Latest Results on *Lifetimes and Binding Energies of A=3, 4 Hypernuclei* from STAR

The 9th International Conference on Quarks and Nuclear Physics (QNP2022)

- Introduction
- Hypernuclei Lifetimes
- Hypernuclei Binding Energies
- Hypernuclei Branching Ratios
- Summary and Outlook

Online Sep 5 – 9, 2022

Yue Hang Leung for the STAR collaboration

University of Heidelberg 2022-09-08

Introduction

- hyperon–nucleon (Y-N) interaction

Measurements on hypernuclei lifetimes, binding energies, and **branching ratios** can provide constraints on the Y-N interaction

Yue Hang Leung - QNP2022

Hypertriton lifetime "puzzle"

- World average of measured $\tau({}^{3}_{\Lambda}H)$ is shorter compared to $\tau(\Lambda)$ by ~ $(30 \pm 10)\%$
- Tension between recent measurements, albeit with large uncertainties
 - 1.7σ difference between STAR(2018) and ALICE(2019) measurements
- Due to loosely bound nature of ${}_{\Lambda}^{3}H(B_{\Lambda}\sim O(0.1 MeV))$, theory typically expects $\tau({}^{3}_{\Lambda}H)$ to be close to $\tau(\Lambda)$

More precise measurements of the hypertriton lifetime is necessary to clarify the situation

ALICE, Phys.Lett. B 797(2019)134905 STAR, Phys. Rev. C 97(2018)54909

STAR Beam Energy Scan II

Hypernuclei reconstruction

- Time Projection Chamber (TPC) is used for particle identification
- •Hypernuclei are reconstructed using the following decay channels:

$${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-} \qquad {}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$$

$${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-} \qquad {}^{4}_{\Lambda}He \rightarrow {}^{3}He + p + \pi^{-}$$

~ $3000 ^{3}_{\Lambda}$ H candidates ~ $7000 {}^{4}_{\Lambda}\text{H}$ candidates

 Combinatorial background estimated via rotating pion tracks or event mixing

Measuring hypernuclei lifetimes

<u>1. Measure the signal counts as a function of $L/\beta\gamma$ </u>

 $L/\beta\gamma = ct$

L: decay length

t : proper time

3. Fit with an exponential function to extract the lifetime

 $N(t) = N_0 e^{-t/\tau} = N_0 e^{-L/\beta\gamma c\tau}$

2. Correct for efficiency as a function of $L/\beta\gamma$

• From GEANT3 simulations

- MC hypernuclei embedded into real data
- Apply additional weighting to simulations to describe p_T and rapidity distributions in real data

Simulations
 provide good
 description of
 various
 topological
 variable
 distributions in
 data

Measuring hypernuclei lifetimes (cont.)

Estimating possible contamination of hypernuclei signal

•(a) Contamination from mis-particle-identification

- Energy loss in TPC (dE/dx) is used for particle identification
- At high momentum, ³He band merges with ⁴He
 - ${}^{3}_{\Lambda}$ H may be mis-identified as ${}^{4}_{\Lambda}$ H, and vice versa
- GEANT simulations used to estimate such contamination (<1%)

•(b) Contamination from 3+body decays

- •Hypernuclei 3-body decays may give rise to correlated backgrounds in pair invariant mass distributions
- GEANT simulations used to estimate the resultant correlated background
 - •Situated on the left hand side of the main signal peak
 - •<1% effect on lifetime measurements

1	0 ⁷
1	0 ⁶
1	0 ⁵
1	0 ⁴
1	0 ³
1	0 ²
1	0

Systematic uncertainties

(1) Hypernuclei candidate selection

• Imperfect description of topological variables between simulations and real data

(2) Input MC p_T/rapidity

• Imperfect knowledge in the kinematic distributions of the hypernuclei

(3) Single track efficiency

• Possible mismatch of single track efficiency between simulations and data

(4) Signal extraction

• Uncertainties related to the background subtraction techniq

(5) Detector material

- ${}^{3}_{\Lambda}$ H is a loosely bound object (B_{Λ}~O(0.1MeV))
 - Coulomb dissociation as it traverses through material
 - •MC study based on analytical dissociation cross section to estimate survival probability

V. L. Lyuboshitz and V. V. Lyuboshitz, Phys. Atom. Nucl. 70, 1617 (2007)

Summary of systematic uncertainties for the lifetime measurements using 3 GeV data

