
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

DOCTORAL THESIS

Distributed Data Processing

in High Energy Physics

Prague 2018 Dzmitry Makatun

Bibliografický záznam

Autor Mgr. Dzmitry Makatun,

České vysoké učeńı technické v Praze,

Fakulta jaderná a fyzikáně inženýrská,

Katedra matematiky

Název Distribuované zpracováńı dat ve fyzice vysokých energíı

Druh práce Disertačńı práce

Studijńı program Aplikace př́ırodńıch věd

Studijńı obor Matematické inženýrstv́ı

Školitel doc. Michal Šumbera, CSc., DSc.,

Ústav jaderné fyziky,

Akademie věd České republiky

Školitel specialista Jérôme Lauret, Ph.D.,

RHIC/STAR Experiment, Physics Department,

Brookhaven National Laboratory, USA

Konzultant doc. Hana Rudová, Ph.D.,

Fakulta informatiky,

Masarykova univerzita, ČR

Akademický rok 2017/2018

Počet stran 196

Kĺıčová slova Distribuovaný výpočet, grid, vyvažováńı zátěže,

plánováńı proces̊u, optimalizace, toky v śıt́ıch, big data

Bibliographic Entry

Author Mgr. Dzmitry Makatun,

Czech Technical University in Prague,

Faculty of Nuclear Sciences

and Physical Engineering,

Department of Mathematics

Title Distributed Data Processing in High Energy Physics

Degree Program Application of natural sciences

Field of Study Mathematical engineering

Supervisor Michal Šumbera, Ph.D,

Nuclear Physics Institute,

The Czech Academy of Sciences

Supervisor specialist Jérôme Lauret, Ph.D,

RHIC/STAR Experiment, Physics Department,

Brookhaven National Laboratory, USA

Consultant Hana Rudová, Ph.D,

Faculty of Informatics,

Masaryk University, Czech Republic

Academic Year 2017/2018

Number of Pages 196

Keywords Distributed computing, large scale computing, grid,

data intensive applications, load balancing, job schedul-

ing, planning, network flow, data production, big data

Acknowlegement

This thesis would not have come to life without the excellent guidance of my

three supervisors through the challenging journey of my studies.

I am sincerely thankful to Michal Šumbera for the opportunity to enter

the fascinating world of computational High Energy Physics and for the

strong support of his valuable advice and wisdom since the very beginning

of the study.

I am tremendously grateful to Jérôme Lauret, who sparked the research

project and helped to keep it focused on real-life tasks. His inspirational

leadership, broad expertise and kind attitude, spiced with a refreshing por-

tion of humor, gave momentum to my research and helped me to develop the

confidence to attack problems which may seemed unsolvable at first.

I would like to express my deepest gratitude to Hana Rudová, who played

a key role in my study. Her professionalism, attention to important details

and patience, all combined with her warmhearted approach, were crucial to

keep my research moving on track.

I would also like to thank Jana Bielč́ıková, who has had multiple roles

during these years in our Ultra-relativistic Heavy Ion Group, for her always

helpful advice and caring management. I am thankful to the current and for-

mer members of our scientific group at Bulovka, especially to Michal Zerola,

Filip Kř́ıžek, Pavol Federič and Dagmar Adamová for the friendly atmosphere

and thoughtful discussions.

A special mention goes to the members and students of SITOLA labora-

tory and Department of Computer Systems and Communications at Faculty

of Informatics of Masaryk University in Brno. My work trips there had a

huge impact on my study thanks to the productive meetings and the creative

team spirit.

I would like to acknowledge the Institute of Physics of the Czech Academy

of Sciences for providing access to their computing facility for running sim-

ulations.

Last, but not least, the priceless support and encouragement of my dear

family, especially my mother Maryna Makatun and my grandmother Nadezhda

Ariko, has helped me to keep moving forward in my pursuit towards science.

Declaration of Originality

This doctoral thesis contains results of my research carried out at the Nuclear

Physics Institute of the Czech Academy of Science between years 2011 and

2018. Hereby I declare that this thesis is my original authorial work. All

sources, references, and literature used or excerpted during the preparation

of this work are properly cited and listed in the bibliography. I further state

that no part of this thesis or any substantially the same has been submitted

for any qualification other than the degree of Doctor of Philosophy at the

Czech Technical University in Prague.

Abstract

In the era of big data, the scale of computations and the amount of allocated

resources continues to grow rapidly. Large organizations operate computing

facilities consisting of tens of thousands of machines and process petabytes of

data. A lot of effort was made recently to optimize the design of such com-

puter clusters, resource management and corresponding computing models

including data access and job scheduling. Scientific computing (e.g. High En-

ergy and Nuclear Physics (HENP), astrophysics, geophysics, genome studies)

appears at the forefront of big data advancement. Due to the scale of com-

putations, these fields rely on aggregated resources of many computational

facilities distributed over the globe. Those facilities are owned by different

institutions and include grid, cloud and other opportunistic resources. Or-

chestration of massive computations in such a heterogeneous and dynamic

infrastructure remains challenging and provides many opportunities for op-

timization.

One of the essential types of the computations in HENP is distributed

data production where petabytes of raw files from a single source have to

be processed once (per production campaign) using thousands of CPUs at

distant locations and the output has to be transferred back to that source.

Similar workflows can be found in other distributed data-intensive applica-

tions. The data distribution over a large system does not necessarily match

the distribution of storage, network and CPU capacity. Therefore, bottle-

necks may appear and lead to increased latency and degraded performance.

The problems of job scheduling, network stream scheduling and data

placement are interdependent, but combined into a single optimization prob-

lem become computationally intractable in a general case. In practice, there

are multiple middleware components with different (overlapping) scopes of

the system, each providing optimization for its sub-problem. The examples

include workload management systems, job schedulers, data transfer services,

data management systems, etc. The end-to-end optimization becomes a mat-

ter of an interplay between middleware components. Automated high-level

orchestration can improve such interplay and reduce the effort for system

tuning.

The main goal of this thesis is to explore and develop a new approach

to optimization of large-scale data-intensive computations in HENP in gen-

eral, and the STAR experiment in particular. As the result of this thesis,

we propose a new high-level orchestration approach for distributed data pro-

duction. The underlying mathematical model introduces a new application

of network flow maximization algorithms. In our approach, a central planner

defines how much input and output data should be transferred over each net-

work link in order to maximize the computational throughput. Such plans

are created periodically for a fixed planning time interval using up-to-date

information on network, storage and CPU resources. The complexity of each

planning cycle depends on the number of sites and network links but not

the number of jobs. This allows to manage extensive datasets for processing

in large-scale infrastructures efficiently. The centrally created plans are exe-

cuted in a distributed manner by dedicated services running at participating

sites.

A wide scope of simulations based on the log records from real systems

and monitoring were performed for this Ph.D. thesis. The simulations have

shown that the proposed approach systematically provides a significant im-

provement in makespan and processing throughput compared to other sim-

ulated traditional techniques.

Abstrakt

Zpracováńı rozsáhlých dat vyžaduje č́ım dál v́ıce výpočetńıch prostředk̊u.

Velké moderńı organizace provozuj́ı poč́ıtačová centra obsahuj́ıćı deśıtky tiśıc

stroj̊u a zpracovávaj́ı petabajty dat. Proto je v současnosti v popřed́ı zájmu

optimalizace návrhu výpočetńıch cluster̊u, zp̊usobu ovládáńı zdroj̊u, př́ıstupu

k dat̊um a plánováńı úloh. Mezi hlavńı zájemce o zpracováńı rozsáhlých

dat patř́ı mimojiné i vědecké experimenty ve fyzice vysokých energíı (High

Energy and Nuclear Physics, HENP), astrofyzice, geofyzice nebo v genetice.

Vzhledem k objemu vstupńıch dat a potřebných výpočt̊u se často projevuje

tendence kombinovat zdroje z mnoha vzdálených výpočetńıch cluster̊u distri-

buovaných po celém světě. Ty často patř́ı r̊uzným organizaćım a jsou tvořeny

systémem propojených a spolupracuj́ıćıch poč́ıtač̊u uspořádaných do r̊uzných

architektur (grid, cloud). Koordinace distribuovaných výpočt̊u v takovémto

heterogenńım a dynamickém prostřed́ı je tak velkou výzvou s velkým prosto-

rem pro optimalizaci.

Jedńım z hlavńıch typ̊u výpočt̊u v HENP je distribuovaná produkce dat,

kdy muśı být petabajty dat naměřených detektorem jednorázově zpracovány

(během tzv. produkčńı doby) ve vzdálených centrech. Výsledná data jsou

bud’ poslána zpět do p̊uvodńıho centra nebo jsou uložena na jiném mı́stě.

Podobné postupy lze nalézt i v jiných oblastech, kde se pracuje s rozsáhlými

soubory dat. Distribuce dat v rozsáhlých systémech nemuśı nutně odpov́ıdat

distribuci kapacity datových úložǐst’, śıtě a procesor̊u. Vzhledem k tomu může

doj́ıt ke vzniku kritických mı́st s ńızkou pr̊uchodnost́ı, což vede k poklesu

efektivity.

Otázky plánováńı úloh, přenosu dat a jejich umı́stěńı spolu vzájemně

souviśı. Při spojeńı do jednoho problému se tak ale v obecném př́ıpadě stávaj́ı

výpočetně neřešitelnými. Existuje nicméně mnoho druh̊u tzv. middleware,

které poskytuj́ı optimalizaci pro jistý d́ılč́ı problém. Sem patř́ı vyvažovače

zátěže, plánovače úloh, přenos dat, správa dat atd. Komplexńı optimalizace

se tak stává záležitost́ı interakce mezi jednotlivými složkami middlewaru.

Automatická koordinace může tuto interakci zlepšit, a tak i sńıžit nutnost

lidského zásahu do systému.

Hlavńım ćılem předložené práce je prozkoumat a vyvinout nový př́ıstup

k optimalizaci distribuovaných výpočt̊u s rozsáhlými daty v HENP obecně

a zejména se zaměřeńım na experiment STAR. Výsledkem výzkumu prove-

deného v rámci této disertace je návrh nového př́ıstupu ke koordinaci distri-

buované produkce dat založeného na použit́ı algoritmů pro řešeńı problému

maximalizace toku v śıt́ıch. Centrálńı plánovač určuje kolik vstupńıch a

výstupńıch dat muśı být přenášeno přes každou śıt’ovou linku tak, aby byla

maximalizována propustnost výpočt̊u. Plánováńı se pravidelně realizuje pro

pevně daný časový úsek s přihlédnut́ım k aktuálńım informaćım o stavu śıtě,

datových úložǐst’ a procesor̊u. Důležité je, že složitost každého výpočetńıho

cyklu záviśı na počtu výpočetńıch zdroj̊u a śıt’ových linek a neńı přitom

závislá na počtu výpočetńıch úloh. Tento systém umožňuje efektivně zpra-

covat velké množstv́ı dat ve velkých infrastrukturách. Centrálně vytvořené

plány se pak za pomoci speciálńıch služeb pracuj́ıćıch ve zúčastněných výpo-

četńıch centrech vykonávaj́ı distribuovaně.

Pro tuto studii byla v rámci této disertačńı práce provedena široká škála

poč́ıtačových simulaćı založených na skutečných záznamech pocházej́ıćıch ze

žurnál̊u (log̊u) monitorovaćıch systémů. Simulace ukázaly, že navrhovaný

př́ıstup poskytuje systematické a výrazné zlepšeńı doby zpracováńı dat, a

tud́ıž i produktivity výpočetńıch cluster̊u ve srovnáńı s jinými tradičńımi

metodami.

Contents

1 Introduction 31

1.1 Motivation . 31

1.2 Contribution . 34

1.3 Structure of the Thesis . 36

2 Big data paradigm 38

2.1 Applications . 40

2.2 Technologies . 41

2.2.1 Big data and HPC . 41

2.2.2 File systems . 42

2.2.3 Computing models . 44

3 Job scheduling in distributed computing 47

3.1 Distributed platforms . 47

3.2 Scheduler architectures . 50

3.2.1 Examples . 51

3.3 Scheduling models . 53

3.3.1 Terminology . 55

3.3.2 Jobs . 56

3.3.3 Resources . 58

3.3.4 Optimization . 60

3.4 Scheduling methods . 63

3.4.1 Immediate mode heuristics 64

3.4.2 Batch mode heuristics 65

3.4.3 Backfilling . 66

3.4.4 Meta-heuristics . 67

3.4.5 Network flows . 69

4 Optimization of data access 71

4.1 Data aware job scheduling . 71

4.1.1 Examples . 72

4.2 Data transfer and placement 73

4.3 Network usage optimization 76

4.4 Data replication . 77

15

4.4.1 Replica placement . 78

4.4.2 Replica selection . 80

5 Computing in High Energy and Nuclear Physics 83

5.1 Computing activities . 83

5.2 Tiers . 86

6 Study of distributed job and data transfer scheduling using

constraint programming 89

6.1 Model and solution overview 90

6.1.1 Model assumptions . 91

6.1.2 Solution overview . 92

6.1.3 Constraints at the planning stage 93

6.1.4 Constraints at the scheduling stage 95

6.2 Simulation, results . 99

6.3 Limitations of the model . 101

7 Planning of distributed data production 104

7.1 Elements of the model . 105

7.2 Planner based on network flows 109

7.2.1 Output flow planning 109

7.2.2 Input flow planning . 110

7.2.3 Capacities of dummy edges 111

7.2.4 Solving Procedure . 113

7.3 Plan execution . 115

7.4 Balance between multiple data sources 116

7.5 Initial data distribution . 118

7.5.1 Model description . 119

7.5.2 Solving procedure . 120

7.6 Data replication . 121

8 Simulations of distributed data production 124

8.1 Overview of the implementation 124

8.1.1 Input data for simulations 124

8.1.2 Network models . 126

8.1.3 Simulated scheduling approaches 127

16

8.2 Base model . 129

8.2.1 Single remote site . 129

8.2.2 Fully connected network 132

8.2.3 Random scale-free networks 134

8.2.4 Real infrastructure . 136

8.3 Influence of background network traffic 138

8.4 Multiple input sources and arbitrary networks 139

8.4.1 Simulated infrastructure 139

8.4.2 Results . 141

8.5 Data replication . 145

8.5.1 Simulated infrastructure 145

8.5.2 Results . 147

8.6 Computational time . 149

8.7 Summary of simulations . 150

9 Cache management for distributed data storage in HENP 151

9.1 Data access patterns in HENP 152

9.2 Summary of caching algorithms 157

9.3 Evaluation and comparison of caching algorithms 158

10 Conclusion and outlook 163

10.1 Summary of the results . 163

10.2 Future work . 165

11 Bibliography 170

A List of publications 195

17

List of Figures

1 Architectures of job schedulers [1]. 50

2 Computational workflow decomposed into computational and

data placement jobs [2]. 74

3 Tier structure of WLCG [3]. 87

4 Resources considered in CSP based approach. 90

5 Example of a transfer path for one job. 94

6 Example of a schedule for one job including related data trans-

fers and placements. 96

7 Makespan improvement of CSP based approach in simulations

with real data. 101

8 Input for the network-flow based planner: distributed data

production problem represented as a graph. 104

9 Relation between duration, input size and output size of data

production jobs of the STAR experiment. 108

10 Capacitated {t, s} network for the output planning problem. . 110

11 Capacitated {s, t} network for the input planning problem. . . 111

12 Plan execution by handlers at sites. 116

13 Multiple solutions of the maximum flow problem. 117

14 Makespan improvement of the planner as a function of network

bandwidth to the remote site. 130

15 Makespan improvement of the planner as a function of the

number of CPUs at the remote site. 131

16 Simulated infrastructure with a fully connected network topol-

ogy. 132

17 Dependence of makespan improvement on bandwidth between

remote sites. 133

18 Total CPU usage in the simulation with 100 Mbps links be-

tween remote sites. 134

19 Examples of randomly generated infrastructures. 135

20 Makespan improvement of the planer in randomly generated

infrastructures. 136

21 Simulated grid of Tier-1 sites of one of the largest HENP ex-

periments. 137

22 Results of simulations of the realistic Tier-1 grid. 138

19

23 Results of simulations with background traffic. 139

24 Example of a randomly generated infrastructure with multiple

input sources. 141

25 (Part 1) Results of simulations with randomly generated in-

frastructures and multiple input sources. 142

25 (Part 2) Results of simulations with randomly generated in-

frastructures and multiple input sources. 143

26 Simulated infrastructure with data replication. 146

27 Results of simulations with data replication. 147

28 Results of simulations without data replication. 147

29 Results of simulation with PULL approach: 7 sites with the

lowest CPU usage. 148

30 Results of simulation with PLANNER approach: 7 sites with

the lowest CPU usage. 148

31 Distribution of files by size for three access patterns: (a)

STAR1, (b) STAR2, (c) GOLIAS. 154

32 Distribution of time intervals between sequential requests for

the same file in three access patterns : (a) STAR1, (b) STAR2,

(c) GOLIAS. 155

33 Data access patterns represented as contour-plots: (a) STAR1,

(b) STAR2, (c) GOLIAS. 156

34 Simulated performance of caching algorithms for cache of large

size. 160

35 Simulated performance of caching algorithms for cache of small

size. 161

36 Simulated dependence of cache performance on the low mark. 162

37 Load balancing in networks with high background traffic. . . . 167

20

List of Tables

2 Summary of cumulative constrains on resources used in CP

model. 98

3 Parameters of 60,000 data production jobs from the STAR

experiment used in simulations. 125

4 Results of simulations with randomly generated infrastruc-

tures and multiple input sources. 144

5 Summary of three user access patterns used in simulations. . . 153

6 Average improvement of caching algorithms over FIFO. 159

21

Glossary

ALICE A Large Ion Collider Experiment. A HENP experiment at LHC.

84

ATLAS A Toroidal LHC ApparatuS. A HENP experiment at LHC. 83

big data a paradigm describing a new generation of technologies and ar-

chitectures, designed to economically extract value from very large

volumes of a wide variety of data, by enabling high-velocity capture,

discovery, and/or analysis. 38

BNL Brookhaven National Laboratory. 83

cache policy heuristic used to select an entry to evict with regard to cache

cleanup. 152

central storage the main data storage facility of a HENP experiment. Typ-

ically, is situated close to the detector (at Tier-0 site) and permanently

stores all the data related to the experiment. 105

CERN European Organization for Nuclear Research (derived from French:

Conseil Européen pour la Recherche Nucléaire). 83

cloud a model for enabling access to a shared pool of configurable computing

resources that can be rapidly provisioned and released with minimal

management effort or service provider interaction. 48

cluster group of closely linked computers, working together through fast lo-

cal area networks; in opposite to Grid, resources are not geographically

spread. 47

CMS Compact Muon Solenoid. A HENP experiment at LHC. 83

CP constraint programming. 89

CSP constraint satisfaction problem. Consists of variables, their domains

and constraints in form of mathematical expressions over variables. 89

DAG Directed Acyclic Graph. 44

23

data center a cluster dedicated to storage, processing and providing access

to large amounts of data. 48

data prestaging placing input data close (in the access sense) to the point

of computation before it starts. Also referred as prefetching. 73

data production an organized processing of raw data (from a detector)

in order to produce data ready for analysis (reconstructed physical

events). Also referred as reconstruction or preprocessing. 84

DDM Distributed Data Management (system). 73

DPS Data Placement Service. 73

graph data structure that holds a collection of vertices and a collection of

edges that connect pairs of vertices. 44

grid distributed and dynamic computing environment consisting of various

loosely coupled resources acting together to perform large tasks. 48

HENP High Energy and Nuclear Physics. 83

HPC High Performance Computing. 41

IT Information Technology. 40

job (or computational job) an atomic unit of computational work for schedul-

ing. The terminology varies in related publications (also depends on

specifics of computing platform). We use the term from the perspective

of scheduling in grid computing. 55

lfn logical file name. 121

LHC Large Hadron Collider. A particle accelerator facility at CERN. 83

LHCb Large Hadron Collider beauty. A HENP experiment at LHC. 84

load balancing methodology to distribute workload across multiple resources

to achieve optimal utilization. 64

24

makespan total time spent on execution of a set of tasks. 128

min-cost max-flow minimum cost maximum flow. A problem of finding a

maximum flow with a smallest possible cost over a given network. 117

MPI Message Passing Interface. Message passing standard on a wide variety

of parallel computing architectures. 45

NP-hard non-deterministic polynomial-time hard. Class of problems from

computational complexity theory that are, informally, “at least as hard

as the hardest problems in NP”. 54

pfn physical file name. 121

planning selection and organization of actions in order to reach the goal or

change of the system. 51

queue structure which stores tasks waiting for execution. Tasks are selected

according to the applied dispatching rules. 64

resource entity which executes, processes or supports the task (e.g. CPU

for a computational job, network link for data transfer, storage for data

placement). 56

RHIC Relativistic Heavy Ion Collider. A particle accelerator facility at

BNL. 83

scheduling allocation of resources to planned tasks over given time periods.

