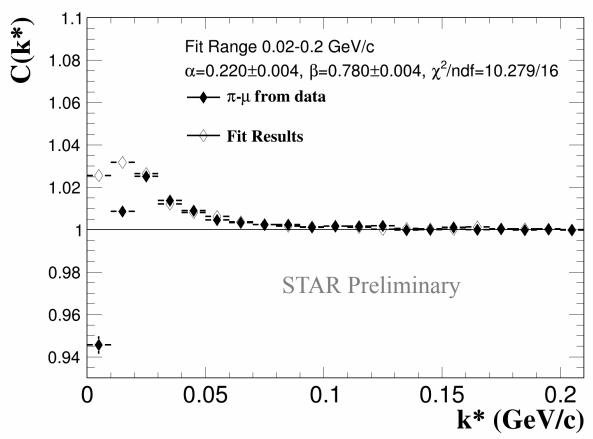


A can be determined by the simulated decay method

B can be measured directly from data

C' ~ $C(\pi-\pi)$ ~ $1/C(\pi-\pi)_{UL}$ to avoid quantum statistics contribution

Fitting Results



22.0±0.4% primary muons

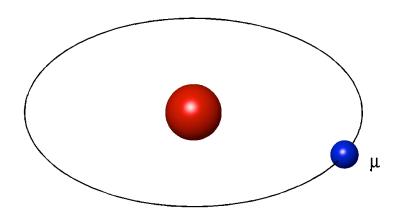
Very low k* is discarded because – when we simulate the decay π -> μ^A + ν , there are always missing pions, which can not be saved anyways due to track merging.

Summary

- ★ Invariant mass peaks at the expected atom masses have been observed
 - ★ The signal is robust after Coulomb effect is rejected
 - ★ The singal is consistent in all (anti-matter) pairs
- ★ Femtoscopic correlation studies are consistent with ionization of muonic atoms
 - ★ Correlation shows the existence of Coulomb force
 - ★ The double ratio indicates the daughter particles are emitted at the same space-time point – disassociated from muonic atoms
- ★ π-μ correlations are used to extract fraction of direct muons

BACKUP

What is a muonic atom



Hadron+muon Coulomb bound state

- □ Facts
 - Binding energy 0 keV
 - Bohr radius
 - $a_0*(m_e/m_red)$
 - =279 fm (p+mu)
 - =440fm (pi+mu)
 - Bohr velocity alpha*c/n

- What to expect

 - Atoms can only be at s state

□ Pp/mp=pmu/mmu

Femtoscopic Correlation

 Study small physics scale by using measured momentum from our detectors

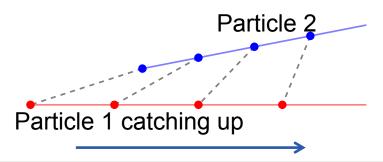
k* – the magnitude of the three-momentum of either particle in the pair rest frame.

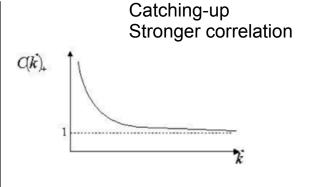
C(k*) – the ratio of the k* distribution constructed with particles from the same event with the particles from mixed event:

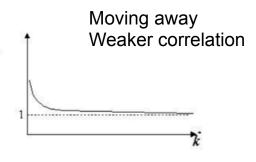
C(k*)=(k* in Same Event)/(k* in Different Event) = (correlated distribution)/(uncorrelated distribution)

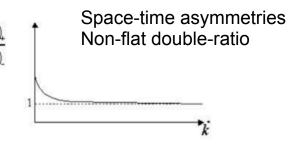
☐ For non-identical particles, correlation is used to probe **space-time asymmetries**

Pion-Kaon Correlations in Au+Au@130GeV

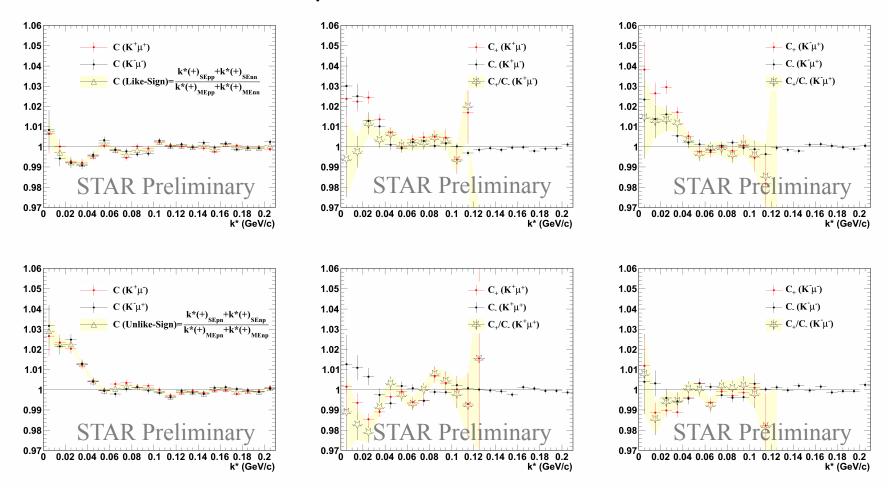






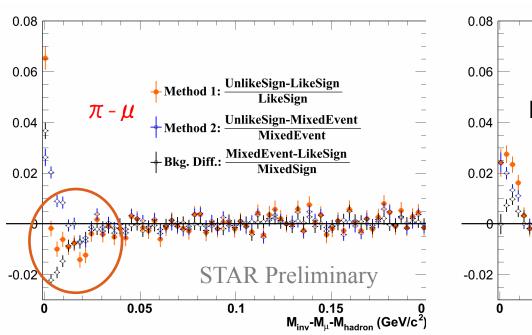


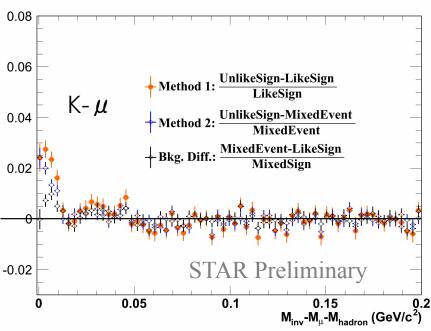
Correlation Functions for K-µ



- The Coulomb contributions are weaker washed out by long life time decays
- Differences between Like-Sign and Unlike-Sign at low k*