=		Lifet	time
	Source	$^{3}_{\Lambda}\mathrm{H}$	
_	Hypernuclei candidate selection	5.5%	5
	Input MC	3.1%	1
	Tracking efficiency	5.0%	2
	Signal extraction	1.5%	0
	Extrapolation	N/A	\mathbf{l}
	Detector material	< 1%	<
_	Total	8.2%	6
Jue	5 4.5 4.5 4 3.5 3 2.5 2 1.5 0.95 0.95 0.95 0.95 0.95 0.85		
n	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Survival prob. for ${}_{\Lambda}^{3}$ H estimated from MC study	
70 1617			

Yue Hang Leung - QNP2022

A=3 and A=4 hypernuclei lifetimes

New ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H results with improved precision compared to previous measurements

- ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$ lifetimes shorter than $\tau(\Lambda)$ (with 1.8 σ , 3.0σ respectively)
- $^{3}_{\Lambda}$ H
- Global avg. = $(82 \pm 5) \% \tau(\Lambda)$, shorter than $\tau(\Lambda)$ (3.5σ)
- Consistent with theoretical calculations including pion FSI A. Gal et al, Phys. Lett. B 791(2019)48
- ${}^{4}_{\Lambda}H, {}^{4}_{\Lambda}He$
- Application of isospin rule* to A=4 hypernuclei suggests lifetime of ${}^{4}_{\Lambda}$ H to be shorter than ${}^{4}_{\Lambda}$ He $\frac{\tau_{avg}(^{4}_{\Lambda}\mathrm{H})}{\tau_{avg}(^{4}_{\Lambda}\mathrm{He})} = 0.85 \pm 0.07, \text{ consistent with theoretical}$

estimations: 0.74 ± 0.04

A. Gal, EPJ Web Conf 259 (2022) 08002

* $\frac{\Gamma(^{4}_{\Lambda}\text{He} \rightarrow {}^{4}\text{He} + \pi^{0})}{\Gamma(^{4}_{\Lambda}\text{H} \rightarrow {}^{4}\text{He} + \pi^{-})} \approx \frac{1}{2}$

Charge symmetry breaking (CSB) in A=4 hypernuclei

- Charge symmetry \rightarrow expect Λp and Λn interactions to be very similar
- The Λ binding energy $B_{\Lambda} = (M_{\Lambda} + M_{core} M_{hypernucleus})c^2$ of mirror hypernuclei expected to be similar
- Previous measurements using imaging techniques reveal large binding energy difference between ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$ $\Delta B_{\Lambda}^4(0^+) = 350 \pm 60$ [keV]

- The origin of the large charge symmetry breaking is a long-standing puzzle
 - •Measurements from independent experiments is needed to confirm this observation

J-PARC E13, Phys. Rev. Lett. 115 (2015) 222501

Measuring hypernuclei binding energies

Energy loss correction

<u>Correction to magnetic field strength</u>

- Discrepancy
 between true and
 nominal magnetic
 field strength
 - Estimated to be
 0.2% from Λ

mass

•Energy loss in the material is particle species dependent

•STAR track reconstruction applies an energy loss correction assuming all particles to be pions

• Additional energy loss correction for p, ³He and ⁴He estimated via GEANT simulations

12

140 ····· Total fit b) MeV/c^2) Signal fit 120 Background fit 100 Counts/(1 80 60 40 20 3.92 3.94 3.9 3.91 3.93 3.95 $M(^{3}He + p + \pi^{-}) (GeV/c^{2})$

A=4 hypernuclei binding energies

 Λ - Σ^0 mixing vertex Gazda and Gal, Phys. Rev. Lett. 116(2016)122501

• Predicts
$$\Delta B_{\Lambda}^4(1^+) \approx -\Delta B_{\Lambda}^4(0^+)$$

M. Bedjidian et al., Phys. Lett. B 62, 467-470 (1980) •Binding energies for 1⁺ obtained from γ -ray transition energy measurements J-PARC E13, Phys. Rev. Lett. 115, 222501 (2015)

 $\Delta B_{\Lambda}^{4}(0^{+}) = 160 \pm 140(stat) \pm 100(syst)[keV]$ $\Delta B_{\Lambda}^{4}(1^{+}) = -160 \pm 140(stat) \pm 100(syst)[\text{keV}]$

CSB in ground and excited states comparable, consistent with theoretical calculations

 \rightarrow Look forward to Run 21 data (2B Au+Au events at 3 GeV)