51

site a separate computing facility in grid (e.g. cluster, server, supercom-

puter, data center, external cloud). 105

STAR Solenoidal Tracker at RHIC. A HENP experiment at RHIC. 83

task an atomic unit of schedulable work. We use the term in a more gen-

eral meaning, which does not necessarily refer to a computational job

executed at a machine, but includes other types of atomic work, e.g. a

transfer of a file over a network link. 55

25

Tier-0 site of the highest level in a hierarchical grid architecture. In HENP,

the main computing facility of an experiment, typically close to the

detector. 86

Tier-1 sites of the second highest level in a hierarchical grid architecture.

In HENP, regional data centers which disseminate / aggreagte data

to / from computing facilities of lower tiers and permanently store sig-

nificant replicas of experimental data. 86

Tier-2 level of sites in a hierarchical grid architecture. In HENP, large

computing facilities of scientific institutes and universities. 87

Tier-3 level of sites in a hierarchical grid architecture. In HENP, such sites

have no formal roles assigned, which provides flexibility to join and

leave for specific tasks. 87

unary resource resource with an ability to execute only one task at any

time. Sometimes is also called a serial or a disjunctive resource. 91

weighted graph graph with an associated label (weight) to every edge. It

is often used in networking where weight represents bandwidth of a

link. 90

WLCG Worldwide LHC Computing Grid. 85

WMS Workload Management System. 71

workflow set of tasks (including computational jobs), which may have spe-

cific dependencies between each other. The terminology varies in re-

lated publications (also depends on specifics of computing platform).

We use the term from the perspective of scheduling in grid computing.

55

26

List of Notations

αi processing time per unit of data at site ci
β average output-to-input size ratio of data production jobs

bl bandwidth of network link l

Cout
i total size of output files of currently running jobs at site ci

Cmax makespan

ci ∈ C set of computational sites

cape capacity of edge e

coste cost assigned to edge e

∆T planning time interval

Destj set of sites where the output file of job j has to be delivered (to

a single site in the set)

Diski size of local disk at site ci
δ upper limit for storage usage

di ∈ D set of dummy edges from the computing sites to the sink in the

input planning problem

di ∈ D set of dummy edges from the source to computing sites in the

output planning problem

ε target precision for initial data distribution planning

e ∈ E set of edges in the network of the min-cost max-flow problem

(includes dummy edges)

Φ total network flow (from source to sink)

Fl counter of the remaining input data to be sent over link l during

the execution of the current plan

Fl counter of the remaining output data to be sent over link l

during the execution of the current plan

f file id

f inj input file of job j

f outj output file of job j

flowine solution of the input planning problem, which assigns amount

of input data to be transferred over each edge e

flowoute solution of the output planning problem, which assigns amount

of output data to be transferred over each edge e

H cache hits

27

Hd cache data hits (cache hits per megabyte of data)

I ini total size of input files prestaged in a local queue at site ci
Iouti amount of output data (of previously finished jobs) which is

staged to be transferred from site ci
j computational job

Ki maximum amount of input data that can be initially placed at

source site ci
ki amount of input data staged at source site ci
ki amount of output data which can be accommodated at destina-

tion site ci during current planning cycle

Lfromi set of outgoing links of site ci
Ltoi set of incoming links of site ci
l ∈ L set of real network links

Ncache number of files transferred from cache

Nreq total number of requests

Nset number of unique filenames

NCPUi number of CPUs provided for data production at site ci
ol time required to transfer a unit of data over link l

pj duration of job j

pFfi duration of placement of file f at site ci
qi ∈ Q set of dummy edges from the source to source sites in the input

planning problem

qi ∈ Q set of dummy edges from destination sites to sink in the output

planning problem

Ri free storage space at site ci
SFfi start time of file f placement at storage of site ci
SJj start time of job j

STfl start time of file f transfer over link l

Scache amount of data transferred from cache in bytes

Sreq total amount of transferred data

Sset total size of unique files

Sourcesj set of sites where the input file of job j is initially placed

sizef size of file f

sizeinavg average size of input files

sizeinj size of the input file of job j

28

sizeoutj size of the output file of job j

Test estimated makespan for a given assignment of tasks to resources

TCPUi estimated completion time of site ci
T linkl estimated completion time of link l

wi demand for input data at cite ci
wi estimated amount of output data to be transferred from site ci
Xfl boolean variable indicating if file f is transfered over link l

Yji boolean variable indicating if job j is executed at site ci
Z total amount of data to be processed in a data production cam-

paign

29

1 Introduction

1 Introduction

1.1 Motivation

Modern experiments in High Energy and Nuclear Physics (HENP) engage

processing of large volumes of data derived from complex detectors and sim-

ulations [4, 5, 6]. Data-intensive distributed computing has become an es-

sential part of this scientific field. The computational infrastructure of the

largest HENP experiments running at BNL RHIC and CERN LHC, spans

across the globe and features many tens of facilities processing petabytes of

data annually [7, 8]. Similarly, many other scientific fields, such as astro-

physics, biology and Earth science to name a few, as well as industries and

commercial companies handle enormous volumes of data.

When running data-intensive applications on distributed computational

resources long I/O overheads may be observed as access to remotely stored

data is performed. Uncoordinated concurrent data access over a shared net-

work can lead to an increased latency [9, 10, 11]. Latency and bandwidth can

become the major limiting factors for the overall computation performance

and can reduce the CPU time / wall time ratio due to excessive I/O waits [12].

In such case the benefit of usage of distributed resources is hindered due to

network congestion [13]. In particular, a small fraction of computational

jobs which cannot access data efficiently (“stragglers”) can increase an over-

all makespan dramatically. Intuitively, those jobs could be completed faster

if scheduled to different resources (even if they wait in a queue) or if the

data are efficiently prefetched beforehand. For this reason, optimization of

data access and management is an important issue when defining a comput-

ing model of a HENP experiment [4, 14], setting up a new computational

facility [15] or upgrading/tuning an existing one [16, 17].

Data processing can be divided into several phases with its own specifics

of jobs. This thesis focuses on a particular phase which is called data prepro-

cessing in big data terminology [18]. In this phase a large set of input data

undergoes a single pass of processing and produces output data which is fur-

ther utilized in other phases. The particular example considered in this study

is data production (see Section 5) in HENP. However, the devised techniques

can be further extended to other data processing workflows. In data produc-

tion, raw data from a detector are processed in order to reconstruct physical

31

1.1 Motivation

events which are then analyzed by scientists. The data are stored in the

main data center close to the detector and are further distributed for remote

processing. The processing has a data level of parallelism, which means that

it can be divided into independent computational jobs applying the same

processing on different subsets of data. The data production is performed

by campaigns, when a recently accumulated dataset has to be processed on

an available set of resources. Such campaign typically lasts several months

and processes hundreds of terabytes of data. Sometimes, the processing is

repeated (after a significant time) when it allows improving the quality of

the output. The reconstructed data can be effectively utilized only after an

entire campaign is finished. For this reason, it is highly desirable to execute

data production with the shortest possible makespan at given resources. Also

importantly, data production (and simulations) makes the largest computing

demand of the STAR and other HENP experiments [19]. Its optimization

may lead to a huge overall saving in computational power.

However, common computing models (see Section 2.2) and optimization

approaches (see Section 4) to data-intensive applications do not match the

data production case well. This is mainly due to the specific properties of such

workflow: (a) the data originates from a single source (detector) and has to

be disseminated to geographically distributed resources, (b) there is no data

re-usage across data production jobs within a single campaign. Despite the

named differences from other types of computations (analysis, simulations),

data production is often approached by general scheduling techniques, and

that may lead to sub-optimal performance and increase the requirements for

computational infrastructure (CPU, network, storage).

Data aware schedulers (see Section 4.1) typically exploit (a) spatial and/or

(b) temporal data locality for optimization. In the first case (a), the jobs are

allocated where the data are already present or as close as possible (e.g.

using an estimation of prestaging overhead). In the second case (b), the

jobs sharing the data are grouped together in order to reduce the number

of required transfers. If we offload data production from a central facility to

remote resources, which do not have the data already prestaged, the data lo-

cality cannot be exploited. This is because the jobs process non-overlapping

portions of data stored at the same location. Therefore, a permutation of

data production jobs between sites would not help.

32

1 Introduction

Common job schedulers (see Sections 3.4 and 4.1) do not consider such

details as data transfer routing, bandwidth sharing and storage scheduling.

Optimization of data transfer and prestaging for scheduled jobs is delegated

to other components of the system (see Sections 4.2 and 4.3). As the re-

sult, concurrency between newly scheduled jobs may lead to system overload

if network or storage bottlenecks are present. However, these components

cannot influence the job scheduler decisions. Moreover, optimization of data

transfer applied in practice is often limited to parameter tuning (e.g. block

size, number of active streams, etc.), replica selection and compliance with

predefined deadlines.

Being an important aspect of data access optimization, virtually every

data replication strategy (Section 4.4) aims to improve availability of popular

data with respect to (upcoming) requests . However, this principle cannot be

directly applied to data production, since the raw data are processed exactly

once within a single campaign, and the campaigns are separated by large time

gaps making the re-use of cached data irrelevant. The raw data experience

infrequent access compared to other data types, e.g. reconstructed data.

Therefore, it would be impractical to keep many replicas of raw data in the

system.

In practice, static replication approaches are applied to raw data: a fixed

number of backup copies is stored. For example, LHC experiments follow a

standard strategy whereas each raw file is persistently stored at the central

(Tier-0) site and has two replicas at distinct regional centers (Tier-1) [4].

However, a significant fraction of computational power is dispersed at smaller

national and institutional facilities (Tier-2,3) or external clouds. Therefore,

the data locality can be exploited for data production only if the computation

is limited to Tier-0,1 resources. The offloading of data production to other

resources would allow to decrease its makespan and speed up the delivery of

reconstructed data for user analysis. Such offloading requires data prestaging

(in and out) at remote sites. Similarly, the STAR experiment at BNL [20]

stores the raw data at its central facility and offloads data production to

remote sites upon agreement.

To enable efficient data production at remote sites, experiments often

use custom setups for each given distributed infrastructure [19, 21]. When

there are few remote sites involved in the data processing, the load can be

33

1.2 Contribution

tuned manually and simple heuristic may work, but, as the number of sites

grows and the environment is constantly changing (site outage, fluctuations

of network throughput and CPU availability), an automated planning of

workflows becomes a necessity. An important example arises from a workflow

optimization which was done for the inclusion of the ANL computational

facility into the data production of the STAR experiment [22]. In this case,

the throughput of a direct on-demand network connection between BNL and

ANL was not sufficient to saturate all the available CPUs at the remote site.

At the same time, the lack of available storage space at ANL did not allow

to prestage the data in advance. An optimization was achieved by feeding

CPUs at ANL from two sources: directly from BNL and through LBNL as

an intermediate site. Such counter-intuitive solution was established after

the complex analysis of the workflow performance in the multi site system

with respect to storage and network. This example illustrates an efficient use

of indirect data transfers which cannot be derived using simple heuristics.

To summarize, the management of distributed data intensive computa-

tions has been an important research topic for decades and its relevancy still

grows as the big data paradigm spreads its fields of application. Due to its

complexity, the problem of end-to-end optimization is decomposed into sev-

eral sub-problems. Optimization is often provided by separated components

at distinct levels. The global optimization can be achieved by ensuring inter-

play and coherence between components, parameter tuning and a high level

orchestration. Also, there exist case specific solutions which combine several

sub-problems in order to achieve better optimality. To our best knowledge,

no such solutions are adjusted to specifics of distributed data production.

Moreover, as it was discussed above and illustrated in the ANL case, the op-

timization approaches designed for common workflows with spatial and/or

temporal data locality do not fit the data production case well.

1.2 Contribution

The main goal of this thesis is to explore and develop a new approach to

optimization of large-scale data-intensive computations in HENP in general,

and STAR experiment in particular. In this thesis we propose a novel high-

level orchestration approach for distributed data production. The approach

exploits specific properties of the workflow in order to consider CPU, network

34

1 Introduction

and data scheduling within a single tractable optimization problem. Data

distribution is dynamically adjusted during computation in order to make

the best use of provided resources. The underlying mathematical model in-

troduces a new application of network flow maximization algorithms to job

scheduling and load balancing problems. Rethinking of existing job schedul-

ing policies which shifts the priority towards efficient data management has

shown its potential for large-scale data-intensive computations such as data

production in HENP. With the help of simulations based on data from real

systems our approach is validated and compared to scheduling techniques

used in practice. Also, the realistic simulations study the influence of net-

work performance on the overall computational efficiency.

In earlier work, which was completed in collaboration between BNL and

NPI CAS, a new approach for optimization of data transfer in distributed

systems was proposed by Michal Zerola [11]. Our initial idea was to extend

that previous work, and include CPU and storage scheduling into consider-

ation. We have proposed our first scheduling approach based on constraint

programming in [23]. That work allowed us to study the problem of joint co-

scheduling of jobs, transfers and data placement and revealed the potential

for optimization of resource usage. However, the limitations of such approach

were encountered. The underlying constraint satisfaction problem in its gen-

eral formulation appeared excessively complex. After refining the problem

formulation, we have discovered that it can be efficiently solved with network

flow maximization algorithms. We have presented the initial ideas of the new

model at the MISTA 2015 conference [24]. Shortly after, we have completed

the model with solving procedures, implementation, execution algorithm and

performed simulations of base use cases [25]. This article also summarizes

the most important contributions of the thesis as a detailed journal publica-

tion which was recently accepted after significant revisions along the time.

Further, we continued the development of the planning approach based on

network flow maximization, extending it to more use cases and evaluating in

large-scale simulations. In [26] we studied the influence of background net-

work traffic and simulated data production in Tier-1 network of one of the

largest HENP experiments. We added load balancing between multiple data

sources and optimization of initial data distribution in work [27]. There we

also performed simulations of data production in randomly generated large-

35

1.3 Structure of the Thesis

scale grids imitating real infrastructures. In [28] we extended our approach to

deal with data replication across the system and simulated a heterogeneous

grid of Tier-0,1,2,3 sites.

In order to further optimize data access for computations, we have stud-

ied applicability of known caching algorithms to data access patterns in

HENP [29].

The list of the corresponding publications with the primary authorship

of the author of this thesis is also provided in Appendix A.

1.3 Structure of the Thesis

In Chapters 2 – 5 we discuss the state of the art of distributed data-intensive

computing. First, in Chapter 2 we consider big data paradigm, its applica-

tions and technologies in order to provide a broader context for our work.

Then, Chapter 3 focuses on modern approaches to resource management and

job scheduling in distributed systems. Chapter 4 is dedicated to optimiza-

tion of data access for computations. The specifics of computing in HENP

is summarized in Chapter 5.

Then, in Chapter 6, we apply constraint programming to build an initial

model which allows to study the potential for optimization of data produc-

tion. The lessons learned from the study allowed us to better understand the

problematics and discover the limitations of the first model. Based on the

first experience, we have developed a novel job scheduling approach.

The main contribution of the thesis is presented in the two subsequent

chapters. In Chapter 7 we propose a novel approach to data production

planning based on network flow maximization. We formalize the details

of a considered problem and present the base model, solving method and

plan execution. Then we gradually extend our approach to reason on more

aspects of data production management. In Chapter 8 the new approach is

validated in simulations based on data obtained from real HENP computing

systems. There, our planner is compared against scheduling policies currently

used in practice. The extensive simulations consider various use cases. We

start with base use cases needed to understand the behavior of the system,

proceed with realistic infrastructures and confirm the results over a wide set

of randomly generated large-scale setups. In the simulations we also consider

background network traffic, balancing between multiple data sources, initial

36

1 Introduction

data distribution and data replication.

In Chapter 9 we provide an additional study of caching algorithms for

distributed data processing in HENP, which helps to further improve the

efficiency of data access.

A conclusion to the work and future outlook are given in Chapter 10.

A list of related publications by the author of this thesis is provided in

Appendix A.

37

2 Big data paradigm

The combined amount of data accumulated in digital world over past decades,

as well as rapidly increasing speed of its generation, has overwhelmed the ca-

pacity of traditional data processing/management approaches. The ability of

pioneering enterprises (both scientific and industry) to access/manage/process

data at a new unprecedented scale allowed to extract new, previously not

available, value out of extremely rich, detailed and diverse datasets. Early

success examples have ignited the emergence of big data paradigm. The

quantitative growth of data available to organizations has lead to a qual-

itative shift of its combined value: scientific (e.g. statistical) methods of

data analysis have been adopted by other communities, which allowed them

to gain valuable insights into their domains and make better informed and

timed decisions. Technologies dealing with big data have grown into a vast

ecosystem and provided new functionality to enterprises and individuals:

modern society has a commodity to access and utilize (sometimes implicitly)

the information at a scale and speed unimaginable few decades ago.

While still remaining a hot research topic due to a huge variety of par-

ticular applications, the term big data captures specific properties of modern

data-intensive applications. Multiple concurrent definitions exist which focus

on different aspects of the phenomena. The first definition of the trend (with-

out spelling “big data” itself) was given as early as 2001 using the concept of

3 Vs: Volume, Velocity and Variety [30]. Later the concept was extended to

4 Vs adding Value as another important aspect, making the most commonly

accepted definition of the big data term. For instance, in 2011 International

Data Corporation (IDC) [31] has defined big data in the following way:

“Big data technologies describe a new generation of technologies

and architectures, designed to economically extract value from

very large volumes of a wide variety of data, by enabling high-

velocity capture, discovery, and/or analysis.”

Similarly, the National institute of Standards and Technology (NIST)

defines big data as [32]:

“Big data is where the data volume, acquisition velocity, or data

representation limits the ability to perform effective analysis using

38

2 Big data paradigm

traditional relational approaches or requires the use of significant

horizontal scaling for efficient processing.”

The aforementioned concept of 4 Vs can be summarized as follows:

Volume. There is no fixed margin which separates “normal data”

from big data. The datasets referred in related studies vary from ter-

abytes and petabytes to exabytes, while the sheer volume of data ag-

gregated on the Internet and faced by modern search engines counts in

zettabytes. Big data is when the size of the data itself becomes part of

the problem [33].

Velocity. The speed at which the data are generated e.g. by scientific

experiments, individual users, commercial transactions, mobile devices

and sensors introduces additional challenges to its capture, storage and

processing.

Variety. The data coming from different sources can be structured,

semi-structured or unstructured (e.g. text messages or multimedia).

Extraction of value in such case often requires additional processing

including filtering, format transformation, consistency checks, redun-

dancy removal and error correction.

Value (or Veracity). The reliability, credibility and representativeness

of data may vary. For example, a large fraction of social media con-

tent, web and e-mails is made up by spam; clickstream and mobile

traffic are subject to noise. However, information of interest can still

be extracted from a huge volume of data with a low value density. A

complex workflow and data itself are prone to errors of various nature,

therefore, obtaining reliable outcomes of analysis is not a trivial task.

The data-value chain in big data applications consists of the following

stages: generation, acquisition, storage, analysis [18].

In this chapter, we provide a short overview of big data as a concept,

its application domains and technologies. More detailed overview including

the history of the field, discussion on definition, classification with many

particular examples can be found in [18, 34, 35, 36, 37]. The paper [38]

provides an insight into current agenda and perspective research topics as of

2016.

39

2.1 Applications

2.1 Applications

Information Technology (IT) solutions addressing the new data-intensive

paradigm were pioneered by scientific communities such as High Energy and

Nuclear Physics (HENP), astronomy and biology [39], as well as innovative

companies such as Google, Amazon, Twitter, Facebook, Microsoft, Oracle,

Apache, IBM and many others. Those solutions, while intensively evolving

during past years, are being widely adopted and further developed by more

organizations and companies.

In a collection of articles [40] authors combine experience from multiple

domains (Earth, environment and health care studies) in order to demon-

strate how these scientific fields were transformed by the exponential increase

in scientific data. They also demonstrate how the big data related technol-

ogy has influenced the scientific and scholarly communication, emphasizing

the trend of governments and funding agencies investing into open access to

both scientific data and publications.

