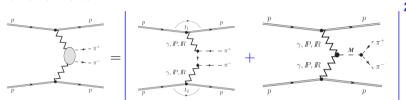
Central Exclusive Production with the STAR detector at RHIC

J. High Energ. Phys. 2020, 178 (2020), arXiv:2004.11078 [hep-ex] : \sqrt{s} = 200 GeV Preliminary results : \sqrt{s} = 510 GeV


Leszek Adamczyk

AGH - UST Cracow For the STAR Collaboration

Motivation

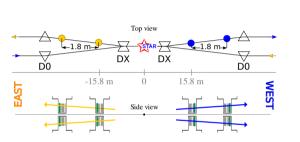
- Exclusive h^+h^- production the simplest four(three) body QCD process: $p+p \to p+M(h^+h^-)+p$.
- Experimentally simple: final state containing two forward protons and two charged hadrons.
- Prediction complex: photon, pomeron or reggeon exchanges producing direct h^+h^- pair or resonance $M = f_0(500), \rho, f_0(980), f_2(1270), f_0(1500), ...$ Interference effects might be significant.

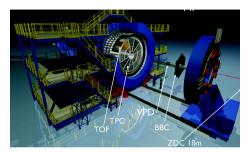
- Significant rescattering effects:
 - cross section reduced by additional interaction between the protons (and/or hadron-proton) embedded in so-called Survival Factor (SF).
 The SF depends on the collision energy. Suppression can be even by a factor of 5 at RHIC energies and a factor of 10 at LHC energies,
 - additionally cross section redistributed by Final State Interactions between directly produced hadrons.
- With protons measured in Roman Pots:
 - photoproduction processes suppressed ($-t \ll 0$),
 - direct proof of exclusivity.
- At high energy the reaction is dominated by Double Pomeron Exchange (DPE).
- DPE processes favorable place to look for hadronic production of glueballs.

Theoretical predictions

Two models based on Regge theory for direct pion/kaon pair production with parameters of the Pomeron and sub-leading Reggeon exchanges were adjusted to describe the total and elastic πp or Kp scatterings and implemented in the form of MC generator:

- L.A. Harland-Lang et al.
 - The phenomenology of CEP at hadron collider Eur.Phys.J. C72 (2012) 2110, implemented in DiMe generator with dynamical treatment of absorption effects.
- P. Lebiedowicz and A. Szczurek
 - Exclusive $pp \to pp\pi\pi$ from the threshold to LHC , Phys. Rev. D81(2010)036003 implemented in GenEx generator without absorptive corrections.


and resonant contributions (not implemented in GenEx generator):


- P. Lebiedowicz, O. Nachtmann and A. Szczurek
 - $\pi^+\pi^-$: Phys.Rev. D93 (2016) 054015.
 - K+K-: Phys. Rev. D 98 (2018) 014001.
 - pp̄: Phys. Rev. D 97 (2018).
- Above continuum models were implemented also in GRANIITTI (M. Mieskolainen, arXiv:1910.06300) generator including production of several resonances $f_0(500)$, $f_0(980)$, $f_2(1270)$, $f_0(1500)$, $f_2(1525)$, $f_0(1710)$ and interferences between all possible decay channels. Some resonance couplings were tuned to STAR results at $\sqrt{s} = 200 \text{ GeV}$
- Continuum is also generated in Pythia8, with MBR model (R. Ciesielski, K. Goulianos, arXiv:1205.1446) tuned to CDF data on inclusive Central Diffraction (CD).
- Predictions from DiMe, GenEx and Pythia8 are compared with the STAR results at $\sqrt{s} = 200 \text{ GeV}$

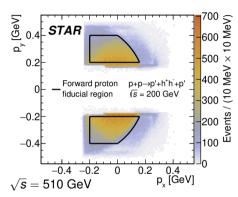
Predictions from GRANIITTI are compared with the STAR results at $\sqrt{s} = 510 \text{ GeV}$

Experimental setup

Data samples: $\mathcal{L}=$ 14.2 pb⁻¹, $\mu=$ 0.2 - 0.9 taken in proton-proton collisions at $\sqrt{s}=$ 200 GeV in 2015 year. 10 times larger luminosity with slightly higher μ at $\sqrt{s}=$ 510 GeV

