# Hypernuclei Production in Heavy-Ion Collisions (at finite baryon density)

Yue Hang Leung for the STAR collaboration University of Heidelberg 20<sup>th</sup> May, 2023





**CPOD 2024** 

### Outline

- Introduction
- ${}^{3}_{\Lambda}$ H Yields and Particle Ratios
- Other Observables
  - ${}^{4}_{\Lambda}$  H Yields
  - Collective Flow
- Summary
- Outlook





•Hypernuclei yields have been suggested to be sensitive to the **onset of deconfinement** 

• 
$$S_3 = \frac{{}_{\Lambda}^3 H}{{}_{3}He \times \frac{\Lambda}{p}}$$
 may be enhanced in

systems involving partonic interactions

Phys. Lett. B 684 (2010) 224

• Baryon clustering near critical point may lead to <u>enhancement</u> of light nuclei ( $A \ge 3$ ) yields

Phys. Rev. C 101 (2020) 034914

### What can hypernuclei production in heavy-ion collisions tell us about the **<u>QCD phase diagram</u>**?



2



density matter?

• Hyperon Puzzle: difficulty to reconcile the measured masses of neutron stars with the presence of hyperons in their interiors



• Density dependent YN, YNN interactions are essential for solving the hyperon puzzle

#### What is the role of **hyperon-nucleon (YN) interaction** in the equation-of-state of high baryon

constrain the in-medium Y-N interaction?

T. Gaitanos, Nucl. Phys. A 914 (2013) 405



How and when are light nuclei formed in heavy ion collisions?

•Need a solid understanding in hypernuclei production mechanisms before we can use them as **probes for** medium properties

### What have we Learnt from Light Nuclei Production?



STAR, Phys. Rev. Lett. 130 (2023) 202301

•d/p is fairly well described by <u>thermal</u> model, but t/p is overestimated

**Recent data poses challenges for nuclei production models** 

•<sup>4</sup>He/p is well described by thermal model, but underestimated by various implementations of <u>coalescence formation</u>





# Hypertriton $\binom{3}{\Lambda}H$ and Hyperhydrogen-4 $\binom{4}{\Lambda}H$



### **Λ binding energy**

### **Excited states**

• Due to its very small binding energy,  ${}^{3}_{\Lambda}$ H production provides unique input for nuclei production models 6



# •BES-I (2009-2011)

- Au+Au collisions  $\sqrt{s_{NN}} = 7.7-62 \text{ GeV}$
- •Main objectives:
  - Search for onset of deconfinement
  - Search for critical end point
- •BES-II (2018-2021)
  - High statistics Au+Au collisions  $\sqrt{s_{\rm NN}} = 3-54.4 \, {\rm GeV}$
  - Fixed target (FXT) collisions extend energy reach down to  $\sqrt{s_{\rm NN}} = 3 \,{\rm GeV}$ 
    - Search for possible formation and investigate properties of dense baryonic matter





# <sup>3</sup><sub>A</sub>H Excitation function

![](_page_8_Figure_1.jpeg)

```
2.76TeV
```

• Steep increase from 27 to 4 GeV • Plateaus at 3-4 GeV

• Interplay between increasing baryon production and stronger strangeness canonical suppression towards low energies

**Establishes low energy collision** experiments as a promising tool to study exotic strange matter

![](_page_8_Picture_7.jpeg)

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_10.jpeg)

![](_page_8_Picture_11.jpeg)

# **Nuclei to hadron ratios**

![](_page_9_Figure_1.jpeg)

STAR, Phys. Rev. Lett. 130 (2023) 202301 STAR, arXiv: 2311.11020

- ${}_{\Lambda}^{3}$ H/ $\Lambda$  ratio in a thermal model calculation is independent of volume and strangeness correlation length
- ${}_{\Lambda}^{3}$ H/ $\Lambda$ , similar to *t*/*p*, are underestimated by thermal model by a factor of 2

 $^{3}_{\Lambda}$ H (and *t*) are not in thermal equilibrium with light hadrons at chemical freeze-out

![](_page_9_Figure_7.jpeg)

![](_page_9_Figure_8.jpeg)

![](_page_9_Figure_9.jpeg)

![](_page_9_Figure_10.jpeg)

## Mean transverse momentum

![](_page_10_Figure_1.jpeg)

- ${}_{\Lambda}^{3}$  H and t have similar mean  $p_{T}$
- Both  ${}^{3}_{\Lambda}$ H and *t* tend to have lower mean  $p_T$  than the blast-wave parametrization using measured kinetic freeze-out parameters from light hadrons (π,K,p)

 $^{3}_{\Lambda}$ H (and *t*) do not follow same collective expansion as light hadrons

• The mean  $p_T$  for  $\sqrt{s_{NN}} = 3 - 4.5$  GeV and  $\sqrt{s_{NN}} = 7.7 - 27 \text{GeV}$  seem to exhibit two different trends

**Change in medium properties or** expansion dynamics? see Y. Zhou, 17:00 20/05 (Mon.)

![](_page_10_Picture_8.jpeg)

![](_page_10_Picture_9.jpeg)

![](_page_11_Figure_1.jpeg)

• The yield in mid-central (10-40%) collisions follow the same trend as central (0-10%)collisions

2.76TeV

![](_page_11_Picture_9.jpeg)

![](_page_12_Figure_1.jpeg)

•  ${}^{3}_{\Lambda}$  H production increases more steeply compared to N<sub>part</sub>, particularly below 7.7 GeV

![](_page_12_Figure_3.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_13_Figure_1.jpeg)

• Proton yield scales with N<sub>part</sub>

 Λ yield increases more steeply than N<sub>part</sub>, particularly at low collision energies

see Y. Zhou, 17:00 20/05 (Mon.)