Big data technologies have found its application in various scientific do-

mains. Let us quickly go over the map of modern big data science. In

computational biology repositories containing petabytes of data about genes,

proteins, small molecules and medical records are shared by many research

groups around the world. Data analysis allows to study genes, tumors, live

organisms, viruses, protein interaction, brain activity, etc. [39]. In medical

science and health care sector large volumes of data are shared for collab-

oration on clinical trials, personnel training, epidemics detection and moni-

toring, development of new diagnostics/treatment/drugs/vaccines [41]. Tens

of petabytes of data belonging to climate science mostly origin from satellite

instruments and numerical climate model simulations, but also include other

diverse instrumental data. Two major challenges in this domain were high-

lighted in [42]. The first is to ensure that the expanding volumes of data are

easily and freely available to enable new scientific research. The second is

to make these data and the results useful to a broad interdisciplinary audi-

ence, because there is a growing interest by other communities of researchers.

Social sciences are also among the most benefited from the rapid growth of

available data. While it operated surveys of thousands or so in the past, now

the researchers can harvest millions of social media post, huge quantities of

social networking information, location, search queries, related datasets from

40

2 Big data paradigm

biological sciences and much more [43]. In astrophysics big data technolo-

gies are applied to process the data originating from telescopes, satellites,

gravitational wave detectors [44] and large-scale simulations. The Berkeley

Open Infrastructure for Network Computing (BOINC) developed for Search

for Extraterrestrial Intelligence (SETI) [45] was a milestone in the develop-

ment of volunteering computing. NASA and ESA space agencies utilize big

data approaches to process information delivered by active missions as well

as to design new missions [46]. Big data paradigm became an essential part

of modern HENP experiments, it is discussed in more details in Section 5.

In industry, big data technologies have found a broad spectrum of ap-

plications. The examples include search/indexing systems [47], online re-

tail [35], social networks [48, 49], multimedia services [50], recommendation

engines [51], business intelligence [50], customer analytics [52], finance [35],

logistics [53] and engineering [35].

2.2 Technologies

2.2.1 Big data and HPC

It is important to notice, that two “worlds” of big data technologies can

be distinguished based on the type of utilized software stack. The first one

addresses big data problems using (customized) software which is generally

attributed to High Performance Computing (HPC). The second one uses the

technologies initially designed for big data problems specifically. Such di-

vision can be explained through history and application specifics. By the

time when the need for data-intensive computing has emerged, many corre-

sponding scientific fields already had well developed software/infrastructure

for large-scale distributed computing (HPC). Therefore, it was a natural

choice to gradually extend existing frameworks to the new data-intensive

problems. This also allowed to keep interoperability of the system for both

data and CPU intensive applications. At the early stage, when the require-

ments and applicability of data-intensive computing where not yet clearly

understood, there was no necessity to re-design already mature solutions of

HPC. Alternatively, other enterprises (such as Google and Yahoo), designed

their own solutions to address data-intensive computing on commodity hard-

ware specifically. As the concepts of big data became better understood and

41

2.2 Technologies

wide spread, such solutions were adopted and further extended by more or-

ganizations. A good side by side comparison of HPC and “pure” big data

approaches to data-intensive computing can be found in [54] and [55]. Both

of the approaches have many similarities and adopt concepts from each other,

therefore, a convergence is envisioned by many researchers in the field. As

of today, according to the studies, the HPC like approach provides better

performance optimization for specific applications, while the “pure” big data

ecosystem provides greater flexibility and fault tolerance.

The driving force behind the development of big data technologies is the

need to develop scalable solutions for parallel data processing. Technologies

for data-intensive computing can be classified into three categories: file sys-

tems, programming models and databases. Some of the solutions are highly

specialized for particular types of applications, while the others are designed

for greater generality. Often, the file systems and computing models are

co-designed to achieve optimization for a particular set of applications.

2.2.2 File systems

Storage solutions addressing the challenges of big data scale became a corner-

stone of the technology of the new paradigm. According to CAP theorem [56],

a storage system can ensure only two out of three desired properties: Con-

sistency, Availability and Partition tolerance. For instance, traditional rela-

tional databases operating relatively small datasets provide consistency and

availability (while typically running on a single server). ACID (Atomic, Con-

sistent, Isolated, Durable) [57] systems were designed to ensure consistency

and partition tolerance but feature a limited availability (eventual availabil-

ity) which can hinder throughput of dependent applications. Such systems

are useful in cases with a moderate load but strong requirements on data

consistency (e.g. financial transactions). The next step into big data era

was the emergence of BASE (Basic Availability, Soft-state, Eventual consis-

tency) systems [58]. Such systems sacrifice strong consistency in order to

ensure availability and partition tolerance. This approach matches the de-

mand for high I/O flow in distributed data-intensive applications and became

common in past years.

Google File System (GoogleFS) [59] and MapReduce [47] introduced by

42

2 Big data paradigm

Google were among early big data technologies which shaped the concept of

future relevant solutions. Both GoogleFS and MapReduce were developed

in parallel and are mutually optimized. GoogleFS was designed as a scalable

distributed file system for data-intensive applications hosted on unreliable

commodity hardware. It implies little data reuse within a single application

run. In GoogleFS multiple data servers storing the data are managed by

a master server which holds metadata. The master redirects user requests

to data servers, controls locks, manages namespace, guides data replication,

balances load and performs garbage collection. In this way the GoogleFS

separates file system control, which passes through the master, from data

transfer, which passes directly between data servers and clients. It treats

component failures as a norm rather than an exception, optimizes for huge

files that are mostly (concurrently) appended to and then (sequentially) read,

and provides fault tolerance by constant monitoring, data replication and

automatic recovery. MapReduce is a programming model and an associated

implementation for processing and generating large datasets. A User speci-

fies a map function that process key/value pairs, and a reduce function that

merges all intermediate values associated with the same intermediate key.

Programs written in such style are automatically parallelized and executed

on a large cluster of (commodity) machines. The runtime system takes care

of the details of partitioning the input data, scheduling the program’s execu-

tion across a set of machines, handling machine failures, and managing the

required inter-machine communication. It was proven that MapReduce can

emulate any distributed computation [60].

Hadoop [61] is an open source implementation of MapReduce. It was

co-designed with the Hadoop Distributed File System (HDFS) [62] which is

an open source version of GoogleFS. Since it is an open-source project it has

been widely adopted in big data community and further derivative versions

with different focuses have forked.

A broad spectrum of distributed file systems exists, however, none of

them can be seen as a one-size-fits-all solution, as they are optimized for spe-

cific use cases. For example, Network File System (NFS) [63] has a simple

architecture where a single server exports a local directory tree to a number

of clients. The capability of the single server limits the scalability of such

approach. Andrew File System (AFS) [64] distributes the responsibility for

43

2.2 Technologies

file system subtrees to different servers. However, static partitioning of a file

system tree limits its applicability. XrootD [65] uses tree based routing in

hierarchy of servers and is optimized for high-throughput access to HENP

datasets. The CernVM File System [66] is designed to distribute software

binaries. Lustre [67] is optimized as a scratch space for cooperating appli-

cations on supercomputers. Ceph [68] file system has distributed meta-data

architecture which overcomes the bottleneck of the central meta-data server

(as in GoogleFS, HDFS) at the cost of increased complexity of the system.

This file system has been recently used in STAR experiment [69, 70]. Decen-

tralized file systems (GlusterFS [71]) allow clients to compute the location

of data/meta-data by means of a distributed hash-table. Many of the dis-

tributed file systems (e.g. Ceph) provide build-in data redundancy where

the same data are replicated across multiple servers in order improve data

availability and sustain frequent joins and leaves of the nodes. However, in

such cases, the data placement is defined by the internal logics of the file

system and does not necessarily match data access patterns or availability

of computing power. A compact overview of most popular distributed file

systems can be found in [72] and [73].

Large organizations, such as experiment collaborations in HENP, store

data in a global federation of various cluster file systems rather than in a sin-

gle, globally distributed file system [72]. Data Federation seeks to integrate

data management and data access, resulting in a global management system

that can handle replication and transfer of data to storage or to running ap-

plications [74]. All LHC experiments currently rely on XrootD for the wide

area delivery of the data files, though several use the local experiment catalog

for discovery. Such heterogeneity of file systems and limitations of coordina-

tion should be accounted for when optimizing data-intensive computations

across multiple distinct facilities.

2.2.3 Computing models

We have already discussed MapReduce and Hadoop (in conjunction with

their relevant file systems GoogleFS and HDFS), let us briefly summarize

several other common computing models.

Dryad [75] is a general purpose computing engine developed by Microsoft.

It considers a computation as a Directed Acyclic Graph (DAG): programs

44

2 Big data paradigm

are graph vertexes and communication channels are graph edges. The graph

may change during the execution.

HPC infrastructures/software were traditionally designed for scientific ap-

plications aiming towards high-end computing capabilities. Computing and

data elements are typically separated in HPC. The workload consists of mul-

ticore jobs using MPI [76], OpenMP [77] or PGAS [78] APIs for communi-

cation. The jobs are typically allocated and managed by batch scheduling

systems such as PBS/Torque [79] (gang scheduling). Generally, these systems

focus on managing computing slots. Various approaches are applied to en-

able and optimize data-intensive jobs on HPC infrastructures. For instance,

pilot jobs generalize the concept of a placeholder to provide multi-level and

application level scheduling. This enables data-aware scheduling and data

staging. Modern grid middleware tools (e.g. Condor [80], DIRAC [81]) pro-

vide data access and management support for distributed MPI applications.

More details on conjunction of big data and HPC paradigms can be found

in [54].

Spark [82, 83] generalized MapReduce and multiple specialized computing

models. While previous solutions provided fault tolerance through data repli-

cation, Spark has a different approach. It introduced Resilient Distributed

Datasets (RDD) [84] — a read only collection of objects partitioned across a

set of machines that can be rebuilt if a partition is lost. Users can explic-

itly store an RDD (in memory or at persistent storage) across machines and

reuse it in multiple parallel operations (similar to MapReduce tasks). RDDs

achieve fault tolerance through a notion of linage: if a partition of an RDD

is lost, the RDD has information about how it was derived from other RDDs

and is able to rebuild just that partition. By default, RDDs are lazy and

ephemeral. That is, partitions are materialized on demand when they are

used in a parallel operation. RDDs are the best suited for batch applications

that apply the same operation to all elements of a dataset, but less efficient

for applications that make asynchronous updates to shared state (such as

storage systems for web applications or an incremental web crawler). Due to

its efficient (in-memory) data sharing, linage-based fault recovery, generality

(applicable to batch, iterative and streaming computing) and open-source

development model, Spark has seen a wide usage in big data community

recently.

45

2.2 Technologies

While the computing models described above are mostly focused on batch

processing, there is also a number of solutions for real-time (streaming) data

processing. Such solutions are used for processing messages and updating

databases, continuous querying on data streams, parallelizing an intense

query on the fly (e.g. a search query) and more [85]. Kafka [49, 86] and

Storm [87] are example of big data engines for stream processing.

Database functionality is often implemented on top of the two above

(e.g. BigTable [88] on GoogleFS and MapReduce, HBase [89] on Hadoop).

There are also independent database solutions for big data as MongoDB [90]

and Cassandra [91].

Many of the computing models implement their own application-level

resource management. This allows to dynamically schedule jobs to avail-

able resources. Hierarchical scheduling is applied to enable concurrency

control between multiple frameworks which are sharing resources. In such

system, application-level schedulers communicate with a central component

(master scheduler) which orchestrates allocation. The common examples of

such scheduling include YARN [92] and Mesos [93]. A summary of popular

big data computing models and corresponding resource management can be

found in [85]. We further discuss the topic of resource management in more

details in Sections 3 and 4.

46

3 Job scheduling in distributed computing

3 Job scheduling in distributed computing

The programming model defines the data processing workflow and its divi-

sion into parallel jobs. Many existing big data frameworks implement their

own application-level scheduling. The elastic frameworks (Hadoop, Dryad)

can scale its resources up and down, i.e., it can start using nodes as soon

as it acquires them and release them as soon as the job is completed. In

contrast, a rigid framework, such as MPI, can start running its jobs only

after it has acquired a fixed quantity of resources, and cannot scale up dy-

namically to take advantage of new resources or scale down without a large

impact on performance. A resource management system enables execution

of jobs from multiple frameworks on shared resources. There are multiple

functions which a resource management should provide. It includes resource

discovery, scheduling, allocation, monitoring, fault recovery and compliance

with authentication and security mechanisms. In this thesis we focus on job

scheduling and data access aspects of resource management.

3.1 Distributed platforms

While big data frameworks vary in their architecture, they commonly utilize

parallel processing where a large computation is split into many parallel

jobs. Those jobs are executed on various types of distributed computational

resources. Such resources are organized in multiple different ways depending

on their purpose, hardware, ownership and legacy aspects. In this regard,

such terms as supercomputers, computer clusters, data centers, grid and

cloud are often referred. Let us briefly explain this terms here.

A supercomputer, according to the traditional notion, has many proces-

sors connected by a local high-speed computer bus. At present time, the

term mostly refers to specialized systems designed to address specific com-

putationally intensive problems.

In cluster computing, a large number of processors are used in proximity

to each other. In other words, computer cluster consists of a set of loosely or

tightly connected computers that work together so that they can be viewed

as a single system. The components of a cluster are usually connected to

each other through fast local area networks, with each node (machine) run-

ning its own instance of an operating system. In most circumstances, all of

47

3.1 Distributed platforms

the nodes use the same hardware and the same operating system. Dedicated

middleware (such as RMS and DMS standing for Resource/Data Manage-

ment Systems) allows to use the machines aggregated into a cluster for the

common goal.

A data center can be viewed as a computer cluster dedicated to storage,

management, processing and providing access to large volumes of data.

Grid is a collection of computer resources from multiple locations to reach

a common goal. In the grid computing approach, the processing power of

many computers, organized as distributed, diverse administrative domains,

is opportunistically used whenever a computer is available. The grid can

be thought of as a distributed system with non-interactive workloads that

involve a large number of files. Therefore, grid computers tend to be more

heterogeneous and geographically dispersed (thus not physically coupled)

than cluster computers. The resources that are integrated into grid are typi-

cally dedicated computational platforms, either high-end supercomputers or

general-purpose clusters. Examples include LHC Computing Grid [4], Tera-

Grid [94], Open Science Grid [95], European Grid Infrastructure (EGI) [96],

NorduGrid [97] and MetaCentrum in Czech Republic [98].

Grids can be classified by topology into hierarchical, P2P (federated),

hybrid and arbitrary graphs. Hierarchical topology assumes a structured

network, generally in the form of a tree or a star. It is adopted in many sci-

entific projects and a multi-tier data grids (such as initial computing model of

LCG). In P2P architectures nodes act autonomously, possessing functional-

ity of both servers and clients at the same time. P2P offers more flexibility in

communication among components compared to hierarchy, however, it adds

complexity to the design and management. Hybrid architectures combine at

least two other architectures. For example, it can be a hierarchical topology

combined with a P2P-like communication of components at the same level

of hierarchy. Finally, in arbitrary graph topology nodes are freely connected

and can wary in roles. A scale-free network of servers and clients connected

via the Internet can be an example. Another example is a grid which was

initially designed as hierarchical but more elements and connections were

added arbitrarily over time.

Cloud is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

48

3 Job scheduling in distributed computing

servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction.

The cloud infrastructure can be viewed as containing both a physical layer

and an abstraction layer. The physical layer consists of the hardware re-

sources that are necessary to support the cloud services being provided, and

typically includes server, storage and network components. The abstrac-

tion layer consists of the software deployed across the physical layer, which

manifests the essential cloud characteristics [99].

The arising concept of cloud federations involves usage of resources pro-

vided by multiple clouds from distinct provides in order to execute large-scale

computations. This concept resembles the main aspects of grid computing

by the definition.

Cloud computing is based on several other computing research areas such

as High Performance Computing (HPC), virtualization, utility computing

and grid computing [100]. Viewed in a broader sense, the concepts of grid

and cloud computing have many similar features. Like the grid, the cloud is

a utility computing model that involves a dynamically growing and shrinking

collection of heterogeneous, loosely coupled nodes, all of which are aggregated

together and present themselves to a client as a single pool of compute and/or

storage resources. Most of the major differences come from the difference in

respective clients. In grid, clients run massive workflows, generally non-

interactive (e.g. large-scale scientific experiments), and the resources are

owned and administrated by multiple organizations. In cloud, the resources

owned by a single enterprise are tenanted by thousands (or millions) of clients

running smaller workflows, but often sensitive to response time. Nevertheless,

in both grids and clouds there is a common need to manage large facilities;

to define methods by which consumers discover, request, and use resources

provided by central facilities; and to implement highly parallel computations

that execute on those resources [101].

According to many surveys, such as [102], from the scheduling perspec-

tive, there are more common features among the discussed platforms then

specific ones. Moreover, it is increasingly common to consider hybrid infras-

tructures, in which in-house resources are complemented with resources from

cloud or grid platforms.

49

3.2 Scheduler architectures

3.2 Scheduler architectures

Figure 1 illustrates various types of job scheduling architectures [1]. Gray

(a) Monolithic (b) Two-level (c) Shared-state (d) Distributed (e) Hybrid

Figure 1: Architectures of job schedulers [1].

boxes represent resources, circles represent jobs and Si denotes schedulers.

The architectures can be divided into five groups:

Centralized (Monolithic). A single scheduler makes placement deci-

sions for all jobs and resources.

Two-level (Hierarchical). The scheduling over the entire system is

achieved through communication in a hierarchy of schedulers (typi-

cally two levels of hierarchy). Two cases are important. First, in big

data paradigm, multiple computing engines (e.g. Hadoop, Spark) have

their own application-level schedulers integrated. Those schedulers are

orchestrated by a central component (see Figure 1b) which resolves

conflicts and controls fair sharing of resources. The second case is hier-

archical scheduling in grid. There, each site (cluster) can have a local

scheduler (e.g. Condor [80]) which communicates with a central sched-

uler (e.g. Condor-G [103]). The jobs are submitted either directly to

local schedulers, or to the central scheduler which redirects the jobs

to the local ones. In this case the resources are statically partitioned

between local schedulers, and the central scheduler enables inter-site

job submission. In both cases, the central scheduler plays an active

role – allocates jobs based on its policy.

Shared-state (Decentralized). Multiple schedulers are plugged into

the central component. But this time the central component enables

50

3 Job scheduling in distributed computing

operation of schedulers but does not make placement decisions on its

own. For example, it can be a distributed database storing the state of

available resources. Multiple schedulers act concurrently, each having

a smaller scope of the problem: a specific type of jobs or a subset of re-

sources. The examples are Omega [104], Apollo [105] and Nomad [106].

Distributed (Fully-distributed). There is no central component in a

fully-distributed system. Each computing node has its own scheduler,

which can schedule incoming jobs at the node or forward it to another

one. The absence of a single bottleneck is an advantage. The downside

is that each scheduler has a limited knowledge of the jobs/resources

in the system, therefore the global optimality can be compromised.

Sparrow [107] is an example of such distributed scheduler.

Hybrid. The load is split between a centralized and distributed com-

ponents.The central component can utilize sophisticated algorithms for

scheduling of critical jobs, but use simple distributed heuristics for low

priority jobs. Hybrid scheduling is implemented in Tarcil [108], Mer-

cury [109] and Hawk [110] schedulers.

3.2.1 Examples

There is a variety of batch scheduling systems designed for MPI workloads at

a centrally managed cluster. Such systems feature centralized architecture of

a scheduler. The most common examples are: LoadLeveler [111], LSF [112],

Maui [113], NQE [114], PBS [115], Torque [79], Condor [80] and Moab [116].

Most of them were designed in 90-s and are still in use at modern scien-

tific computing centers, their development continues to stay up-to-date with

requirements of today’s applications.

A grid scheduler can be seen as a higher level on top of local schedulers.

The examples of grid resource managers are Condor-G [103], Globus [117]

and Legion [118]. The core effort of Condor-G’s planning and scheduling

was dedicated to matchmaking, i.e., finding appropriate resources and set-

ting the corresponding environment, security and data access for computa-

tional jobs at distributed systems. The matchmaking is performed based

on job requirements being analyzed towards properties and policies of re-

sources (participating clusters). Condor-G also provides functionality for job

51

3.2 Scheduler architectures

migration across computing clusters, error recovery, backups in progress of

computations, and scheduling of complex workflows described by DAGs.