- Intact forward protons are scattered through a small angle of typically 2 5 mrad. Protons are measured in the Roman Pot (RP) detectors at 16 m from the IP, the RP were placed at 35 mm from the beam in standard RHIC run of $\beta^* = 10$ m optics.
- Central charged particles with $p_T > 0.2$ GeV and $|\eta| < 1.0$ are measured in Time Projection Chamber (TPC) allowing determination of the primary vertex position and Particle Identification (PID) through dE/dx measurement.
- Central charged particles are measured in Time of Flight (ToF) detector allowing: triggering, in-time TPC tracks selection and PID.
- Trigger: Coincidence of the signal in RP with TOF activity and veto on inner part of Beam-Beam Counter (BBC). Inner part of BBC covers pseudorapidity range of 3.3 < |n| < 5.2.

Event selection and definition of the fiducial region


$$\sqrt{s} = 200 \text{ GeV}$$

- Two opposite-charge particles in TPC of $p_T>0.2$ GeV, $|\eta|<0.7$, both matched with TOF hits.
- Two forward-scattered proton tracks in RP, one on each side of the interaction region, each of transverse momentum satisfying
 (n → 0.3 GeV)² + n² < 0.25 GeV²

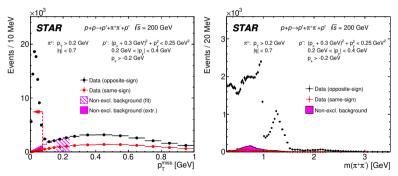
$$(p_x + 0.3 \,\text{GeV})^2 + p_y^2 < 0.25 \,\text{GeV}^2$$

0.2 GeV $< |p_y| < 0.4 \,\text{GeV}, \;\; p_x > -0.2 \,\text{GeV}.$

- Transverse momentum balance: $p_T^{\text{miss}}(p' + h^+h^- + p') < 75 \text{ MeV}.$
- Veto on particles in the region 2.1 < $|\eta|$ < 5.0 covered by BBC.
- PID cuts to separate central state $\pi^+\pi^-$, K^+K^- and $p\bar{p}$ using dE/dx and ToF.
- Additional cuts after identification:

$$K^+K^-$$
: $p_{\rm T} > 0.3~{\rm GeV}$
 $min(p_T^+,p_T^-) < 0.7~{\rm GeV},$
 $p\bar{\rm p}$: $p_{\rm T} > 0.4~{\rm GeV}$
 $min(p_T^+,p_T^-) < 1.1~{\rm GeV}.$

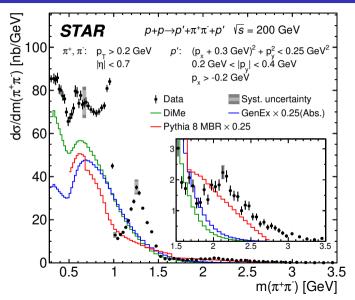
- 2.5 larger proton energy moves RP geometrical acceptance towards larger proton momenta.
- $(p_x + 0.6 \,\text{GeV})^2 + p_y^2 < 1.25 \,\text{GeV}^2$ 0.4 $\,\text{GeV} < |p_y| < 0.8 \,\text{GeV}, \ p_x > -0.27 \,\text{GeV}.$


 $\sqrt{s} = 510$ GeV sample probes larger values of -t and larger p_T of the central state.

Non-exclusive background (data-driven method): $\sqrt{s} = 200 \text{ GeV}$

Origin of the non-exclusive background to exclusive $p + p \rightarrow p' + h^+h^- + p'$:

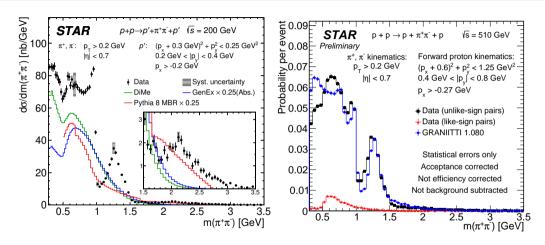
- Inclusive CD with more than two charged hadrons, mainly $p + p \rightarrow p' + h^+h^- + n(h^+h^-) + p'$.
- Inclusive CD with two charged hadrons + neutrals, mainly $p + p \rightarrow p' + h^+h^- + nh^0 + p'$.
- Accidental overlap: elastic (p', p') + non-elastic (h^+h^-) , beam-halo (p') + SD $(h^+h^- + p')$.