• At low energies,  ${}^{3}_{\Lambda}$ H production tends to increases more steeply than proton,  $\Lambda$ ,<sup>3</sup>He

**Stronger suppression of**  ${}^{3}_{\Lambda}$ H production in more peripheral **<u>collisions at low energies</u>**?

30

![](_page_13_Figure_8.jpeg)

![](_page_13_Figure_9.jpeg)

![](_page_13_Picture_10.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

**Suppression related to the** nature of the created medium?

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

## **Strangeness Population Factor** S<sub>3</sub>

![](_page_15_Figure_1.jpeg)

# • An enhancement of *S*<sub>3</sub> was proposed as a probe for deconfinement

Phys. Lett. B 684 (2010) 224

![](_page_15_Figure_5.jpeg)

# **Strangeness Population Factor** $S_3$

![](_page_16_Figure_1.jpeg)

- An enhancement of *S*<sub>3</sub> was proposed as a probe for deconfinement
- Data indicates a mild increase in  $S_3$ , do not follow the expectations of the model

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

## **Strangeness Population Factor** $S_3$

![](_page_17_Figure_1.jpeg)

- The measured *S*<sub>3</sub> is close to thermal model predictions
- The increasing trend is driven by the decreasing feed-down from <sup>3</sup>He towards higher energies

![](_page_17_Figure_6.jpeg)

# **Strangeness Population Factor** $S_3$

![](_page_18_Figure_1.jpeg)

- UrQMD + Coalescence seem to overshoot the data
- A key prediction from coalescence models is the suppression of  ${}^{3}_{\Lambda}$ H production in small systems due to its large radius
- Best represented by investigating the multiplicity dependence, since  $dN_{ch}/d\eta$  is a good proxy for volume
  - Possible feed-down should be accounted for when interpreting results

![](_page_18_Picture_7.jpeg)

![](_page_18_Figure_8.jpeg)

![](_page_18_Figure_9.jpeg)

## Multiplicity dependence of $S_3$ (stable nuclei)

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

- Unstable nuclei production are suppressed relative to stable nuclei (see backup)
- The true value of  $S_3$  (stable nuclei) very likely lies between the upper and lower limits

![](_page_19_Figure_5.jpeg)

## Multiplicity dependence of $S_3$ (stable nuclei)

![](_page_20_Figure_1.jpeg)

### $S_3$ (stable nuclei) $\approx 0.35$

- Existing data for *S*<sub>3</sub> <u>considering stable</u> <u>nuclei only</u> do not exhibit significant dependence on collision energy, system size
- Data show **milder multiplicity dependence** compared to coalescence, particularly 3-body
- Thermal model tends to overpredict  $S_3$ at  $dN_{ch}/d\eta$ =200 or lower

More data at very low and very high dN<sub>ch</sub>/dŋ is needed

![](_page_20_Picture_7.jpeg)

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)

# $^{4}_{\Lambda}$ H production

![](_page_21_Figure_1.jpeg)

• Non-monotonic behavior of hypernuclei to nuclei yields vs mass number **Suggestive of creation of unstable hypernuclei**  $^{4}_{\Lambda}\text{H}^{*}(1^{+}) \rightarrow ^{4}_{\Lambda}\text{H}(0^{+}) + \gamma$ 

![](_page_21_Figure_3.jpeg)

something else?

# **Hypernuclei Collective Flow**

![](_page_22_Figure_1.jpeg)

- Directed flow of hypernucei follows mass scaling
- JAM + coalescence approx. describes the data

Qualitatively consistent with coalescence formation of hypernuclei

![](_page_22_Picture_8.jpeg)

# Summary

- ${}_{\Lambda}^{3}$ H yields in central collisions underestimated by thermal model by a factor of 2
- ${}_{\Lambda}^{3}$ H mean p<sub>T</sub> tends to be lower than blast-wave parametrization from light hadrons
  - ${}_{\Lambda}^{3}$ H is not in thermal equilibrium with light hadrons
- Data for S<sub>3</sub> (stable nuclei) are consistent with flat or slightly increasing trend with  $dN_{ch}/d\eta$ 
  - Milder multiplicity dependence compared to coalescence models
- Suppression of  ${}^{3}_{\Lambda}$ H in 10-40% collisions at low collision energies observed
- ${}^{4}_{\Lambda}$  H yields are consistent with thermal model
  - Hypernuclei data provides new challenges for theoretical models
- ${}^{3}_{\Lambda}$ H mean p<sub>T</sub> seem to exhibit two separate trends for  $\sqrt{s_{NN}} = 3 4.5$ GeV and 7.7 27GeV • Change in medium properties or expansion dynamics?

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

# Outlook

![](_page_24_Figure_1.jpeg)

### **RHIC-STAR**

- Heavier hypernuclei, including  ${}^{4}_{\Lambda}$ H,  ${}^{4}_{\Lambda}$ He,  ${}^{5}_{\Lambda}$ He,  ${}^{6}_{\Lambda}$ H at FXT energies
- High statistics data at RHIC top energy give opportunities for multiplicity dependence study

### FAIR-CBM and HIAF

• Double- $\Lambda$  hypernuclei to constrain  $\Lambda$ - $\Lambda$ interaction, essential for hyperon puzzle resolution

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

### Thank you for listening!

![](_page_25_Picture_1.jpeg)

# Feed-down from unstable nuclei

![](_page_26_Figure_1.jpeg)

• Suppression of A=4 unstable states compared to <sup>4</sup>He ground state observed at E864

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_5.jpeg)

### Mean Transverse Momentum as a Function of Collision Energy

![](_page_27_Figure_1.jpeg)