Google’s Borg [119] is an example of a centralized cluster management

system. Each job runs in one cell (cluster). A cell consists of a set of ma-

chines, a centralized controller called Borgmaster, and an agent process called

Borglet that runs on each of the machines. The Borgmaster consists of two

processes: the main process and a separate scheduler. The main process

handles client RPC (Remote Procedure Calls) and manages the state of all

of the objects in the system (machines, jobs). The scheduler asynchronously

scans the jobs in the queue, checks their feasibility to find machines on which

the job could run and scores the machines to find the best placement for a

job. The scoring takes into account user-specified preferences but is mostly

driven by the built-in scheduling criteria. The Borglet starts/stops/restarts

jobs, manages local resources by manipulating OS kernel settings, manages

debug logs, and reports the state of the machine to the Borgmaster. The

Borgmaster process is replicated several times, each replica maintains an in-

memory copy of the system state. In case of failure of the active master,

one of the replicas is selected using election mechanism to replace it fast.

While the Borg is a proprietary software, its concepts and exploitation ex-

perience were utilized in the development of the next generation of cluster

management systems Kubernetes [120] and Firmament [121] which became

open-source.

Mesos [93] is an example of a two-level cluster management system. Au-

thors define it as a platform for sharing commodity clusters between multiple

diverse cluster computing frameworks, such as Hadoop and MPI. It intro-

duces a two-level scheduling mechanism called resource offers. There is a

master process that manages slave daemons running on each cluster node,

and frameworks that run jobs on these nodes. Each framework registers its

own scheduler with the Mesos master. The master, knowing the state of all

nodes, decides how many resources offer to each framework (e.g. to achieve

fair share). The framework’s scheduler decides which resources to accept and

which jobs to run on them (e.g. to achieve a better data locality).

Apache YARN [92] (Yet Another Resource Negotiator) has a similar ar-

chitecture consisting of a centralized Resource Manager (RM), multiple Ap-

plication Managers (one per each application/framework) and a Node Man-

52

3 Job scheduling in distributed computing

ager (NM) running at each node. Both AMs and NMs communicate to RM

through heartbeat messages in order to reduce communication load. The

main difference is that YARN is a request-based (in contrast to offer-based

Mesos) resource manager: RM allocates resources to AMs upon request spec-

ifying amount/properties of the demanded resources. This makes the system

more centralized (in some sources categorized as monolithic), since a single

component makes job placement decisions. Also, while Mesos has a fixed

pool of framework schedulers, YARN allocates AMs dynamically – one for

each running job.

Omega [104] is an example of a shared-state scheduler with the main

focus on scalability. Multiple independent schedulers are granted access to

the entire cluster and compete for resources in a free-for-all manner using a

shared-state. A resilient master copy of the resource allocations is maintained

using optimistic concurrency control. Once a scheduler makes a placement

decision, it updates the shared copy of the cluster state in an atomic commit.

At most one such commit will succeed in the case of conflict. The schedulers

can choose to use incremental transaction (which will accept all but the con-

flicting changes) or all-or-nothing transactions (either all jobs are scheduled

together or none are). In case of refused transactions, the scheduler does an-

other iteration on remaining jobs and updated cluster state. Therefore, the

two-level scheme’s centralized component is simplified to a persistent data

store with a validation code that enforces common rules. While the architec-

ture is highly scalable, a heavy load may lead to a large number of conflicts

which would force scheduler to re-run often.

3.3 Scheduling models

Given the scale of computations and amount of utilized resources in big data

applications, even a small improvement in efficiency of resource utilization

can have a large value. Increasing data processing efficiency allows enterprises

to save investments in hardware and electric power, as well as accomplish

computations in shorter time.

Most resource management systems have a modular design where sepa-

rate components take care of particular functions: communication, setting

runtime environment, monitoring, scheduling and etc. This allows to imple-

ment various logic in the scheduling component without changing the rest

53

3.3 Scheduling models

of the system. However, the design of the resource management system in-

fluences the design of the scheduling algorithm as it defines what inputs are

available and what outputs are expected.

A general formulation of the resource allocation problem can be found

in [12, 122, 123]. Expected Time to Compute (ETC) [123] and Total Total

Processor Cycle Consumption (TPCC) [123] models are often used to formu-

late job scheduling problems (especially in more early works). Such models

can be seen idealistic as they assume exact knowledge of the performance of

each job on each resource in advance. Moreover, important details of various

modern systems are not included into classical ETC and TPCC formulations

(multicore jobs; usage of various types of resources, e.g. CPU, memory and

network; monetary cost; fairness; data locality). Later practical works tend

to utilize customized models and consider interaction with monitoring ser-

vices which provide up-to-date information on the changing state of jobs and

resources. However, since the job scheduling problem is NP-hard there is no

general formulation / solution which would remain computationally accept-

able and match all modern large-scale distributed systems. Each particular

research addresses a certain combination of resource platform (single ma-

chine, cluster, grid, cloud, dedicated supercomputer or their combination),

workflow (type of jobs) and solution (allowed operations, solving method

and optimization criteria). Given the variety of such combinations, parallel

job scheduling in distributed systems has been a fertile research ground for

some decades. Thus, the number of papers with solutions and surveys re-

lated to the area is enormous. Those factors led to segregation into many

research groups with focus on particular problem instances. Such situation

significantly complicates the navigation in the existing knowledge base as

well as collaboration between the researchers. Moreover, the terminology

and taxonomies often vary between research communities. As a result, it is

difficult to trace and generalize (mathematical) similarities between consid-

ered problems and proposed solutions. Such problem is explicitly discussed

in [102] where the authors propose a universal taxonomy for parallel job

scheduling in distributed systems, based on previously proposed taxonomies

and an extensive analysis of publications in the field. For the mentioned

reasons we will not focus on any particular formal model in this section,

but rather discuss important elements and goals for development of such

54

3 Job scheduling in distributed computing

a model. More different taxonomies and surveys targeting specific cate-

gories of platforms (yet sometimes overlapping) exist, as for example: grid

resource allocation [122], data grids [12, 124], workflow management sys-

tems in grid [125], scientific workflows in IaaS clouds [126], general resource

scheduling in clouds [127, 128]. It is also worth to mention, that according

to [129], despite a wide selection of advanced scheduling algorithms, many

smaller infrastructures, which do not explore optimization, rely on well es-

tablished but yet simplistic approaches.

3.3.1 Terminology

Since terminology varies in publications from a wide range of related areas,

here we define the terms used in this thesis. In particular, the terms “job”

and “task” are ambiguous and their precise definition depends on the domain

(e.g, scheduling or computing) and the considered platform (cloud, grid,

cluster, operating system, etc.). For the purpose of scheduling, it is important

to distinguish which term corresponds to the atomic unit of work to be

considered.

As our research studies distributed data production in HENP, where grid

computing terminology is more common, we use the term (computational) job

to refer an atomic unit of computational work for scheduling. An important

implied example is a computing program which is executed on a single com-

putational node, occupies a fixed amount of resources, processes/produces a

definite portion of data and can be scheduled separately from its peers (in-

dependently of other jobs). A computational workflow consists of multiple

jobs, which may have specific dependencies between each other. We use the

term task in a more general meaning, which does not necessarily refer to a

computational job executed at a machine, but includes other types of atomic

work, e.g. a transfer of a file over a network link.

It is important to mention, that many studies on scheduling in big data

and parallel computing use the term “task” to define the smallest unit of

schedulable work (similar to our usage of “job”). In such terminology, a “job”

consists of multiple tasks and is similar to our usage of the term “workflow”.

For example, a MapReduce [47] job consists of multiple “map” and “reduce”

tasks. Also, a multicore job is often considered as a group of tasks each ex-

ecuted on a separate core. While different terms reflect important specifics

55

3.3 Scheduling models

of platforms, the scheduling principles often remain similar regardless of ter-

minology. In this thesis, we use the terminology defined in the previous

paragraph for consistency, but provide additional notes, where necessary, in

order to avoid confusion.

Next, let us define less ambiguous terms used in this thesis. Resource is

an entity which executes, processes or supports the task (e.g. CPU for a com-

putational job, network link for data transfer, storage for data placement).

Submission time is the time when the scheduler has received the job to be

scheduled (e.g. from the user). Start time is the time when the job starts

its execution in the resource. Waiting time is the time interval between sub-

mission and start of the job. Completion time is the time when the job has

completed its execution and releases the resource to other jobs. Duration of

a job is defined as the time interval between its start and completion times.

Strictly spiking, it can only be measured after the job is completed. However,

an estimation is implied when referring a duration of a not yet completed job

(e.g. a job being scheduled). In literature, duration is also often referred as

execution time or processing time. Slowdown is the ratio of the time spent by

the job in the system (from its submission to completion, including waiting

time) to its duration.

The choice of a scheduling approach greatly depends on the properties of

expected workload and target platform. There is always a trade-off between

the generality of anticipated workloads/platforms, algorithm complexity and

efficiency for the primary case. Next in this section, we discuss properties

of jobs, resources and desired optimizations which are important to define a

scheduling model. Let us start with the properties of computational jobs.

3.3.2 Jobs

Scheduling granularity. There are distinct types of workflows with re-

spect to how their jobs are allocated. The first type, multicore (MPI) work-

flows1, requires intensive communication and synchronization among jobs

during the execution. Therefore, all the jobs of a workflow should be allo-

cated simultaneously (gang-scheduling). If there are not enough resources to

1see Section 3.3.1 for discussion of terminology

56

3 Job scheduling in distributed computing

schedule such workflow immediately, the scheduler has to wait for more re-

sources to become free. These may imply putting a lock on already acquired

resources and preventing other workflows from using them (e.g. [130]). The

second type is more flexible, but dependencies between jobs still exist which

can be specified with a Directed Acyclic Graph (DAG). The workflow may

consist of sequential, parallel and synchronization stages, which implies or-

dering of some of the jobs and data exchange (e.g. Dryad [75]). The third

type of workflows is not constrained by communication or dependencies. Any

number of jobs can be executed at a time. The scheduler can start dispatch-

ing jobs of a workflow as soon as any number of appropriate resources become

available. For example, the map jobs of the MapReduce workflow do not re-

quire to communicate with each other. The only requirement is that the

reduce jobs should be able to access the map output, therefore they could be

scheduled simultaneously or after the map jobs. Another example is so-called

“bag-of-tasks” workloads, where jobs have no dependencies among each other

and can be executed out of submission order. Such model provides more flex-

ibility in scheduling and allows for better packing of jobs on resources over

time.

Job flexibility. A computational job may require a strictly defined amount

of resources for its execution (rigid) or can change its requirements according

to scheduler decision at startup (moldable) or during the runtime (malleable).

In case of evolving jobs, an application-level scheduler decides how much

resources should be acquired by the job.

Hierarchy of jobs. The jobs within a mixed workload may vary in their

priority. For example, user-facing services, interactive jobs or crucial produc-

tion services are more important than batch data processing jobs. Schedulers

implementing jobs hierarchy aim to provide shorter queuing time, better

placement choices or fault tolerance to jobs with higher priority.

Timing constraints. In some cases users, may want to specify deadlines

for their jobs. The deadlines can be implemented either as hard or soft

constraints. Real time and interactive jobs are the most sensitive to tim-

ing which requires the scheduler to support performance guarantees (Service

57

3.3 Scheduling models

Level Agreement aware schedulers). The jobs with no crucial time require-

ments are referred as best-effort jobs.

3.3.3 Resources

Let us discuss representation of resources in scheduling models.

Heterogeneity. All the resources in the considered problem may be equiv-

alent (e.g. a uniform computer cluster, or cores of the same CPU), or re-

sources may vary in their properties (e.g. grid). In the latter case, the

jobs may explicitly specify the requirements on resources (e.g. platform,

CPU frequency, memory size, operating system, installed software, access

permissions). It is a duty of a scheduler to check the consistency of such

requirements and identify a set of resources matching each job.

Slot-based vs. elastic resource representation. The pool of resources

can be divided into slots (e.g. a fixed number of cores and amount of memory)

which can place a single job. If the job does not consume exactly the amount

of resources in the allocated slot the resource trashing occurs. Alternatively,

resources can be dynamically shared between multiple jobs allocated to the

same resource (e.g. virtual machine). According to many studies, elastic

scheduling leads to a better resource utilization [85]. However, concurrency of

jobs allocated to the same resource may lead to interference and performance

degradation. Therefore, an isolation of concurrent processes is an important

aspect of resource management. In order to mitigate the interference, it is

preferable to mix jobs of distinct types (CPU-intensive, memory-intensive

and network-intensive) at a machine.

Over submission. A scheduling system may have multiple job queues for

different subsets of the machines. In such case, the same job can be inserted

into multiple queues. The job waits until it is scheduled for the first time

and then it is removed from the rest of the queues. Such approach is used

to implement certain policy features and improve job placement, however, it

sophisticates the operation.

58

3 Job scheduling in distributed computing

Resource leasing. In Infrastructure as a Service (IaaS) cloud computing,

the user defines how many resources (e.g. virtual machines) to lease. De-

pending on the pricing model, the price for resource lease may also vary in

time. Also, multiple types of VMs can be available for deployment with dif-

ferent price and combination of parameters (e.g. CPU speed, memory size).

When scheduling a workload on a cloud from behalf of a user, it becomes a

part of a problem to define how many (and what type of) VMs should be

requested at a given time, depending on the workload properties.

Speculative execution. If a workflow consists of multiple parallel jobs it

has to wait until every one of them is completed. Under a heavy load or

constrained resources, some of the jobs can get sub-optimal placement. The

progress of a job can be delayed by slower machines, data access overhead,

interference with other jobs, resource congestion or failures. Such jobs are

often called stragglers. Therefore, critical jobs can be executed in several

concurrent instances at different machines. Also, when the most of the jobs

in a workflow are completed and the stragglers become easy to detect, some

scheduling systems (as Spark [83] and several implementations of MapRe-

duce [47])2 can resubmit the unfinished jobs for speculative execution. The

output is taken from whichever instance of the job completes first and the

remaining instance is terminated. Such approach allows to improve the re-

sponse times but leads to excessive computational work.

Preemption. A scheduler may consider not only the new jobs from the

queue but also reconsider already scheduled and running jobs. It may be-

come advantageous to terminate some of the active jobs to provide a better

allocation to high-priority jobs. It is often used as a mechanism to enforce

fairness and better resource matching. Preempted jobs are restarted later

when more resources become available, or, in some systems, they may be

migrated to other resources. However, killing jobs in the middle of their

progress leads to a waste of computational work. To mitigate the losses,

active jobs are often assigned costs of preemption proportional to CPU time

already spent, i.e. their priority increases with time (hysteresis).

2The corresponding publications use different definitions of jobs and tasks. See discus-

sion in Section 3.3.1.

59

3.3 Scheduling models

3.3.4 Optimization

Advanced scheduling algorithms consider multiple solutions to the schedul-

ing problem and select the best one according to the scheduling goal. It is

typically done with the help of an objective function which scores a solution

based on its properties. Similar functions can be utilized as metrics for com-

parison of different algorithms against each other or for monitoring purposes.

Let us discuss the most commonly used optimization criteria. Data access,

being an important topic for this thesis, is extensively discussed in Section 4,

while the rest of the criteria are summarized below.

Makespan is the time interval between start and completion time for a set

of jobs. According to survey [102] 60 % of 100 most cited research papers on

job scheduling consider makespan minimization (sometimes along with other

metrics).

Flowtime is the sum of completion times of all the jobs (see [131]). The

smaller flowtime indicates faster completion of some jobs. It can be achieved

by scheduling shorter jobs ahead of longer ones. Flowtime is often used

as a secondary metrics to quantify the Quality of Service (QoS) in earlier

works. More recent works tend to utilize custom metrics for this purpose, or

explicitly incorporate compliance with the Service Level Agreement (SLA)

into their approaches.

Total weighted completion time is similar to the flowtime, but the

summed completion times of jobs are weighted according to their priority

(see [131]). Minimization of this metrics promotes faster completion of more

important jobs.

Response time of a job is the time interval between its submission and

completion. Average weighted response time is calculated as a weighted sum

of response times of all the jobs divided by the sum of the weights (see [131]).

This metric is applied in scheduling of interactive applications.

Waiting time of a job is the time interval between its submission and the

execution start. The average weighted waiting time is defined as a weighted

60

3 Job scheduling in distributed computing

sum of waiting times of all the jobs divided by the sum of the weights. Aside

from the quality of a schedule, in real systems, this metric allows to study

latencies introduced by the scheduling process itself.

Resource utilization can be defined as a ratio of effectively used resources

(e.g. CPUs processing data) to the total resource capacity (e.g. total num-

ber of CPUs, including ones currently idle). Such metric is important for

heavily loaded systems where it is highly desirable to utilize resources to full

capacity. Of cause, the capacity should not be exceeded to avoid performance

degradation.

Matching proximity compares a current job allocation to a “perfect”

allocation where each job is executed at a resource providing the shortest

execution time. Matching proximity is computed as a ratio of sums of job

execution times under the current and the “perfect” allocations (see [131] on

page 614). This metric is rarely used in recent works.

Fairness. When resources are shared between multiple users (virtual or-

ganizations/frameworks/jobs) it is important to maintain fair usage. One of

the common examples is that a large job should not monopolize an entire

cluster, delaying the progress of other (small) jobs. There is a vast spectrum

of approaches addressing this issue. A user can be limited in the number of

resources it is allowed to utilize simultaneously. Or the share of allocated

resources can be proportional to the fraction of user’s tasks over the total

number of active tasks. It can also be normalized with respect to a hierar-

chy of priorities between users. More sophisticated algorithms consider the

history of previous allocations and multiple types of resources (CPU time,

memory, network) [85, 132]. Users may be allocated “budgets” which are

spent when using resources. One of the common approaches is to specify

an objective function for optimization which expresses fairness. The policy

towards fairness can be soft (not dispatch additional tasks from the user

who currently exceeds its fair-share) or hard (preempt active tasks to main-

tain fairness). A policy may allow to execute tasks above calculated quota

when there are free resources (no concurrency), but at risk of those being

preempted later by new incoming tasks from different users.

61

3.3 Scheduling models

Monetary cost. An infrastructure may consist of resources with different

ownership and pricing models, including external commercial clouds. Those

resources can have distinct costs of execution of user’s jobs. A scheduler can

consider placement of jobs with respect to the cost of computation. Typically,

the goal is to either minimize the overall cost of scheduled computations or to

find the best trade-off between processing time and expenses. For example,

a user can specify a budget constraint for the submitted computations. It

is important to distinguish scheduling approaches which consider an actual

monetary cost of computations and those which use the term “cost” in gen-

eral meaning: in order to consider several optimization goals within a single

objective function.

Energy efficiency. Since electricity bills make a significant fraction of op-

erational costs of clusters and data centers the research on energy consump-

tion reduction is trending. This topic is addressed by research on both energy

efficient hardware and scheduling. When a computational cluster is not uti-

lized to the full capacity it is advantageous to aggregate active jobs on a

subset of machines and power-off the idle ones as well as related equipment

(e.g. network switches). It is important to maintain a stable level of op-

eration and not be miss-directed by short-term load fluctuations, because

excessive shutdowns/start-ups increase energy consumption and reduce life-

time of the equipment. It is also important to notice, that concentration

of jobs over fewer machines increases the probability of a correlated failure.

An alternative approach is Dynamic Voltage and Frequency Scaling (DVFS)

which allows different power modes in hardware. With DVFS the energy

consumption and performance are adjusted according to the resource load.

Network traffic. One can measure the amount of data transferred over

the network during processing. Smaller traffic indicates better job placement

decisions with respect to data locality, which allows to reduce network load

and decrease I/O waiting time. This metrics is typically used as a secondary

criterion.

Correlated failures. In large-scale clusters of commodity hardware, fail-

ures are rather a norm than an emergency. In opportunistic computing,

62

3 Job scheduling in distributed computing

resources can join and leave at any moment of time. For this reason, critical

services are often duplicated. For instance, a critical job can run in multiple

instances, one of which is selected to be active (master) and the rest are

backup. The redundancy can also be used to distribute the load between

service instances and reduce response time (e.g. the backup instances serve

read-only requests). In order to improve fault-tolerance, such instances are

allocated to minimize the probability of correlated failures. To achieve this,

the jobs are placed on distinct physical machines, located at distinct racks,

powered by independent sources, connected to different network routers or,

even to distinct geographical locations. A similar approach is often applied

to data replicas in distributed storage systems [68].

In addition, custom functions may quantify other goals of optimization,

e.g. violation of deadlines, number of migrated or preempted jobs, job pri-

ority compliance. Multicriteria optimization can consider a combination of

several metrics. Also, in order to compare different scheduling algorithms

the time required to make a scheduling decision is measured.