π-μ Invariant Mass

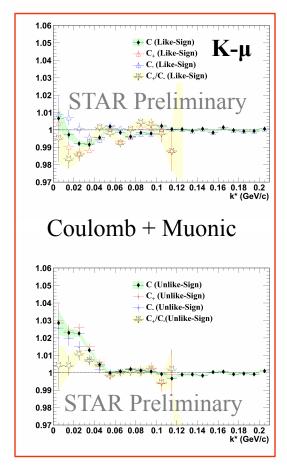


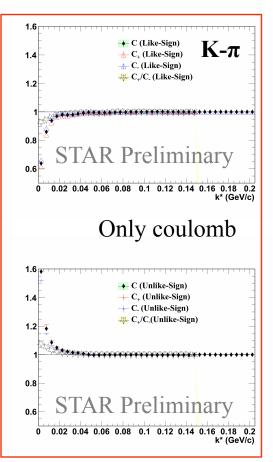


- Like-sign background method is larger than foreground
- Leads to negative region in S/B (red in circle)
- This is not consistent with K-μ, p-μ

Identical particle quantum statistics – attractive

Compare K-μ with K-π





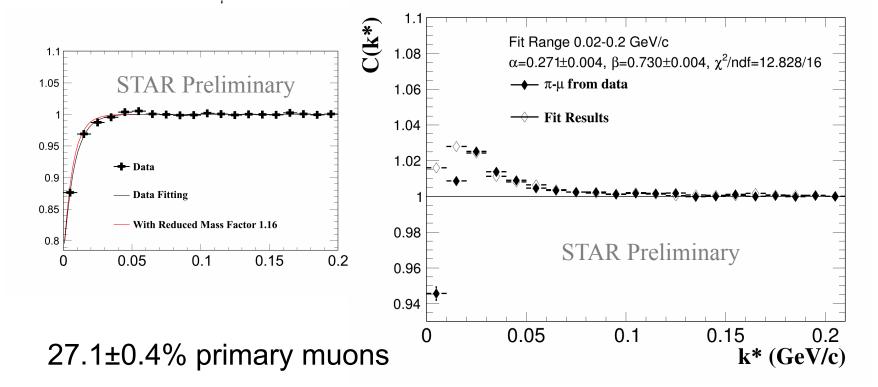
- □ In both K-μ with K-π, attractive **Coulomb** interaction is observed in UnLike-Sign; repulsive Coulomb is observed in Like-Sign.
- □ C+/C- ~ unity at k*~0 GeV/c: **no space-time asymmetry**, two particles are emitted at the same position and time. Agree with the **muonic atom ionization**

Fitting Results (Reduced Mass Factor)

The mass difference between π and μ produces different CFs.

Take into account of reduced mass factor (into k*, not CF)

$$\frac{M_{\pi\pi}^{red}}{M_{\pi u}^{red}} = 1.16$$



Fitting Method

Fit function includes parameter α, β, histogram A and 1/C

$$\beta*A+\alpha*1/C$$

Minimum Chi-Square Method

$$\chi^{2} = \sum_{i} \left[(\beta * A_{i} + \alpha * 1/C_{i} - B_{i})/\sigma_{i} \right]^{2}$$

$$\Rightarrow \begin{cases} \sum_{i} (\beta * A_{i} + \alpha * 1/C_{i} - B_{i})/\sigma_{i} * A_{i}/\sigma_{i} = 0 \\ \sum_{i} (\beta * A_{i} + \alpha * 1/C_{i} - B_{i})/\sigma_{i} * 1/C_{i}/\sigma_{i} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha = \frac{\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2}} \end{cases}$$

$$\Rightarrow \begin{cases} \beta = \frac{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2} - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right)} \end{cases}$$

Fitting Method

Fitting errors:

$$\begin{cases} \alpha = \frac{\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2}} \\ \beta = \frac{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{A_{i}B_{i}}{\sigma_{i}^{2}}\right) - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{B_{i}}{C_{i}\sigma_{i}^{2}}\right)}{\left(\sum_{i} \frac{A_{i}}{C_{i}\sigma_{i}^{2}}\right)^{2} - \left(\sum_{i} \frac{A_{i}^{2}}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{1}{C_{i}^{2}\sigma_{i}^{2}}\right)} \\ \delta\alpha = \sqrt{\sum_{i} \left(\frac{\partial\alpha}{\partial B_{i}}\delta B_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\alpha}{\partial A_{i}}\delta A_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\alpha}{\partial C_{i}}\delta C_{i}\right)^{2}} \\ \alpha = (B - \beta A)C \\ \frac{\partial\alpha}{\partial B_{i}} = C_{i} \\ \delta\beta = \sqrt{\sum_{i} \left(\frac{\partial\beta}{\partial B_{i}}\delta B_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\beta}{\partial A_{i}}\delta A_{i}\right)^{2} + \sum_{i} \left(\frac{\partial\beta}{\partial C_{i}}\delta C_{i}\right)^{2}} \\ \beta = \frac{B - \alpha/c}{A} \\ \frac{\partial\beta}{\partial B_{i}} = 1/A_{i} \end{cases}$$