All sources lead to much flatter p_{T}^{miss} distribution. Bkg. estimated based on the extrapolation into the signal region of the second-degree polynomial function fitted to the signal-free region. Done differentially in all observables.

On average, non-excl. bkg. amounts to <6% for $\pi^+\pi^-$ and K^+K^- and < 12% for $p\bar{p}$. Preliminary $\sqrt{s}=510$ GeV results not corrected for background.

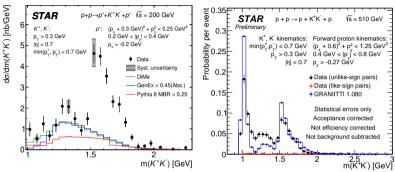
Leszek Adamczyk

Invariant mass of exclusively produced $\pi^+\pi^-$: $\sqrt{s}=200~{\rm GeV}$



Syst. unc. are shown only for a few selected bins because they are strongly correlated between bins (affect mainly normalization). Four times better precision of the cross section(normalization) compared to previous DPE measurement with forward proton tagging.

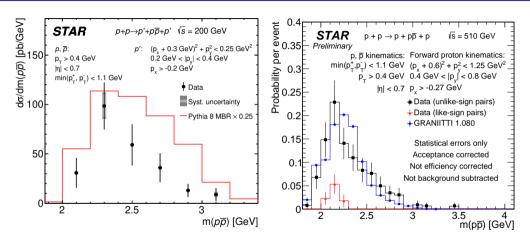
- The structure ('hole') in cross section below 0.6 GeV is caused by the fiducial cuts (acceptance).
- Peak at 1 GeV followed by sharp drop of the cross section consistent with $f_0(980)$, peak between 1-1.5 GeV consistent with $f_2(1270)$ both expected in DPE.
- Another resonance is observed at 2.2 GeV.
- DiMe describes the continuum best (shape and normalization)



Invariant mass of exclusively produced $\pi^+\pi^-$

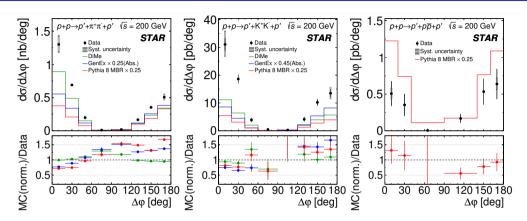
- Ratio $f_2(1270)/f_0(980)$ significantly smaller at $\sqrt{s} = 510$ GeV compared to $\sqrt{s} = 200$ GeV
- ullet Peak around 0.6 GeV at $\sqrt{s}=510$ GeV possible due to the unsubtracted background.
- GRANIITTI tuned to $\sqrt{s} = 200$ GeV data fairly good predicts shape at $\sqrt{s} = 510$ GeV.

Invariant mass of exclusively produced K^+K^-

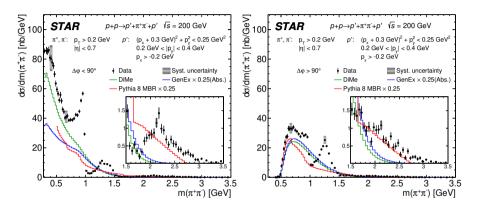

- $d\sigma/dm(K^+K^-)$ shows significant enhancement in the $f_2'(1525)$ mass region and smaller resonant signals in the mass regions of $f_2(1270)$ and $f_0(1710)$.
 - The ratio of the cross sections for $\pi^+\pi^-$ to K^+K^- production in the $f_2(1270)$ mass region is roughly 18, consistent with the PDG ratio of the $f_2(1270)$ branching fractions for its decays into $\pi^+\pi^-$ and K^+K^- .
 - DiMe and GenEx roughly describe the non-resonant contribution to the data.
- Peak above K^+K^- mass threshold not visible at $\sqrt{s} = 200 \text{ GeV}$
 - Production of f₀(980) close to the K⁺K⁻ mass threshold supported by high acceptance for large p_T f₀(980) production at √s = 510 GeV but φ(1020) not excluded. More studies have to be done.
 - GRANIITTI fairly good predicts shape at $\sqrt{s} = 510$ GeV.