3.4 Scheduling methods

The problem of job scheduling in large-scale distributed systems is challeng-

ing. The search space of such problems is huge as it includes all possible

assignments of jobs to resources and the order of jobs. It also features com-

plex constraints and optimization criteria. Some of the common optimization

criteria are in mutual conflict, e.g., makespan and fairness, or energy effi-

ciency and tolerance against correlated failures. Moreover, the parameters

of resources and jobs are subject to changes and wrong estimations. As the

result, it is not just computationally problematic to find an optimal solution,

but sometimes even impossible to strictly define it in practical cases. For this

reason, heuristics and meta-heuristics are widely applied in practice. Such

methods allow to find efficient solution within a reasonable time without the

necessity to perform complete search. In this section, we summarize the most

widely applied solving methods to job scheduling problems in distributed

systems, which include: immediate mode heuristics, batch mode heuristics,

backfilling, local search, population-based meta-heuristics and several other.

Detailed surveys and taxonomies of solving methods applied to job schedul-

ing problem can be found in [12, 102, 123, 129]. More compact overviews of

63

3.4 Scheduling methods

the of the most popular methods are provided in [133, 134].

3.4.1 Immediate mode heuristics

Immediate mode heuristics [135] schedule one job at a time. The job waits

in a queue of unscheduled jobs until it is processed by the scheduler. The

job priorities can be implemented as queue ordering. Some schedulers op-

erate on multiple queues arranged by types of jobs or subsets of resources.

The queue-based approach is well suited for parallel processing by multiple

schedulers in hierarchical architectures. However, the schedulers do early

placement decisions which restrict choices for further waiting jobs. This cat-

egory includes:

• Opportunistic Load Balancing (OLB). Assigns each job to the earliest

idle resource. When multiple resources are available at the same time

OLB selects an arbitrary one. Such method provides uniform load

balancing, however, does not consider any additional optimization.

• Minimum Completion Time (MCT). The job is assigned to a resource

which provides the earliest completion time. MCT considers the time

when the resource completes previously assigned jobs (ready time) and

the execution of the job at the resource. However, MCT does not aim

to provide the best fit with respect to execution time of each job.

• Minimum Execution Time (MET). The job is assigned to the resource

with the smallest execution time for this job. MET does not take the

availability of resources into account. Therefore, neither load balance

nor makespan are optimized.

• Switching Algorithm (SA). Tries to combine strong sides from MCT

(load balancing) and MET (minimal execution times). It divides the

minimum ready time by the maximum ready time among the resources

in order to estimate current load balance. If the ratio is low MCT is

applied. When the ratio becomes close to 1, the algorithm switches

to MET. Two thresholds, a low and a high, are set to control the

switching.

• k-Percent best(kPB). For each job a subset of k % of resources with the

minimum execution time is selected. Then, MCT is applied within the

64

3 Job scheduling in distributed computing

subset. As well as SA this method can be seen as a combination of

MET and MCT. While SA is switching between the two, kPB tries to

find a trade-off for each decision.

3.4.2 Batch mode heuristics

Batch mode heuristics [136] produce a schedule for a set of jobs (batch) in one

scheduler run. Processing multiple jobs in a batch (possibly all the waiting

jobs) allows the scheduler to consider more scheduling options. Under such

approach, the jobs scheduled before can be also considered for preemption.

The downside of such approach is a greater computational complexity and,

therefore, a potentially larger scheduling overhead. However, if the use case

allows to set large enough intervals between scheduler runs, such increase in

solving time is acceptable. The most common batch mode heuristics are:

• Min-Min. First, the method calculates the completion time for each job

at every resource. Then the job with the earliest possible completion

time among all the jobs is scheduled to the corresponding resource. The

process is repeated with the remaining jobs and updated ready times

of the resources until all the jobs are scheduled. Min-Min allows to

minimize flowtime. That drawback of this approach is that the longer

jobs get delayed by the shorter ones.

• Max-Min. The method is similar to Min-Min. The scheduler compares

the jobs by their earliest possible completion times. The job with the

latest one is allocated to the corresponding resource. Effectively, this

method gives a higher priority to longer jobs.

• Sufferage. Allocates the resource to the job which would be disadvan-

taged the most if allocated to another resource. The sufferage value is

calculated as the difference between the second earliest and the earliest

completion time of a job. If two jobs compete for the same resource,

the job with the greater suffrage receives the allocation. The other job

is reconsidered after all pending jobs are analyzed.

• Relative cost (RC). Considers both load balancing and minimization

of execution times of jobs at resources. Those are conflicting criteria,

since for a good load balance the jobs cannot always be assigned to

65

3.4 Scheduling methods

the fastest resources. In order to find a trade-off, RC uses advanced

calculations (see [136]). It computes a static relative cost and a dynamic

relative cost for each pair of a job and a resource. The static relative

cost is an execution time of a job at a resource divided by the average

execution time of that job over all of the resources. It is calculated once

at the beginning of scheduling. The dynamic relative cost is calculated

at each iteration and takes ready times of the resources (completion of

already scheduled jobs) into account. It is defined as a job’s completion

time at a resource divided by the average completion time of that job

over all of the resources. At each iteration RC analyses every pair of

an unscheduled job and a resource. The pair with the smallest product

of the static and the dynamic costs is scheduled.

• Longest Job to Fastest Resource — Shortest Job to Fastest Resource

(LJFR-SJFR). This method is designed as a trade-off between makespan

and flowtime minimization. The number of instructions to be executed

by each job is assumed to be known in advance. Each resource pro-

cesses a known constant number of instructions per unit of time. At the

beginning of scheduling the resources are idle and the jobs are sorted by

number of instructions. Then the principle “longest job to the fastest

resource” is applied in such a way that each resource receives one job.

After that, the next resource that completes its job is assigned either

the shortest (SJFR) or the longest (LJFR) job from the rest of the

batch alternately (in rotation).

The immediate and batch mode heuristics for job scheduling are evaluated

in simulations in works [135, 136]. The authors conclude that the choice of

a scheduling approach depends on the properties of the workload, resources

and selected optimization criteria.

3.4.3 Backfilling

There are also methods specifically designed for scheduling of multicore

(MPI) jobs. Scheduling of such jobs of varying size potentially leads to re-

source under-utilization. For instance, the most simple but widely used [129]

algorithm is First Come First Served (FCFS) [137]. It schedules the first job

in the queue each time. If there are not enough resources (cores) to schedule

66

3 Job scheduling in distributed computing

the first job, the algorithm waits until they become available (resource drain-

ing) and so do all the other jobs in the queue. During this waiting, a part

of the resources remains idle. In order to utilize CPU time more efficiently,

backfilling allows jobs to jump the queue provided they do not delay the first

job.

EASY backfilling [138] algorithm calculates the earliest possible start time

for the first job in the queue and makes a reservation. Then, it scans the rest

of the queue and immediately schedules every job which has enough resources

to run and does not interfere with the reservation. Since only the first job

gets a reservation in EASY backfilling, the waiting time of other jobs can be

significantly prolonged.

The number of reservations can be increased to improve fairness to other

jobs. In case of slack-based [139] and selective backfilling [134] the number

of jobs with a reservation is related to their current wait time and slowdown

(the ratio of time spent by the job in the system to its execution time)

respectively.

Conservative backfilling [134] makes a reservation for every queued job

which cannot be executed immediately. It means that backfilling is performed

only when it does not delay any previously submitted jobs.

More backfilling algorithms can be found in [140]. However, the main

drawback of backfilling algorithms, as other algorithms using reservations,

is the assumption of precise knowledge about the job duration and resource

performance. In practice, the estimation of job duration, especially provided

by users, are far from being precise [141]. Moreover, such estimations may

not be available in some systems

3.4.4 Meta-heuristics

Local Search (LS) meta-heuristics [140, 142]. LS explores the search

space by applying local changes to the current state (point in the search

space) at each iteration until a (sub-)optimal solution is found. A time limit

for the search can be explicitly set. LS methods are applied to a broad

spectrum of computationally hard optimization problems. In job scheduling,

the following methods are often used [123]:

• Hill Climbing (HC). Starts at a randomly generated state and moves to

the best state in the neighborhood of the current state in each iteration.

67

3.4 Scheduling methods

If the problem is non-convex, HC may stuck in a local optimum and fail

to find the global optimum. This issue can be addressed with multiple

restarts of the search. However, the global optimum is not always

required in scheduling problems. In practice, it is often preferable to

find a “good enough” solution within the given time limit.

• Simulated Annealing [143]. In the search process, simulated annealing

accepts a worse state with a certain decreasing probability. This allows

to escape local optima in the search space.

• Tabu Search (TS) [144]. Similar to simulated annealing, TS allows

worsening moves, e.g. if no improving moves are available. As a key

feature, TS maintains a list of previously visited states in order to avoid

cycling.

Population-based meta-heuristics [131]. Population-based approaches

maintain and improve multiple candidate solutions using population charac-

teristics to guide the search. The initial population of solutions can be gen-

erated either randomly or using the methods described above in this section.

• Genetic Algorithms (GA) [145]. In a genetic algorithm (inspired by

natural selection) a population of candidate solutions is evolved towards

better solutions. At each iteration, the properties of best solutions

(according to fitness function) are recombined (with possible random

variations) to create a population for the next iteration.

• Memetic Algorithms (MA) [146]. Combine the concepts of population-

based search and local search. In addition to evolution (similar to GA),

a subset of candidate solutions undergoes an individual improvement

procedure (similar to LS) at each iteration.

• Ant Colony Optimization (ACO) [147]. A probabilistic technique for

solving computational problems which can be reduced to finding paths

through graphs. The method is inspired by the behavior of ants seeking

a path between their colony and a source of food.

• Particle Swarm Optimization (PSO) [148]. PSO explores the search

space by simulating the movement of a population of candidate solu-

68

3 Job scheduling in distributed computing

tions (particles) using analogies of position and velocity. Each parti-

cle’s movement is influenced by its local best known position, but is

also guided towards the best known positions in the search-space. An

example of job scheduling based on PSO can be found in [149].

There are also schedulers which utilize machine learning. The examples

are Paragon [150], Quasar [151], and the approach proposed in [152].

3.4.5 Network flows

There are several schedulers using network flow maximization (or min-cost

max-flow) [153] as an underlying solving algorithm. Here we would like to

discuss the known examples in more detail, since the scheduling approach

proposed in this thesis also uses network flows.

A flow network is a directed weighted graph with sinks and sources of

flow, where each edge is assigned a cost (per unit of flow) and a capacity

(maximum possible flow). The min-cost max-flow problem is to find a max-

imal flow from source(s) to sink(s) associated with a minimum cost. There

is a wide choice of polynomial algorithms solving network flow maximization

problem. Formulation of a scheduling problem in form of min-cost max-flow

requires several simplification assumptions, and is approached differently by

researchers.

According to the authors, Quincy [154] is the first scheduler of computa-

tional jobs using min-cost max-flow approach. Both jobs and resources are

presented as vertexes in the network. In addition, aggregative vertexes model

special scheduling cases when a job remains unscheduled or is ignorant of the

choice between a set of resources. The edges of the network represent schedul-

ing options. An edge from a job to a resource means it can be executed there.

The capacity of the edges represents the capacity of the resources: each job

vertex is a source of a unit flow, and each resource is a sink for as many units

of flow as the number of jobs it can accommodate. The cost of the edges ex-

presses scheduling preferences: data locality, cost of preemption, priority of

jobs, etc. When the min-cost max-flow problem is solved, the resulting flow

presents the scheduling decisions: a unit flow passing through a job shows

to which resource it is scheduled. The complexity of such problem depends

on both the number of jobs and the number of resources. Also, Quincy uses

a complex algorithm for network construction at each scheduling iteration,

69

3.4 Scheduling methods

which involves communication with every resource in the system. In case of

modern large-scale and heavily loaded systems the scheduling overhead may

significantly increase and become a bottleneck. Experiments show that it can

reach tens of seconds for the cluster of size of 10,000 machines. Quincy was

developed by Microsoft and is used in practice as a scheduler for Dryad [75]

framework.

The Firmament [121] scheduler uses very similar problem formulation

but addresses the issue of scheduling overhead. It uses several solvers with

distinct (adjusted for the problem) min-cost max-flow algorithms running in

parallel. The solution is taken from the scheduler that finishes first. Such ap-

proach allowed to significantly improve worst-case performance. The equiva-

lence classes are used to reduce the number of edges in the scheduling network

and thus decrease the problem complexity. Also, the Firmament uses incre-

mental updates to the network state. The evaluation was performed using

simulations and in a testbed cluster of 40 machines. The authors claim that

the scheduling latency is reduced by the factor of 20 compared to Quincy.

Firmament is an open-source software complemented with its own cluster

management system. There is an ongoing project for integration of the Fir-

mament scheduler into one of the most popular cluster management systems

Kubernetes [155].

70

4 Optimization of data access

4 Optimization of data access

In the previous section we have already discussed various optimization goals

of job scheduling. Here we focus on a specific one — data access. Efficient

data access for data-intensive distributed computations has become an im-

portant optimization problem with the establishment of big data paradigm.

In modern systems such optimization goes beyond job scheduling alone.

From an eagle’s eye view it can be seen as a union of multiple aspects:

workload mapping to resources, CPU scheduling, data transfer and prestag-

ing, data stream routing, network scheduling, storage management and data

replication. In fact, each of these aspects represents a distinct sub-domain.

Each of the named aspects is a complex optimization problem on its own,

e.g. CPU scheduling and optimal data placement are NP-complete prob-

lems [156]. Therefore, each practical solution considers one or a combination

of those aspects. The end-to-end optimization can be seen as a composi-

tion of multiple applied solutions each responsible for its part of a global

problem. Large-scale computing systems (e.g. scientific grids) deploy a cus-

tomized stack of components to enable distributed computing. The division

of duties between components can vary and overlap in particular implemen-

tations. In a very general case, aside from (a) job scheduling / workflow

management data access is optimized by components that provide (b) data

placement / prestaging, (c) data replication and (d) network load balancing.

Below we would like to summarize their general optimization efforts with

respect to data-intensive distributed computing.

4.1 Data aware job scheduling

Workload Management (and job scheduling) System (WMS) among other

functionalities performs mapping of jobs to resources. We already presented

various examples of jobs schedulers and WMS in Section 3.2. WMS may also

create dedicated data transfer jobs which are either treated as “normal” jobs

(scheduled along with computational jobs) or submitted to a dedicated data

placement service. In both cases, a data transfer job specifies the data to be

transferred and the destination. It may also specify current data hosts, the

deadline or the precedence relation with the corresponding computational

job.

71

4.1 Data aware job scheduling

Data awareness gets addressed increasingly often in more recent works

(21 % of most cited papers over decade [102]). The general methods for

scheduling parallel jobs with communication delays are extensively described

in [157] and [158]. Data access overheads can be added to estimated job exe-

cution time to provide better placement decisions by the scheduling methods

described in Section 3.4 and their derivatives such as XSufferage [141] and

Storage Affinity [159]. Many scheduling algorithms applied in practice ex-

ploit spatial data locality, when jobs are scheduled to the nodes holding the

data or as close as possible in a network sense. This can be implemented ei-

ther as a hard or a soft constraint. For example, there are algorithms which

utilize cost function for multi-criteria optimization and assign a higher cost

to job placement decisions which imply remote data access [121, 154]. To

exploit temporal data locality, the jobs sharing the data are placed to the

same resource, so that the number of data transfers can be minimized. Job

scheduling approaches applied in practice delegate data transfer scheduling

and data placement optimization to external components. The job allocation

decisions taken by the scheduler limit the options for future transfer routing

and scheduling. Since the job scheduling is disjoint from transfer scheduling

on the network topology, concurrent data transfers for newly allocated jobs

may lead to network congestion in the case when bottlenecks exist.

4.1.1 Examples

The Adaptive Regression Method (AdRM) [160] is focused on predicting the

performance of data transfer operations in network-bound distributed data-

intensive applications in a multiuser grid environment. As stated by the

authors, those predictions can be used for comparison of candidate sched-

ules of computational jobs, however, an exact scheduling algorithm is not

presented in that work.

DENS (data center energy-efficient network-aware scheduling) [161] is

particularly relevant in data centers running data-intensive jobs with low

computational load, but produce heavy data streams directed to the end-

users (such as video streaming and geographic information systems). The

design and specification are tight to the underlying data center architecture:

in presented work it assumes three-tier fat tree architectures (most common

for data centers), but is extensible to other cases. The observed load of con-

72

4 Optimization of data access

sidered systems is close to 30 % on the average. The main idea of optimization

is to aggregate the load on a subset of machines while not compromising net-

work performance. This allows to shutdown the rest of resources (machines

and network switches) in order to reduce energy consumption.

In [162] authors considered a problem of co-scheduling of job allocation

and data replication. The considered infrastructure resembles a computa-

tional cluster connected to grid. It consists of heterogeneous computing

nodes with local stores connected over LAN. The input data are placed at

external stores connected over WAN, where a bottleneck bandwidth to each

store is known. The scheduler based on genetic algorithm defines job order,

job assignment to nodes and data assignment to local stores in order to en-

able backfilling, data prestaging and temporal locality. An exact duration of

jobs is assumed to be known in advance. Also, neither storage nor network

sharing is considered.

An explicit model distributing jobs over a hierarchical grid with respect

to the network bandwidth was proposed in [163]. The network structure of

the grid was modeled as a tree and all the files were assumed to be of the

same size and processing duration. With the constantly growing number of

participating sites the hierarchical structure of the grids (e.g. WLCG) is not

strongly held. Moreover, the limitations of a hierarchical topology for data

dissemination were demonstrated in works [124, 164, 165].

4.2 Data transfer and placement

Data Placement Service (DPS) or Distributed Data Management (DDM) sys-

tem (e.g. Don Quijote 2 [166], Kangaroo [167], Kepler [168], Pegasus [169],

PhEDEx [170], Rucio [171], Stork [2]) executes data transfer requests sub-

mitted by WMS, computing jobs or users. A general example of workflow

decomposed into computational and data placement jobs, given in [2], is pic-

tured in Figure 2. If transfer requests are submitted in advance it allows

to perform data prestaging prior to computations. Also, output data can

be staged out for transfer from processing nodes to its destination. Staging

data in and out allows to overlap data transfer with computation in order to

improve overall processing throughput.

Bharathi and Chervenak [10] have studied data staging strategies in data

grids and their impact on the execution of scientific workloads. They clas-

73

4.2 Data transfer and placement

Allocate space for
input and output data

at execution site

Transfer input data
from storage site to

execution site

Execute the job

Release space
allocated for input

data

Transfer output data
from execution site

to storage site

Release space
allocated for output

data

Data Placement Jobs

Computational Jobs

Figure 2: Computational workflow decomposed into computational and data

placement jobs [2].

sified staging strategies performed by DPS into decoupled, loosely coupled

and tightly coupled based on interaction with job scheduling system. In the

decoupled data staging mode, data placement operations are carried with

minimal interaction with WMS. DPS is supplied with a list of data items

and a deadline by which they need to be staged into different computer re-

sources (sites). This is typically the case when users provision or reserve

compute and storage resources at sites.

In the loosely-coupled staging mode the workflow manager submits trans-

fer jobs to the DPS. To take the advantage of parallelism in the workflow

each computational job should be preceded by a transfer job that stages-in

the data required by that job. However, this comes at a cost, as each transfer

job may be processed by all or most of the workflow execution components,

leading to significant overheads in the execution of a data-intensive work-

flow. Further, data movement services may be subjected to high loads if the

workflow manager releases many transfer jobs concurrently.

In (prospective) tightly coupled staging mode the workflow manager is

integrated with data placement service. The authors envision such integra-

74

4 Optimization of data access

tion as a single logical entity that releases both computational jobs and data

transfer jobs in a coordinated manner. The resulting scheduler could alter

the order of release of computational jobs based on data availability and con-

straints on storage resources and data management services. Such scheduler

would be able to identify independent paths of execution in the workflow

and release computational jobs in a manner that distributes data transfer

load across the entire system. The authors also emphasize the importance of

appropriate data staging in and out of storage-constrained resources, since

data-intensive workloads consuming and generating large amounts of data

may affect other jobs utilizing the same shared file system. Finding a valid

schedule that allows execution of a workflow with storage constraints is an

NP-complete problem. The authors have performed simulations of these

data staging strategies using traces of different scientific workflows (such as

LIGO, CyberShake and Montage). The results showed that the best choice

of staging mode depends on the workflow properties. In short, the strategy

which provides the smallest interference of data transfer with job execution

is preferred. The workflows which stage-in large amounts of data at initial

stages would benefit from decoupled transfers. The loosely-coupled scheme is

beneficial when fewer transfer jobs are created and there is a greater overlap

in data transfer and execution of computational jobs. The tightly-coupled

strategy was tested to optimize for a constrained storage. The resulting

optimization appeared efficient for certain types of workloads only.