Hypertriton relative branching ratio R_{3 1.2}

- The ${}_{\Lambda}^{3}$ H relative branching ratio, R₃, is defined as: $R_3 = \frac{B_1R_1({}^3_{\Lambda}H \rightarrow {}^3He\pi^-)}{B_1R_1({}^3_{\Lambda}H \rightarrow {}^3He\pi^-) + B_1R_1({}^3_{\Lambda}H \rightarrow dp\pi^-)}$
- Recent calculations predict a strong dependence of R₃ on the binding energy Hildenbrand et al, Phys. Rev. C 102 (2020) 064002
- The 2-body and 3-body mesonic decay channels are expected to contribute ~97% of the total decay rate
 - π^- : π^0 decay rates expected to follow isospin rule (2:1)
- R₃ connects the ${}^{3}_{\Lambda}$ H lifetime to its two-body π^{-} + 3 He decay rate

• Used as a constraint to model calculations of the lifetime

Kamada et al, Phys. Rev. C 57 (1998) 1595

Calculated decay rates vs B_{Λ} from Hildenbrand et al.

³_AH reconstruction via 3-body decay

• To obtain corrected yields from hypertriton 3-body decay $^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$:

3. Correct for efficiency of real signal

Relative branching ratio R₃ measurement

- R₃ measurement is obtained by comparing the efficiency corrected yields from 3-body and 2-body decays
- •New measurement on R₃:

 - \rightarrow Favors a small binding energy according to calculations from Hildenbrand et al.

• Differential yields from 3-body and 2-body measurements agree with each other

 \rightarrow Provides input for connecting theoretically computed two-body mesonic rates and $^{3}_{\Lambda}$ H lifetime

Future hypernuclei studies from STAR

*More precise measurements of the hypertriton and anti-hypertriton

- ~42 σ_{Λ}^{3} H signal observed using BES-II data
- Entering the precision era

Studies on heavier hypernuclei

•> $20\sigma_{\Lambda}^{4}$ He , > $10\sigma_{\Lambda}^{5}$ He signal observed using BES-II data

*****Search for double-Λ hypernuclei?

- •Modest production rate at $\sqrt{s_{NN}} \sim 3-8$ GeV according to thermal model
 - •STAR BES-II brings possibility of discovery

*Data from express stream (Au+Au $\sqrt{s_{NN}}=3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7$ GeV) are not with the final calibrations

Summary

•STAR BES-II presents new opportunities for investigating the internal structure of hypernuclei

* ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, ${}^{4}_{\Lambda}He$ lifetime measurements

- •Improved precision on ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$ lifetimes compared to previous measurements

* ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He binding energy measurements

- Consistent with theoretical calculations with Λ - Σ^0 mixing

$*_{\Lambda}^{3}$ H **R**₃ measurement

- •New method to extract 3-body yields via template fitting
- •Intimately connected to ${}^{3}_{\Lambda}H$ lifetime and binding energy

• Average ${}^{3}_{\Lambda}$ H lifetime = $(82 \pm 5) \% \tau_{\Lambda}$, consistent with theoretical calculations including pion FSI

•Comparable binding energy differences in ground and excited states, with opposite sign

• Backup slides follow

Yue Hang Leung - QNP2022

Systematic uncertainties on binding energy measurement

(1) Momentum scaling factor

- Imperfect knowledge in magnetic field strength
- Estimated from discrepancy between Λ mass and PDG value

(2) Energy loss correction

• Imperfect knowledge in material budget

(3) BDT response cut

• Assess possible effects of topological cuts on measured mass

Summary of systematic uncertainties for the binding energy measurements using 3 GeV data

Source	$ {}^{4}_{\Lambda} \mathrm{H} \ [\mathrm{MeV}]$	$^{4}_{\Lambda}\mathrm{He}$ [M
Momentum scaling factor	0.11	0.11
Energy loss correction	0.08	0.05
BDT response cut	0.03	0.01
Total	0.14	0.12

Past studies of hypernuclei lifetime at STAR

•In 2010, STAR observed the anti-hypertriton

• First measurement of hypertriton lifetime from heavy ion collisions

Science 328 (2010) 58

Counts

 $\tau(^{3}_{\Lambda}H) = 182 \pm^{89}_{45} (stat.) + 27(syst.)$ 227 ± 34 (³_{\Lambda}H + ³_{\Lambda}H) candidates

• In 2019, STAR published hypertriton lifetime, obtained using Beam Energy Scan I data Phys. Rev. C 97 (2018) 54909

 $\tau(^{3}_{\Lambda}H) = 142 \pm^{24}_{21} (stat.) + 31(syst.)$ 354 ± 43 (³_{\Lambda}H + ³_{\Lambda}H) candidates