• $\sqrt{s} = 200 \text{ GeV}$

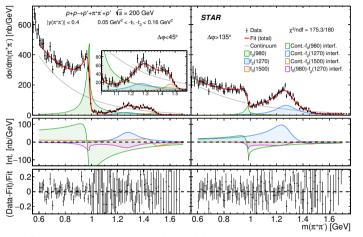
• $\sqrt{s} = 510 \text{ GeV}$


Invariant mass of exclusively produced $p\bar{p}$

- The invariant mass spectrum of $p\bar{p}$ pairs does not show any obvious resonance peaks
- MBR PYTHIA8 model overestimates the $d\sigma/dm(p\bar{p})$ by a factor of 8 at $\sqrt{s}=200$ GeV
- GRANIITTI fairly good predicts shape at $\sqrt{s} = 510$ GeV.


Angular separation of forward protons in the transverse plane $(\Delta \phi)$

- Suppression of $d\sigma/dm(\Delta\phi)$ close to 90° is due to fiducial cuts (acceptance).
- Significant asymmetry observed in cross section depending on the $\Delta\phi$ for $\pi^+\pi^-$ and K^+K^- .
- Distribution sensitive to the absorption effects. DiMe model predictions agree in shape with data for $\pi^+\pi^-$ and K^+K^- .
- GenEx does not describe the data.
- MBR model describes the data fairly well in shape for $p\bar{p}$.


Invariant mass of exclusively produced $\pi^+\pi^-$ in bins of $\Delta\phi$

- Suppression of the cross section at $m(\pi^+\pi^-) < 0.6$ GeV for the $\Delta \phi > 90^\circ$ range is due to the fiducial cuts.
- In the $\Delta \varphi < 90^\circ$ range, the peak around the $f_2(1270)$ resonance in data is significantly suppressed, while the peak at $f_0(980)$ and resonances in the regions 1.3 1.5 GeV and 2.2 2.3 GeV, are enhanced compared to the $\Delta \varphi > 90^\circ$ range.
- In the $\Delta \varphi < 90^{\circ}$, the DiMe describes better normalisation and shape of the mass spectrum at $m(\pi^{+}\pi^{-}) < 0.5$ GeV.
- Preliminary results at $\sqrt{s} = 510$ GeV show consistency with $\sqrt{s} = 200$ GeV results

Extrapolated invariant mass cross section for $\pi^+\pi^-$

- Fiducial $d\sigma/dm(\pi^+\pi^-)$ have been extrapolated to $|y(\pi^+\pi^-)| < 0.4$, 0.05 < -t1, -t2 < 0.16 GeV², $\Delta \phi < 45^\circ$ and $\Delta \phi > 135^\circ$.
- Minimal model of continuum with coherently added three resonances (all parameters free except the mass and width of $f_2(1270)$) fitted simultaneously in two $\Delta\phi$ regions (amplitudes independent) in the mass range 0.6 < m < 1.7 GeV.

- Data very well described by the model, parameters of resonances consistent with $f_0(980)$ and $f_0(1500)$.
- Potential presence of an additional moderately narrow state around 1.37 GeV.
- Significant asymmetry of resonances production depending on $\Delta \phi$ was observed.

Summary

- Measurements of the Central Exclusive Production of charged hadron pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV and $\sqrt{s} = 510$ GeV by the STAR experiment at RHIC have been presented.
- High-purity samples of exclusively produced $\pi^+\pi^-$, K^+K^- and $p\bar{p}$ pairs were selected and the differential fiducial cross sections were calculated.
- Cross sections were compared with existing models of continuum production implemented in the MC generators.
- The uncertainty of the absolute normalization of the STAR measurement is a factor of four better compared to measurements at the ISR, giving much stronger constraints for phenomenological models.
- Structures observed in the measured mass spectra are consistent with resonances: $f_0(980), f_2(1270), f_0(1500), f_0'(1525)$. A resonance is also observed for $\pi^+\pi^-$ around $m(\pi^+\pi^-)$ 2.2 GeV.
- Measurement of forward protons provides insight to relations between the central state observables and forward-scattered protons' kinematics.
- Preliminary STAR results at $\sqrt{s} = 500$ GeV show interesting features, like the peak at about 1 GeV in K^+K^- .
- GRANIITTI , was compared to the data at $\sqrt{s} = 500$ GeV giving promising results.

Supported in part by the National Science Centre of Poland under grant UMO-2018/30/M/ST2/00395