DPS addresses transfer failures and provides multiple optimizations for

data transfer performance. It selects an appropriate transfer protocol and

tunes transfer parameters (e.g. number of streams, block size) based on

performance monitoring [172, 173]. Advance storage reservation, when sup-

ported, allows to avoid transfer failures due to insufficient space. DPS typi-

cally implements concurrency control by limiting the number of active trans-

fers between any pair of hosts or in the entire system. To our knowledge,

the underlying network topology and per link bandwidth scheduling are not

typically considered by DPS. Replica selection strategy is applied when the

requested data are present at multiple locations. It allows to balance network

and server load. In various implementations the replica selection is performed

either by WMS or DPS. Simple policies are the most commonly applied: ran-

dom, explicitly specified list of preferences [169], network hierarchy (closest

75

4.3 Network usage optimization

parent/child of the destination node), best connectivity to the destination

(e.g. by latency, bandwidth, IP address driven) or least loaded host. More

advanced replica selection policies which utilize logs of previous performance,

transfer probing and multi-criteria optimization are surveyed in [164]. It is

important to note that the DPS has a limited number of options for the net-

work load optimization, since the transfer destinations and the deadlines (or

order) are determined by the allocation of computational jobs by WMS. It

is a natural choice to prioritize CPU scheduling over network and storage in

CPU bounded systems. However, such an approach may cause problems in

network-bounded cases, e.g. when data-intensive applications are executed

outside of a dedicated high-end network infrastructure.

Staging out the output data of data-intensive jobs is considered in [167]

and [174]. In both approaches the output is handled by a dedicated service

asynchronously to computations. In [167] the data is buffered at interme-

diate nodes along the transfer path in order to mitigate network failures or

congestion.

4.3 Network usage optimization

Several network technologies have a high potential for optimization of data

access for distributed data-intensive applications [9]. Dynamic Circuit Provi-

sioning (DCP) allows to set up circuits on demand for high priority transfers

and provide bandwidth guarantees, bypassing a possibly busy default routing

path [175]. Software Defined Networking (SDN) [176, 177] enables central-

ized control over the routing of data streams. It can be utilized for multipath

load balancing (e.g.[178, 179]) and scheduling of concurrent network flows us-

ing a detailed network representation. For example, the problem of network

scheduling is addressed in studies [180, 181, 182]. The research is ongoing

for closer integration of DCP and SDN technologies with WMS, DPS and

monitoring systems used in practice, such as AliEn [183], MonALISA [184],

PanDA [185] and PhEDEx [170]. In general, multipath load balancing and

scheduling are applied to active data streams or to transfer requests submit-

ted after the computational jobs had been scheduled. It would be practical,

if detection of bottlenecks at the transfer scheduling phase would allow to

reconsider (or influence) job allocation.

An emerging concept of Information Centric Networking [186, 187] en-

76

4 Optimization of data access

ables efficient sharing of bandwidth and storage by multiple users (or jobs).

To a certain extent, it can be seen as an integration of data replication into

networking. However, ICN does not meet the use cases with low data re-

usage between parallel computations.

In previous collaboration between BNL and NPI CAS, the problem of ef-

ficient data transfer in a grid environment was addressed [11]. Data transfers

between n computational sites and m data locations were considered but job

scheduling was not covered by that work.

4.4 Data replication

Big data computing strongly relies on data replication strategies for data

dissemination, optimization of access, fault tolerance and safety against loss.

Having more replicas of the same data across the systems gives more job

scheduling options to WMS exploiting data locality. The replication strate-

gies also exploit temporal and local correlations in data requests. Such ap-

proaches were efficiently applied to many workflows and systems and were

adjusted to their specifics. Data replication is used in various distributed con-

texts: data grids, clouds, distributed databases, content distribution systems,

mobile systems, storage technologies and etc. Here we imply the context of

large-scale distributed computing systems for scientific applications such as

grid, however, the general observations can be related to other contexts.

The idealistic solution would be to replicate all data to all possible loca-

tions (e.g. every site in grid), so that every instance could access data locally.

Obviously, such solution is not realistic since the storage space at sites and

network bandwidth between them are limited. Therefore, a data replication

strategy has to answer the following questions:

• When to create/delete replicas?

• Which data should be replicated?

• Which replicas should be deleted?

• Replica placement: where to place the replica?

• Replica selection: where to access the data when multiple replicas exist?

77

4.4 Data replication

4.4.1 Replica placement

Optimal replica placement is an NP-complete problem [188]. A great vari-

ety of replication strategies exist. Each implementation targets a particular

combination of infrastructure and workflow (data access pattern). In general,

the replication strategies can be classified using the following criteria:

Static vs. Dynamic. In static replication all decisions are made be-

fore the system is operational and not changed. It is a viable choice for

a well-defined non-changing environment and data access pattern. Dy-

namic replication adapts to the observed access pattern, performance

of the system components and their load. Such flexibility is necessary

for modern large-scale systems.

System topology. Each replication strategy is designed with some

target system topology in mind (e.g. grid topologies summarized in

Section 3.1). Simulations of replication strategies in various grid archi-

tectures [165] have shown that architectures with less restrictive com-

munication and having multiple network routes between sites provide

more data access optimizations. In such architectures the response

time is decreased, regardless of the applied replication strategy. Many

authors regard arbitrary graphs as the most realistic and interesting

representation of data grids for replication problems.

Centralized vs. decentralized. Centralized replication strategies

rely on a central authority to control all aspects of data replication. A

centralized system has one master replica for each data instance which

is updated and the updates are propagated to other replicas. In a

decentralized approach, multiple entities (such as grid sites or users)

can make decisions about replication. Additional synchronization is

needed to maintain data consistency in case of updates. In many big

data applications, including scientific computing, read-only data access

is used in data processing. Therefore, most of the common replication

strategies do not consider consistency on updates.

Replica granularity. Corresponds to the unit of data that can be

copied independently. It may be individual files, fragments of files (ob-

jects, blocks) or sets of files (datasets)[189]. Most of the replication

78

4 Optimization of data access

strategies for scientific applications in grids consider file level of repli-

cation.

Storage integration. Tightly-coupled replication mechanisms are tied

to storage architecture on which they are implemented including file

system and I/O mechanism. Since replication is implemented at a low

level, it is often invisible to high-level applications and users. Loosely-

coupled replication is superimposed over the existing file systems and

storage systems. Such mechanisms interact with the storage systems

through standard file transfer protocols and at a high level. Replication

can be initiated and managed by applications and users. Intermediate

systems exert control over the replication mechanism but not over stor-

age resources [124].

Push vs. pull. A replication event can be triggered differently. A

file can be replicated to a node upon request from that node (PULL).

Client-side caching is also regarded as pull replication. In push-based

approach a replication is triggered externally from the destination node,

e.g. by central service or initial replica host. Push-based replication is

utilized in proactive approaches which try to optimize for future data

requests. Pull-based replication can be regarded as a reactive approach

which adapts to current access pattern [165].

Periodicity. The replication can be adjusted continuously, where ac-

tions are taken in response to every file request or other events. Alter-

natively, replication can be performed periodically, e.g. triggered after

every fixed time interval [190].

Degree of replication. The number of replicas can be fixed for every

item, or dynamically adjusted based on its importance and popularity.

Considered parameters. The parameters considered by replication

strategies can be divided into two types: data associated and system

associated. Data associated parameters most commonly measure “pop-

ularity” of a given file, e.g. number of requests per file or time elapsed

since the last request. Such parameters also may include file size, type,

grouping of files (clustering) and etc. A similarity of parameters used

by replication strategies and caching policies demonstrates the close

79

4.4 Data replication

relation of those fields. System associated parameters may include

available storage at sites, server load, network bandwidth and cluster-

ing. There are replication strategies which utilize information about

previous requests and system performance (e.g. logs and monitoring

data) to predict future behavior [190].

Objective. Since data replication is often approached as an optimiza-

tion problem various objective functions are used. Similar functions

can be utilized as metrics to compare distinct strategies. The objec-

tives typically reduce: job execution time, response time on file request,

bandwidth consumption, access latency, local miss ratio, utilized stor-

age. Custom metrics are used to evaluate data locality, quality of

replica distribution, optimality of replication degree. In addition, when

usage of resources is charged (e.g. commercial clouds) the involved cost

(for storage and network usage) can also be considered by replication

strategy.

4.4.2 Replica selection

Replica selection is one of the crucial aspects of data management in big data

applications. When a requested file is replicated to multiple hosts the replica

selection policy determines which one should be selected. In hierarchical

replication strategies, such choice is driven by the topology: the closest parent

(or child) node is selected. More general algorithms typically rely on one of

the following parameters, or their combination [164]:

• Best bandwidth between the host and destination.

• Round trip time (RTT).

• Network distance, e.g. number of hops.

• Response time. History of previous transfers between hosts can be used

to estimate response time for future transfers.

• Load of the host, e.g. number of active requests.

• Access cost.

80

4 Optimization of data access

In addition, custom metrics can rank hosts by security and fault tolerance.

Before transferring large volumes of data an algorithm may probe the hosts

by fetching a small chunk of data. Advanced techniques are applied in order

to optimize for multiple parameters, including clustering analysis, ant colony

optimization, auction protocols and neural networks [164].

To our observation, common replica selection algorithms apply a greedy

approach, i.e., the best replica host is selected for each request but their

interference is not considered. While the current network and server load is

used in decision making, the influence of newly placed request falls out of

the picture. Therefore, the concurrency control, if supported, is delegated to

a data placement service or transfer tools. Alternatively, Zerola et. al. [11]

proposed a transfer approach which optimizes for parallel transfers between

n sources and m destinations. The approach allows to route and schedule

the transfers over the network in order to avoid congestion and minimize

response time. The requests for the same file from distinct users are grouped

together and served in such a way that the combined number of hops over

the network is minimized. The file is transferred just once over the shared

links on the paths to multiple destinations (transfer overlap). It allows to

reduce bandwidth consumption at the shared network links.

A general picture of the interaction between data replication, data trans-

fer and job scheduling in data grids is described in [124]. The impact of

the system topology on efficiency of common replication strategies is stud-

ied in [165]. The roles and objective functions of replication strategies in

data grids are surveyed in [189]. The survey [164] provides an insight into

replica selection strategies. The replication strategies which utilize data min-

ing techniques, i.e., analyze data on previous usage and performance in order

to optimize for future, are compared in [190]. Optimization of data-intensive

applications in grid was studied in [191]. In that work, an optimization was

achieved by replication of highly used files to more sites while the jobs were

executed where their input data is located. Similarly, the Storage Affin-

ity [159] approach exploits data re-utilization to improve the performance of

an application in grid. Both approaches are classical examples of techniques

improving data locality, and have found a wide application in practice.

To summarize, modern big data computing strongly relies on data repli-

cation strategies for data dissemination and optimization of access. Those

81

4.4 Data replication

replication strategies exploit temporal and local correlations in data requests.

Such approaches were efficiently applied to most workflows and systems and

were adjusted to their specifics. However, there are workflows, such as data

production (discussed in Section 5) where each file is accessed just once. In

such cases the common replication strategies cannot be efficiently applied.

82

5 Computing in High Energy and Nuclear Physics

5 Computing in High Energy and Nuclear

Physics

Data processing in modern High Energy and Nuclear Physics (HENP) is a

prominent example of big data applications. This scientific field was among

the pioneers who encountered challenges of big data even before the concept

became established and spread to other scientific fields and industries. In

2017 the amount of permanently archived data of all the experiments at

Large Hadron Collider (LHC) at CERN has reached 200 petabytes [192]. The

same year the scientific data and computing center at Brookhaven National

Laboratory (BNL) hosting the STAR experiment reached 100 petabytes of

recorded data [193].

In HENP experiments a beam of particles (e.g. electrons, protons, anti-

protons or heavy ions) is accelerated close to the speed of light. The beam

collides into another one accelerated in the opposite direction or into a fixed

target. The collision takes place inside a detector which measures the out-

come of particle interactions. The further sophisticated analysis of the col-

lected data allows to discover new particles, such as a Higgs boson, and study

fundamental properties of matter and physical interactions.

5.1 Computing activities

Modern particle accelerators operate at enormously high energy and luminos-

ity in order to provide sufficient event rates in the detectors. Such event rates

are necessary to accumulate enough statistics for scientific analysis within a

reasonable time period. For instance, the STAR experiment at RHIC detects

events at a rate equivalent to 70 GB/s. The full detector rate of ATLAS and

CMS experiments at LHC approaches 1 PB/s [7]. The raw data from the de-

tector are filtered by a trigger system and reconstructed into physical events

which are further analyzed by scientists. In addition to that, computer sim-

ulations of the experiment are performed in order to compare theoretical

predictions against the real data. In general, four major types of computing

activities can be distinguished in HENP:

Data acquisition. Since the goal of a HENP experiment is to discover

new physical phenomena, not every registered event is of scientific inter-

83

5.1 Computing activities

est. In fact, most of the events correspond to well studied phenomena

and are not recorded. A trigger system of a detector filters events based

on fast analysis of the signal. It may consist of multiple levels: the

higher the level – the more detailed analysis and the smaller the data

flow. Typically the level 1 trigger runs on highly specialized hardware

installed at the detector. It operates at frequency tied to beam crossing

rate (∼ 10 MHz) and each filtering decision is performed within tens of

nanoseconds. Triggers of higher level may operate on general comput-

ing hardware asynchronously to data readings. The data rate after the

trigger system depends on the specifics of an experiment. For example,

it is up to 400 MB/s for STAR at RHIC, 200 MB/s for LHCb, around

1 GB/s for ATLAS and CMS and 4-5 GB/s for ALICE at LHC [7]. The

data that survived all the trigger levels are recorded to a permanent

storage in form of files. Each file contains event records taken under

the same experiment setup. A complete set of files recorded under the

same experiment conditions is called a dataset.

Data production. Raw data from the detector describe its state at

each recorded event. It consists of readings of currents and voltages

at many elements of the detector (around 150 million of electronic

channels). Before the data can be analyzed by scientists, it is necessary

to calibrate the measurements and reconstruct tracks and properties of

the particles. This process is called data production. It is also often

referred as reconstruction or, in a more general big data terminology,

preprocessing. The data production is performed by campaigns where a

recently taken dataset is processed. Each file is processed exactly once

within one campaign. Such campaign typically lasts for several months

and processes hundreds of terabytes of data. Sometimes, a campaign is

repeated (after a significant time) when it allows to improve the quality

of the reconstructed data. The reconstructed data can be effectively

utilized only after an entire campaign is finished. For this reason, it is

highly desirable to execute data production with the shortest possible

makespan on given resources. The data production is typically centrally

submitted and managed by computing administrators.

Simulation. Monte Carlo simulations [4] are used to recreate the

84

5 Computing in High Energy and Nuclear Physics

physical events and the response of the detector. The simulations are

based on theoretical models and the results are compared to experi-

mental data at later analysis stages. The simulations are CPU-bound

applications which do not require significant amount of input data but

produce large amounts of output. Overall, the simulations often con-

sume a major fraction of CPU resources of a HENP experiment. This

type of computations is also centrally managed.

User analysis. The users (scientists and scientific groups) perform

analysis of reconstructed data from the detector and simulations for

new scientific discoveries. Data access patterns of such computations

are less predictable: the users are interested in various (overlapping)

subsets of data and perform analysis independently. Each particular

file can be processed many times by distinct users. Users may download

the required data to a particular facility available to them and perform

the analysis locally. More commonly, they may submit their compu-

tational jobs to the central scheduling system, specify the dataset to

be processed and the destination for the output. The central schedul-

ing system allocates the jobs according to its policy, user preferences

and spatial/temporal data locality. In general, the same optimization

techniques are applied as for scheduling of other common big data ap-

plications.

Data level parallelism is typical for HENP workload. This means that the

computations are divided into independent jobs, each job processes/produces

its portion of data (a file or a set of files). Except for the user analysis, those

portions of data do not typically overlap. All types of computations are I/O

and CPU intensive, while the simulations are CPU bound.

Petabytes of data being collected and processed by HENP experiments

annually require vast amounts of computing, storage and network resources.

Therefore, these large-scale experiments rely on distributed computing and

utilize computing facilities at many geographical locations. Aggregation of

such facilities to address a common computing problem is called a grid. There

exist multiple grid projects, often tied to specific scientific collaborations.

Worldwide LHC Computing Grid (WLCG) [3, 4] is a global collaboration

responsible for building and maintaining a data-oriented infrastructure re-

quired by the experiments at the LHC. The WLCG cooperates with several

85

5.2 Tiers

grid projects such as the European Grid Infrastructure (EGI) [96] and Open

Science Grid (OSG) [95].

5.2 Tiers

One important property of HENP computations is that the data originated

from a single source (the detector) is being propagated (replicated) to many

remote computing facilities. This property guides the design and operation

of the corresponding computing models. At glance, the initial idea was to

follow a hierarchical (tree) structure: the detector facility is a root of a tree,

regional centers are the next level and so on. Each site was assumed to access

(and sometimes store) a subset of the data from its parent. However, such

model was proven to be overly restrictive. As a result, the current concept of

Tiers in WLCG provides more flexibility for site roles and communication.

It defines four types (Tiers) of sites (see Figure 8):

Tier-0. A logically unique Tier-0 function is performed by two phys-

ical sites: one is the CERN Data Center in Geneva (Switzerland) and

the other is located at the Wigner Research Center for Physics in Bu-

dapest (Hungary). These sites are connected with two 100 GB/s data

links with a latency of 30–35 ms for fast synchronization. Tier-0 is

responsible for data acquisition, reconstruction, archiving to a tape

storage, and for the distribution to Tier-1 sites. All the data generated

by the experiment (raw, reconstructed, analyzed and simulated) is per-

manently stored at the tape archive of Tier-0 and in two more copies

at distinct Tier-1s.

Tier-1. There are 13 LHC Tier-1 sites, which can be seen as re-

gional centers. They are exploited for large-scale, centrally-organized

activities and can exchange data between them and any of the Tier-2

sites. They are responsible for storing raw and reconstructed data, data

production, simulation and safe-keeping of important analysis output.

Also, they may provide capacity for user analysis jobs. Having a high-

speed network connection to Tier-0 is essential for such site. Also, a

Tier-1 must have a tape archive for a permanent storage of experimen-

tal data.

86

5 Computing in High Energy and Nuclear Physics

Figure 3: Tier structure of WLCG [3].

Tier-2. There are about 160 Tier-2 sites in WLCG placed around the

world. Typically, those sites are large computing facilities of scientific

institutes and universities. Despite a smaller size, the aggregated CPU

and storage capacity of Tier-2s exceed those of other tiers. The pri-

mary purpose of those sites is running user analysis jobs. Tier-2s do

not have tape archiving and do not provide long-term custodial stor-

age. However, data production and simulation can also be performed

there upon available capacity. Setting-up and running a Tier-2 site for

WLCG in Prague is described in [15].

Tier-3. It is the most flexible Tier level as there is no formal agreement

between WLCG and Tier-3s on their respective roles. It can be, for

87

5.2 Tiers

example, a computer server of a scientific group, faculty or department.

Such flexibility allows facilities to temporally pledge available capacities

or to perform specific tasks.

In addition to the established primary infrastructure, HENP experiments

tend to utilize external volatile/elastic resources [194]. Examples of such

resources are: scientific and commercial clouds, volunteering computing, un-

used capacities of other experiments/collaborations.

Each HENP experiment maintains a separate software/middleware stack

to enable the computations. However, the research community tends to

join the effort, when possible, to develop versatile and solid solutions. For

example, such software as root [195], GEANT [196], PanDA [185], DPM [197]

are used across many experiments. Also, general concepts and approaches are

often shared, e.g. virtualization, pilot jobs, data trains. When it meets the

criteria, the experiments utilize common grid middleware (e.g. Condor [80],

GridFTP [198]) and contribute to the development.

88

6 Study of distributed job and data transfer scheduling using constraint
programming

6 Study of distributed job and data transfer

scheduling using constraint programming

In previous collaborative work between BNL and NPI CAS, a new data trans-

fer tool was developed [11]. The tool allows to optimize data transfer across

a distributed system with the help of centralized planning based on Con-

straint Programming (CP). As the research has shown, the global planning

of data transfers across a data grid can outperform widely used heuristics

such as Peer-to-Peer [199] and Fastest link [190]. Typically, data transfer

and distribution is not a stand-alone problem and should be viewed in a

broader context of data processing. However, the approach was focused on

planning of data transfers over network, but did not consider CPU and stor-

age allocation to processing jobs. Since any of the resources (CPU, storage

and network) may become a bottleneck and decrease resulting processing

throughput it is desirable to include all of them into the scheduling problem.

For this reason, in this study we reformulate the constraint programming

model from that research to provide joint scheduling for CPU allocation,

data transfer and file placement at storage. The optimization is achieved by

ensuring that none of the resources is overloaded at any moment of time and

either (a) input data transfer for each job is performed in advance before its

start or (b) the jobs are scheduled where the data are already present.

Problems of scheduling, planning and optimization are being commonly

solved with the help of Constraint Programming (CP) [200]. It is a form

of declarative programming which is widely used in scheduling, logistics,

network planning, vehicle routing, production optimization, etc. Here we

introduce our constraint satisfaction problem formulation for distributed data

processing and test it in simulations.

A Constraint Satisfaction Problem (CSP) consists of domain variables,

domains (a set of possible values of a variable) and constraints in form of

mathematical expressions over variables. A solution to CSP is a complete

assignment of values to variables which satisfies all the constraints. An op-

timal solution is the one with the minimal/maximal value of an objective

function of variables.

Our main goal here is to study if the scheduling of multiple resources can

be efficiently addressed as a Constraint Satisfaction Problem (CSP) in case

89

6.1 Model and solution overview

of distributed computing; and if such scheduling can provide an advantage

compared to traditional techniques of the field (independent management of

the resources). To answer those questions, in this chapter we present our

constraint based scheduling approach and simulations of distributed data

production. In the simulations we consider a simplified use case derived from

remote data production of the STAR experiment and compare performance

of our approach to other common scheduling policies.

6.1 Model and solution overview

The following input parameters are necessary to define our CSP:

Input data flow

Output data flow

Links between remote sites

CPUs

DISK

REMOTE 1

DISK

REMOTE 2

LOCAL

HPSS

CPUs
central
 NFS

DISK

REMOTE N

CPUs

CPUs

Figure 4: Resources considered in CSP based approach.

Computational grid (see Figure 4) is represented by a directed weighted

graph where nodes are computational sites ci with a given number of

CPUs NCPUi and storage space Diski; edges are network links l with

weight ol, called slowdown, which is the time required to transfer a

unit of data (ol = 1
bl

, where bl is the bandwidth of the link). A set

90

6 Study of distributed job and data transfer scheduling using constraint
programming

of incoming links of a site is denoted Ltoi , a set of its outgoing links is

Lfromi . A dedicated storage-only facility can also be modeled as a site

with NCPUi = 0.

Set of jobs. Each job j has a duration pj, it processes one input file f inj and

produces one output file f outj . The input file is initially placed at each

of source sites Sourcesj and output file must be transferred to one of

destination sites Destj. Size of a file f is denoted sizef .

Our goal is to create a schedule of jobs at computational sites, transfers over

links and placement of files at storages for a given computational grid and a

set of jobs. In order to solve this problem the variables of our model define

the resource selection and timing of each task:

Resource selection variables define a site where the job j will be exe-

cuted and a transfer path for each file f (either input or output of a

job). A set of boolean variables Yji defines if a job j is executed at

a site ci (either 1 if true or 0 if false). Similarly, the transfer path is

described by a set of boolean variables Xfl where 1 means that a file f

will be transferred over a link l and 0 means the opposite.

Time variables are: SJj is a start time of a job j, STfl is a start time of a

transfer of a file f over a link l, SFfi is a start time of placement of a

file f at a site ci and pFfi is its duration.

6.1.1 Model assumptions

Two important assumptions which are reused in the current model were

proven in a work on planning of data transfer in grid [11].

The first assumption states that the entire set of jobs (queue) can be incre-

mentally scheduled by subsets (chunks) without significant loss of optimality.

Such an approach helps to reduce the search space and thus improve solv-

ing performance. Moreover, planning for shorter periods and more frequent

generation of plans (or re-planning) provides a better level of adaptability to

the changing environment.

The second assumption states that a network link can be modeled as an

unary resource without loss of generality. In other words, in our model we

consider that only one file can be transferred over a link at a time. The

91

6.1 Model and solution overview

measurements in [11] have shown, that a sequential transfer of a set of files

(using multiple threads for each transfer) does not require more time than a

parallel transfer of the same set of files over the same link.

6.1.2 Solution overview

Computational time is an important factor for online scheduling. In case

of scheduling of a large number of jobs by portions, fast performance of a

scheduler is required to produce an entire schedule within reasonable time.

Also, if a schedule has to be reconsidered due to system reconfiguration or

execution failure a new schedule should be generated fast. An incomplete

search with an explicitly set timeout is used in our approach in order to

reduce solving time. It allows to find a suboptimal solution of required

quality within a given time limit. Also, in order to reduce an overall problem

complexity, the problem is divided into two subproblems and the search is

performed in two stages:

1. Planning stage: instantiate the resource selection variables in order to

assign resources (computational sites and links) for each task (compu-

tational jobs and file transfers). This stage includes:

• Constraints on file transfer paths and job allocation.

• Estimation of the makespan Test for a given resource assignment.

• Search for an assignment of Xfl and Yji which minimizes estimated

makespan.

2. Scheduling stage: instantiate time variables in order to define a start

time for each task. This stage includes:

• Fixed values of Xfl and Yji.

• Constraints on the order and duration of tasks.

• Cumulative constraints on resources.

• Search for an assignment of SJj , STfl, S
F
fi and pFfi with a minimal

makespan.

92

6 Study of distributed job and data transfer scheduling using constraint
programming

6.1.3 Constraints at the planning stage

At the planning stage the problem is to assign tasks (computational jobs

and file transfers) to resources (computational sites and links) in such a

way that the set of tasks could be completed within the minimal time. In

other words, at this stage we instantiate resource selection variables Xfl and

Yji minimizing estimated makespan Test. It considers estimated completion

time among all resources which is the time required to process the tasks

assigned to them. The optimization function at this stage is not expected to

provide correct makespan estimation, but rather to balance the load among

the resources. It is defined as a sum of the maximal estimated completion

time among the sites TCPUi and among the links T linkl :

Test = max
i∈Sites

(TCPUi) + max
l∈Links

(T linkl) (1)

To find the estimated completion time for each site TCPUi we divide the

total duration of assigned jobs by the number of CPUs and compare it to

the duration of the longest assigned job. The largest value is selected as an

estimation:

TCPUi = max
(∑j∈JobsYji · pj

NCPUi
, max
j∈Jobs

(Yji · pj)
)

(2)

The estimated completion time of link l is defined as follows:

T linkl =
∑

f∈Files

Xfl · sizef · ol (3)

Figure 5 illustrates a transfer path assigned to a single job j at the plan-

ning stage. The sites which are input sources for this job are colored red, the

output destinations are colored blue, the site selected for the job execution is

colored green, the white sites are either intermediate or not used. Red arrows

are the links selected for input transfer, blue arrows are the links selected

for output transfer, unused links are gray dotted lines. Numbers inside the

sites indicate their id. The small red and blue numbers near links are the

values of Xfl for the input and the output file, respectively. The small green

numbers near sites are the values of Yji. The gray circles and letters refer to

the constraints described in the following text.

For each job we have to assign a transfer path for an input and an output

file which can be defined by the following constraints:

93

6.1 Model and solution overview

A B

C

D

1 2 3 4

5 6 7

8

0 0 0 0 0 0

0 0
0 0 0 0

0 0

0 0 0 0

0 0
1 0

1 0

0 1

0 1

0 0 0 0

0 0 0

1

Input source

Output dest.

Intermediate site

Processing site

Input transfer

Output transfer

i

i

i

i

Figure 5: Example of a transfer path for one job.

• An input file has to be transferred from one of its sources over exactly

one link (see A in Figure 5). The file should not be transferred to a

site which already contains it.

∀j, f = f inj :∑
l∈A1

Xfl = 1, A1 =
⋃

ci∈Sourcesj

Lfromi ;

∑
l∈A2

Xfl = 0, A2 =
⋃

ci∈Sourcesj

Ltoi ;

(4)

here A1 and A2 are the sets of links leading from/to all the source nodes

of file f .

• An output file has to be transferred to one of its destinations over

exactly one link (see B in Figure 5). The file should not be transferred

out of its destination.

∀j, f = f outj :∑
l∈A3

Xfl = 1, A3 =
⋃

ci∈Destj

Ltoi ;

∑
l∈A4

Xfl = 0, A4 =
⋃

ci∈Destj

Lfromi ;

(5)

here A3 and A4 are the sets of links leading from/to all the destination

nodes of file f .

• If an intermediate site ci (neither source, destination nor selected for

the job execution) has an incoming transfer of a file f it also has an

94

6 Study of distributed job and data transfer scheduling using constraint
programming

outgoing transfer of the same file (see C in Figure 5):∑
l∈Ltoi

Xfl =
∑

l∈Lfromi

Xfl. (6)

• There must exist exactly one incoming transfer of an input file f inj and

exactly one outgoing transfer of an output file f outj at the site which

was selected for the job execution (Yji = 1) (see D in Figure 5).

∀j, i|Yji = 1 :∑
l∈Ltoi

Xf inj l = 1;
∑

l∈Lfromi

Xf inj l = 0;

∑
l∈Ltoi

Xfoutj l = 0;
∑

l∈Lfromi

Xfoutj l = 1.

(7)

• A file f can be transferred from/to each site ci at most once.

∀f, i :
∑
l∈Ltoi

Xfl ≤ 1;
∑

l∈Lfromi

Xfl ≤ 1. (8)

• Each job j is executed at exactly one site ci (site 8 in Figure 5):

∀j :
∑
i∈Sites

Yji = 1 (9)

In addition, we use constraints for loop elimination, similarly, as it is de-

scribed in [201]. The main principle of such constraints is that for each

subset of r nodes Cr the number of transfers on internal links should be less

than r. Excessive constraints can slow down the search procedure. In our

case using such rule for r = 2 only has shown the best performance. Larger

cycles can be eliminated after the schedule is created.

6.1.4 Constraints at the scheduling stage

At the scheduling stage the problem is to assign a start time for each task

and a duration for file placement (SJj , STfl, S
F
fi and pFfi). Here we assume

the values of Xfl and Yji are fixed after the previous stage. At this stage we

apply constraints on the duration and order of tasks as well as cumulative

95

6.1 Model and solution overview

constraints on the resources. The optimization criterion is the makespan,

which is the latest completion time of all tasks. Since we already know

that the latest task would be a transfer of an output file, we can define the

makespan as follows:

Cmax = max
l,j,f=foutj |Xfl=1

(STfl + sizef · ol) (10)

Figure 6 illustrates a schedule corresponding to the transfer path pre-

Transfers

Jobs

Files

input

output

input

output

Resource id

link

link

link

link

CPU

disk

disk

disk

disk

5->8

2->5

8->7

7->3

8

8

5

8

7

A

B CD

E

F

G

time

Figure 6: Example of a schedule for one job including related data transfers

and placements.

sented in Figure 5. Each rectangle represents an active task at a resource.

Red and blue colors indicate the input and the output files, respectively.

Green color indicates job execution. Small black arrows and capital letters

demonstrate examples related to the constraints described further. Please,

note, that only a single example per constraint is referred, in order to keep the

illustration tractable. In fact, the constraints consider many combinations

of tasks, therefore, more examples can be spotted at the figure. Also, the

input file placement at the source site 2 and the output file placement at the

destination site 3 are not considered as a part of the problem, because those

are permanent copies which are managed independently from our approach.

The following constraints on the order and duration of tasks are

used at the scheduling stage:

• An outgoing transfer of a file from a site can start only after an incoming

transfer to that site is finished (example A in Figure 6). The first

96

6 Study of distributed job and data transfer scheduling using constraint
programming

transfer of an input file from its source and the first transfer of an

output file from the processing site are exceptions from this constraint.

∀f, i, lfrom ∈ Lfromi , lto ∈ Ltoi |Xflfrom = 1, Xflto = 1 :

STflfrom ≥ STflto + sizef · olto
(11)

• A job can start only after the input file is transferred to the selected

processing site (example B in Figure 6):

∀j, l, f = f inj : SJj ≥ STfl + sizef · ol. (12)

• An output file can be transferred only after the job is finished (example

C in Figure 6):

∀j, l, f = f outj : SJj + pj ≤ STfl. (13)

• In order to guarantee enough storage space to complete each transfer,

we assume that a file appears at a site at the moment when its incoming

transfer starts (example D in Figure 6):

∀f, i, l ∈ Ltoi , Xfl = 1 : SFfi = STfl. (14)

• A file can be deleted from the start node of a link after the transfer is

finished (example E in Figure 6):

∀f, i, l ∈ Lfromi , Xfl = 1 : SFfi + pFfi = STfl + sizef · ol, (15)

• In order to guarantee enough storage space for each new output file,

we assume that an output file appears at a site at the moment when

its job starts (example F in Figure 6):

∀j, f = f outj , Yji = 1 : SFfi = SJj . (16)

• An input file can be deleted from the processing site after the job is

finished (example G in Figure 6):

∀j, f = f inj , Yji = 1 : SFfi + pFfi = SJj + pj (17)

97

6.1 Model and solution overview

Cumulative constraints are widely used in CP to model resource usage

by tasks. Each cumulative constraint requires that a set of tasks given by

start times, durations and resource usage do not exceed a resource limit

at any moment of time [200]. In our case we use three sets of cumulative

constraints: for CPUs, storages and links. These constraints are summarized

in Table 2.

Table 2: Summary of cumulative constrains on resources used in CP model.

Task Resource Start Duration Usage Limit

Job j CPUs at ci SJj pj 1 NCPUi
Transfer of file f Link l STfl sizef · ol 1 1

Placement of file f Storage at ci SFfi pFfi sizef Diski

In order to define the cumulative constraints formally, let us consider arbi-

trary moment of time t ∈ [0,∆T], where ∆T is the duration of a scheduling

time interval. We define the three sets of cumulative constraints for our

problem in the following way:

• CPU usage at each site ci:

∀t, i :
∑

j|Yji=1,SJj ≤t≤SJj +pj

1 ≤ NCPUi (18)

We sum over all the jobs (each uses one CPU) assigned to ci (Yji = 1)

which are starting before t and finishing after.

• Usage of each network link l (one transfer at a time can be active):

∀t, l :
∑

f |Xfl=1,STfl≤t≤S
T
fl+sizef ·ol

1 ≤ 1 (19)

We sum over all the file transfers assigned to the link l (Xfl = 1) which

are starting before t and finishing after.

• Storage usage at each site ci:

∀t, i :
∑

f |SFfi<t≤S
F
fi+p

F
fi

sizef ≤ Diski (20)

98

6 Study of distributed job and data transfer scheduling using constraint
programming

Here we sum over all the files which are placed at the storage at ci
before t and removed after. If the file is never transferred to the site,

both its start time and duration equal zero (SFfi = 0 and pFfi = 0) and

it is not included in the sum. We do not consider initial sources and

final destinations of the files, since their storage is managed separately

from our scheduling.

6.2 Simulation, results

The proposed constraint satisfaction problem was implemented using MiniZ-

inc [202] and Gecode [203] was used as a solver. The simulations were running

under Windows 8 64-bit on a computer with Intel i5 (4 cores) 2.50 GHz pro-

cessor and 6 GB memory. The Gecode solver was running in a parallel mode

using 4 threads.

Four scheduling approaches were compared in the simulations:

Local: All the jobs are executed at the local site only. This strategy was

used as a base line for comparison against other strategies.

Equal CPU load: Jobs are distributed between sites with the goal to main-

tain an equal ratio of job duration per CPU. Each job requests an input

file transfer after it is started and waits for the output transfer to be

finished. In many distributed computing models the input data are

divided between computing sites based on static rules (fixed amount

per site, per CPU or certain percentage of dataset). Since the job du-

ration is typically proportional to the input size (within the same type

of jobs), such approach will result in a similar load distribution.

Data transferred by job: Each CPU pulls a job from the queue when it

is idle. Then it has to wait for an input transfer before the job starts

and for an output transfer after the job is finished.

Optimized: This strategy is based on the model proposed in this chapter.

After the testing simulations, the first implementation of the scheduler

was found to be excessively complex. A problem of realistic size featuring

multiple sites and thousands of jobs required many hours to compute an

acceptable schedule. Data production jobs typically last for approximately

99

6.2 Simulation, results

two days. Therefore, the scheduling can be performed rarely allowing for

the long solving time. However, in order to make the approach scalable to

modern large-scale systems (featuring many tens of sites and hundreds of

thousands jobs), a further simplification and optimization of the scheduler

is clearly needed. For this reason, here we present the simplified simulations

for the first implementation of the scheduler and discuss its limitations and

further evolution in the next section.

We have limited our initial simulations to a configuration with three sites

only and omitted constraints on storage. This allowed to set the time limit

to 3 minutes for both planning and scheduling stages. The main purpose

of these simulations was to check the potential of joint scheduling of jobs

and transfers for optimization of data production. It also allowed to gain

experience and ideas for further reconsideration of the scheduling approach.

The simulated environment consists of 3 sites: a central storage (with no

CPUs) which is the single source for input files and the single destination

for output files, a local processing site and a remote processing site. The

slowdown of links between the central storage and the local site was set to 0,

which means that the transfer overhead to/from the local site is negligible

comparing to the remote site.

The slowdown of the links to/from the remote site was increasing in each

simulation proportionally to a slowdown factor. The parameters of jobs were

taken from log system of the STAR experiment. The considered jobs cor-

respond to data production performed at computational site KISTI (South

Korea) [204]. The average job duration was 2,760 minutes (46 hours) and

average time of transfer was 5 and 10 minutes to/from the remote site re-

spectively. We use the original values of the transfer times in the simulations

where the slowdown factor equals one. Then, in further simulations, the

transfer times increase proportionally to the slowdown factor. This allows to

study the influence of network performance on job scheduling. In the simu-

lated infrastructure 80 % of CPUs were available at the local site and 20 %

at the remote site. 2,000 of jobs were scheduled stepwise by subsets (chunks)

of 200.

The plot in Figure 7 shows the makespan improvement by different schedul-

ing approaches compared to the job execution at the local site only. It is

100

6 Study of distributed job and data transfer scheduling using constraint
programming

1 10 100
-10%

-5%

0%

5%

10%

15%

20%

25%

Equal CPU load

Data transferred by job

Optimized

slowdown factor

m
ak

es
p

an
 im

p
ro

ve
m

en
t

Figure 7: Makespan improvement of CSP based approach in simulations with

real data.

calculated using the following formula:

makespan improvementx =
C local
max − Cx

max

C local
max

· 100 % (21)

The curves shows the dependence of the improvement on the transfer over-

head to the remote site which increases proportionally to the slowdown fac-

tor. When the transfer overhead becomes significant both heuristics (“Equal

CPU load” and “Data transferred by job”) fail to provide an efficient usage

of the remote resources (the makespan improvement goes below zero). Neg-

ative makespan improvement means that, in this case, it would be faster to

process all the data locally than to send its part to a remote site relying on

the heuristic. The proposed global planning approach (Optimized) system-

atically provides a smaller makespan and adapts to the increase of transfer

overheads better than the other simulated heuristics. It is able to provide a

positive gain in makespan by using remote resources even when the transfer

overhead is comparable to a job duration.

6.3 Limitations of the model

A problem of scheduling of distributed data production was formulated in a

form of a constraint satisfaction problem where CPU allocation, storage usage

and data transfer were mutually considered. This model provides a formal

description of the general problem we address in this thesis. The simulations

of simple cases of distributed data production, where our first approach was

101

6.3 Limitations of the model

compared against other general policies, have shown that scheduling of CPU

allocation coupled with data transfer has a potential to improve an overall

processing throughput. The advantage of such approach is more significant

in cases when network performance becomes the bottleneck.

The simulations based on data extracted from log systems of the STAR

experiment have shown that the proposed global planning approach system-

atically provides a smaller makespan and adapts to the increase of transfer

overheads better than the other simulated policies.

Despite the demonstrated potential of the described approach, the study

has revealed significant limitations. The first important drawback is the

computational complexity of the underlying CSP. The model has shown a

reasonable solving time in the presented use case, however, its scalability to

real large-scale systems appeared troublesome.

The excessive complexity of this CSP formulation is due to inclusion

of all possible permutations of job order and assignment to resources into

the search space. While such permutations are important for general work-

loads, they are irrelevant for data production and similar processing types.

Therefore, a scheduling approach for distributed data production can greatly

benefit from further simplification. Also, the CP formulation of cumulative

constraints introduces additional complexity. Effectively, it produces a sep-

arate expression for each pair of site and possible time value. It would be

preferable to describe resource usage with a smaller number of expressions.

The second drawback of the model is uncertainty of some of its inputs.

In real applications only the input size of a job is known in advance. The job

duration and size of its output can only be estimated. Possible error of such

estimation would often lead to the violation of the schedule and repetitive

rescheduling.

The third drawback is also related to the precision of the schedule ex-

ecution. In a dynamic large-scale environment where performance of all

resources can fluctuate it would be difficult to fulfill the schedule where the

start/end time of each operation are precisely set. Either a scheduler perfor-

mance should allow to redo the scheduling periodically and efficiently or the

schedule and its execution should account for certain deviations.

Last, but not least, the makespan estimation at the planning stage (Equa-

tions 1, 2 and 3) does not consider overlap of tasks (e.g. jobs with input

102

6 Study of distributed job and data transfer scheduling using constraint
programming

transfers and output transfers) and their time interdependence. Such con-

sideration is needed in order to achieve a predictable load balance. However,

in this initial model, it can only be achieved after the scheduling stage. The

analysis of possibilities to further improve load balance before instantiating

the complete schedule has inspired our next model.

Using the lesson from this study we have developed a new job scheduling

approach which we present and validate in Sections 7 and 8, respectively.

That approach addresses the drawbacks of the first model. It is based on

the network flow maximization problem which provides a better complex-

ity compared to CSP formulation. The approach is dedicated specifically

to data production (and similar applications) and utilizes its properties to

simplify schedule generation and execution. In particular, it does not require

to compute exact start time for each job and transfer, dynamically adapts

to monitoring data and is not vulnerable by deviations during execution.

It distributes the load among the resources in such a way, that maximizes

processing throughput while neither exceeding available capacity nor com-

promising makespan.

103

7 Planning of distributed data production

Using our previous experience in data production scheduling and observa-

tions in the case studies we developed a new approach to the problem. In

order to achieve a reasonable complexity of the scheduling problem, we used

specific properties of data production. First, in a single campaign, each por-

tion of data has to be processed exactly once. Second, all the computational

jobs are independent and interchangeable which means that they can be exe-

cuted in arbitrary order. Moreover, since a single data production campaign

consists of a large set of similar files undergoing the same type of processing,

the parameters of upcoming jobs can be predicted using the statistics of pre-

viously finished ones. Despite particular jobs can vary in their parameters,

for a large enough dataset and long enough time interval we can rely on the

average values. Following these assumptions, the main idea of our approach

is to plan resource load in advance for a limited time step (planning time in-

terval) and then distribute data and computational jobs accordingly, rather

than producing a complete schedule. Planning for limited time intervals

(e.g. 12 hours) provides adaptability necessary for dynamic systems. Plan-

ning repeatedly for shorter time intervals allows to deal with uncertainties

by correcting predictions and adjusting to the current state and performance

of the resources.

Figure 8 illustrates the input for our planner: at the beginning of each

etc.

etc.

Tier-0
data

Tier-1

data

Tier-1data

Tier-2 Tier-2Tier-2

Link:
BandwidthSite:

CPUs
Storage

Figure 8: Input for the network-flow based planner: distributed data pro-

duction problem represented as a graph.

104

7 Planning of distributed data production

planning time interval it considers current data location, state and load of the

resources, structure and bandwidth of the network. The planner defines how

much data (input and output) should be transferred over each link within

given time interval. The plan is produced with the goal to maximize the num-

ber of used CPUs but avoid network congestion or running out of storage

space. There is a local queue of input files maintained at each computational

site which is kept long enough (when possible) to saturate its CPUs with

jobs without the need to access data from external storage. The planner

uses the network flow maximization algorithm [153] with polynomial time

complexity which is a significant improvement compared to general schedul-

ing algorithms [157, 153].

The plan is executed by dedicated services running at each computational

site called ”handlers”. Each handler is responsible for data at the storage

of its site. It submits data for local processing or forwards it to neighboring

sites with respect to planned data flows. The output data are also transferred

by the handlers to its destination in accordance with the plan.

7.1 Elements of the model

The raw data from the detector are being automatically archived to the cen-

tral storage at the main computational facility of the experiment c0 (called

Tier-0 site). The data are kept in the form of separate files (typically of

several gigabytes of size) which can be copied to other destinations for pro-

cessing. We refer those files as input files. The outcome of the processing

is called reconstructed data, and also consists of separate files (also several

gigabytes of size) which we refer as output files. All the output files are being

persistently stored to the central storage as well. Large collaborations, such

as CERN experiments, typically use multiple sites for long term data storage

in addition to the Tier-0 site. Such sites are referred as Tier-1s. Significant

portions of data are replicated from the Tier-0 to Tier-1s in order to improve

data access and safety against loss. The actual distribution of data between

such sites depends on data management model, history of computations and

plans of the collaboration.

In our problem a (computational) site ci ∈ C is a set of closely connected

machines (can be also referred as a data center, computer cluster, computing

facility, farm or a server) which has a fast access to a common data storage

105

7.1 Elements of the model

(referred as a local disk of size Diski) and a shared connection to the outer

network. A computational facility of a scientific institution is an example.

The key principle to identify a set of machines as a computational site is that

they can access a given local disk with a latency which is negligible compared

to their access to other storages (like the central storage) in the distributed

system.

We assume that there is a common job scheduling system (local scheduler)

which allows to submit jobs to all of the machines combined into a site. Our

approach is not intended to replace general purpose CPU schedulers at sites.

From the point of view of a local scheduler, there are many distinct users

concurrently submitting their jobs (and data production can be seen as one

of such users). The local scheduler allocates CPUs to jobs according to its

internal policy. For example, a quota may be set to limit the number of

CPUs reserved for data production specifically. We monitor CPUs (slots)

provided for data production at each site, e.g. using the number of active

pilot jobs [205], job agents [206], virtual machines [207] or containers [4]; and

supply them with data for computation. Their number can change in time

depending on concurrent workload, availability of resources, usage quotas

and other factors. For simplicity, in the rest of the chapter we refer a CPU

number NCPUi at a site i, as if each data production job uses a single CPU

and there are no other concurrent jobs in the system. NCPUi is updated over

time according to monitoring data. Our goal is to maintain a stable queue of

input files prestaged at the local disk of each site so that new computational

jobs do not wait for an external data transfer. The input files from the

local queue can be submitted for processing or transferred to another site if

needed. At the same time, we need to plan transfers of output data to its

destination. The main idea of our optimization is to ensure that during data

production the transfers are performed in such a manner that neither disk

quota nor network capacity are exceeded while the input queues at sites are

kept at a reasonable size.

There are three functions that a site can serve during data production:

input source, computational site and output destination. Those functions

are not exclusive, which means that a particular site can be enabled with all

three, two or just one function. Also, there can be many sites with the same

function in the computational network. Input source is a site which already

106

7 Planning of distributed data production

has a portion of input data at its local disk by the time when data production

starts. A processing site is the one which can process jobs (NCPUi > 0).

Output destination is a site selected to store the outcome of data production

on its persistent storage. As soon as an output file is transferred to any of

possible output destinations we assume that its processing is finished. For

each site ci we consider the total size of currently available input files ki and

the currently available free space to store new output files ki. Those values

are set to zero if the site is not assigned the corresponding function.

The sites are interconnected with network links l ∈ L of a given band-

width bl so that they form a grid, which can be represented by a weighted

graph. We consider bandwidth as an approximation of an observed data

transfer rate, which can be estimated as an amount of transferred data per

unit of time. In our approach the graph is not necessarily fully connected.

It should be understood as a high-level (but realistic) representation of a

detailed network structure. For instance, if multiple end-to-end connections

between sites share a part of a network path, such part should be modeled as

a single link rather than independent links for each connection. For a better

detailed modeling, network routers can be represented by nodes with zero

number of CPUs and none local disc size.

There is no requirement on the order of particular jobs. Each computa-

tional job j processes a unique input file of size sizeinj , produces a unique

output file of size sizeoutj and has a duration pj. Only the size of the input file

is known in advance, before the job is finished. We can estimate two other

parameters by:

pj ≈ αi · sizeinj (22)

and

sizeoutj ≈ β · sizeinj , (23)

where αi is an average processing speed of a single CPU at a site i and β is

an output-to-input size ratio. These two values are considered to be constant

coefficients. Since all the jobs perform the similar type of processing, we can

use average values of αi and β of previously completed jobs. Figure 9 shows

the relation between duration, input and output size of a sample of 60,000

data production jobs of the STAR experiment. Colors represent different

types of jobs. At Figure 9a one can observe that the job duration depends

linearly on the input size in most of the cases. Similarly, Figure 9b shows

107

7.1 Elements of the model

(a) Dependence of job duration on input

size.

(b) Dependence of output size on input

size.
(c) Values of α and β.

Figure 9: Relation between duration, input size and output size of data

production jobs of the STAR experiment.

the linear dependence of output size on input size. Parameter β is less than

1 for all the jobs in the analyzed sample. Finally, it is visible in Figure 9c

that values of α and β are close (clustered at limited regions of the plot) for

each type of data production jobs.

108

7 Planning of distributed data production

7.2 Planner based on network flows

Let us consider a scheduling time interval ∆T at an arbitrary moment of

data production. We assume that at the starting moment of ∆T some of

the CPUs in the grid are already running production jobs, and there can be

some amount of input data already placed at each site. We need to transfer

the next portion of data to each site during ∆T in order to avoid draining

of the local queues by the end of this interval. We will give two separate

problem formulations: for an input and an output transfer planning based

on network flows.

In order to formulate a network flow maximization problem [153] for file

transferring we define a capacitated {s, t} network, which is a set of ver-

texes V including a source s and a sink t; and a set of edges e ∈ E with

their capacities cape, representing the amount of data which can be trans-

ferred during ∆T . A solution that assigns a non-negative integer number

flowe to each edge e ∈ E can be found in polynomial time with known al-

gorithms [153]. Here flowe is understood as an actual amount of data to

be transferred (or processed) within ∆T . In the further text, we use the

term edge to denote a general element of a network flow problem (including

dummy edges). In contrast, by link we refer such edge which corresponds to

a real network connection.

We prioritize transfer of output files because it allows to create sufficient

free space for upcoming input files. For this reason, we solve the output

problem first, and then use its solution to calculate the remaining capacities

of the network links.

7.2.1 Output flow planning

In order to transform a given graph of a grid into a capacitated {s, t} network

for the output transfer problem we add two dummy vertexes: a source s and

a sink t and dummy edges. The source s is connected to each processing site

ci with a dummy edge di ∈ D. Its capacity wi defines the maximum expected

amount of the output data to be transferred from the site. Its calculation

is explained in Section 7.2.3. Each output destination site ci is connected

to the sink t with a dummy edge qi ∈ Q having capacity ki – the currently

available free space to store new output files. In this formulation capacity

109

7.2 Planner based on network flows

of each edge defines the maximal amount of data that can be transferred

within time interval ∆T . For each real network link l ∈ L with bandwidth bl
it is bl ·∆T . The transformation is illustrated in Figure 10, where solid lines

Site-N

Site-2

Site-3Site-1

Dummy
source

t

Dummy
sink

s

Figure 10: Capacitated {t, s} network for the output planning problem.

are network links L, dotted lines are dummy edges Q, dash lines are dummy

edges D. Output destinations are in red cycles, processing sites are in blue

cycles (Site-2 shares both functions).

The following expression summarizes the capacities of edges in the output

problem:

cape =

be ·∆T if e ∈ L
wi if e = di ∈ D
ki if e = qi ∈ Q

(24)

We denote the solution for the output transfer problem as flowoute . It specifies

the amount of output data that has to be transferred over each link during

∆T .

7.2.2 Input flow planning

For the input problem, we apply a similar transformation to the initial graph

of the computational network as for the output problem. We add dummy

edges di ∈ D from each processing site to the sink, and dummy edges qi ∈ Q
from the dummy source s to input sources. These dummy edges allow us

to introduce constraints on the storage capacity, CPU throughput and data

availability at sites. For real network links l ∈ L we also take into account

the capacity reserved for output transfers flowoute . The network for the input

problem is presented in Figure 11, where solid lines are network links L,

110

7 Planning of distributed data production

Site-N

Site-2

Site-3Site-1s

Dummy
sink

t

Dummy
source

Figure 11: Capacitated {s, t} network for the input planning problem.

dotted lines are dummy edges Q, dash lines are dummy edges D. Input

sources are in red cycles, processing sites are in blue cycles (Site-2 shares

both functions). To summarize, the capacities of edges in the input problem

are defined as follows:

cape =

be ·∆T − flowoute if e ∈ L
wi if e = di ∈ D
ki if e = qi ∈ Q

(25)

where wi is the demand for new input data at processing site ci. Its calcula-

tion is explained in the Section 7.2.3. We denote the solution for the input

transfer problem as flowine . It specifies the amount of input data that should

be transferred over each link l during ∆T .

7.2.3 Capacities of dummy edges

Here we explain how the capacities of dummy edges wi and wi are calculated

in order to complete the maximum flow problem. These capacities define the

expected net amount of input/output data to be transferred to/from each

site during the planning time interval ∆T .

Let us start with a simple case. We call it a steady state when during

the entire previous planning cycle the site has kept its peak performance

(all the available CPUs are processing data) and no changes are made to its

configuration. In this case we can assume that the site will process/produce

data at the same rate during the next ∆T . Therefore, we can set wi to be

equal to the amount of input data processed and wi to the amount of output

data produced at this site during the previous planning cycle.

111

7.2 Planner based on network flows

In other situations when we cannot rely on previous statistics, we need an

estimation based on the current state of the site. Examples of such situations

are: the very first planning cycle, changes to a site’s configuration or shortage

of free disk space. Also, it is desirable to increase dataflow to a site with

underutilized CPU capacity when possible.

Consider transfer of output files first. Let Iouti be the initial size of output

data (of previously finished jobs) which are ready to be transferred from a

local storage. We also need to estimate the amount of new output data of

jobs that will finish during ∆T . If most of the CPUs at the site are satu-

rated, than this value can be estimated as β
αi
·NCPUi ·∆T . In the opposite

case, if not all the CPUs are busy, such estimation may become exagger-

ated. Since ∆T is assumed to be smaller than the average job duration it is

unlikely that a job started within ∆T will also finish within it. Therefore,

the considered value cannot be greater than the total size of output files of

currently running jobs Cout
i . To find the bottleneck value, we have to select

the smallest estimation. The final formula of the capacity of dummy edges

for output problem is:

wi = Iouti + min(
β

αi
·NCPUi ·∆T, Cout

i) (26)

The amount of input data which can be transferred to the processing site

is limited by two factors: size of the local disk and the CPU throughput.

The incoming data flow should adjust to the processing throughput in order

to keep the input queue at a constant size. If the queue drains some jobs get

delayed. On the other hand, if the queue grows too large, it would be more

efficient to send files to a less loaded site.

Let us denote the available free disk space at the site i as Ri. In order

to avoid running out of free space at the local disk, we set an upper limit δ

for a planned disk usage. This ensures that there is always enough space

for an output file of a new job or for an incoming file. This is especially

important, since job durations and file sizes can fluctuate from the average

values which are used for the plan generation. In other words, we assume

that Diski · (1− δ) of disk space is planned to remain free.

If there are free CPUs at the site, each incoming input file will be imme-

diately submitted for processing, creating a reservation for a new output file

of size sizeoutj = β · sizeinj . For this reason, the constraint on the storage size

112

7 Planning of distributed data production

gives us Ri−(1−δ)·Diski
1+β

. On the other hand, in order to saturate unused CPUs,

we need to transfer at least one file for each of them. If an average size of

an input file is sizeinavg and the total size of input files in local queue is I ini ,

than the required amount of input data is NCPUi · sizeinavg − I ini . We should

select the minimal value between the storage and CPU constraints, in order

to find the bottleneck. The final expression for the capacity of the dummy

edges for the input problem is:

wi = min(
Ri − (1− δ) ·Diski

1 + β
,NCPUi · sizeinavg − I ini) (27)

In the Eqn. 26 and 27, ∆T and δ are parameters of the scheduler. All

the other used values are obtained from monitoring data right before each

planning iteration.

7.2.4 Solving Procedure

We perform planning by scheduling cycles : instantiate a plan for a fixed

time interval ∆T and repeat until all the data are processed and the output

is transferred to the central storage. Each plan is created at the beginning

of its interval using updated monitoring data. Therefore, each plan relies on

the current system state but not on previously issued plans.

The problems of input and output transfer over the same network can be

solved independently if input and output flows do not compete for bandwidth.

A competition may occur if input and output data are transferred in the

same direction over the same link and there is not enough bandwidth to

accommodate both flows. In a steady state such competition is unlikely,

which can be proven under assumptions: (a) all the real network links are

full-duplex, i.e., transmissions in both directions are independent and have

the same bandwidth (b) in a steady state the size of the output transferred

from each site is proportional to the size of the input transferred to that site

in each scheduling interval, i.e., flowout
di
≈ β · flowindi , where β ≤ 1.

Let us consider two distinct computational sites c1 and c2 connected by

two opposite directed links l1 = (c1, c2) and l2 = (c2, c1) with equal capacities

capl1 = capl2 . If a solution of the input transfer problem assigns flows to this

links such that flowinl1 ≥ flowinl2 > 0 then we can substitute such solution

flowine with a new one f̂ lowine where f̂ lowinl1 = flowinl1 − flow
in
l2

, f̂ lowinl2 = 0

113

7.2 Planner based on network flows

and flows over the rest of the links are unchanged. The same is true for

output transfer. This proves that in an optimal solution the same type of

files (input or output) are transferred between any two nodes in one direction

only, i.e. over one of directed links only.

If we have a solution for the input flow maximization problem flowine
we can produce a solution for the output problem flowoute such that for

any opposite pare of links l1 = (c1, c2) and l2 = (c2, c1) the output flow is

flowoutl1
= β · flowinl2 and since β < 1 the capacity of links is not exceeded

flowoutl1
= β · flowinl2 ≤ flowinl2 ≤ capl2 = capl1 . Due to symmetry of the

two problems, this solution flowoute is also the maximum flow for the output

transfer problem. Combining this with what was proven in the previous

paragraph, if flowinl1 > 0 than flowinl2 = 0 and thus flowoutl1
= 0. This means

that in a steady state input and output files are never transferred over the

same link. And thus, maximum flow problems for input and output transfers

can be solved independently.

In a reality, the system will not always operate in a steady state due

to fluctuations from average parameters and addition / withdrawal of the re-

sources. In order to resolve possible concurrency we plan the output transfer

first, and then use remaining network capacity to plan the input transfer.

We prioritize the output transfer because it allows to free space for upcom-

ing input data. The solving procedure for a single scheduling cycle consists

of the following steps:

1. Calculate the amount of output data wi to be transferred from each

site as defined by Equation 26.

2. Construct the network of the output problem as described in Sec-

tion 7.2.1.

3. Solve the network flow maximization problem for the output network.

Obtain output data flows over real links flowoute from the solution.

4. Calculate the demand for input data wi at each site as defined by

Equation 27.

5. Construct the network of the input problem as described in Section 7.2.2.

6. Solve the network flow maximization problem for the input network.

Obtain input data flows over real links flowine from the solution.

114

7 Planning of distributed data production

The resulting input flowine and output flowoute flows over the real network

links present the plan of data transfer and computation for the next time

interval ∆T . Because the capacities of the dummy edges are adjusted to the

current situation, this approach can be directly used from the start of the

data production to its end.

7.3 Plan execution

After a plan for a time interval ∆T is created it has to be executed at

sites. We assume that there is a dedicated service running at each site which

is responsible for sending statistics to the planner, receiving the plan and

executing it. We call such a service a handler.

The handler is responsible for transfers over outgoing links of its site. It

keeps counters of how much data of each type (input and output) remains to

be sent from its site to the neighboring sites during the current scheduling

cycle. This implies two counters Fl and Fl (input and output) for each

outgoing link l connected to the site. When the handler receives a new plan

it updates the counters to be equal to the flows over the corresponding edges.

If the handler fails to fulfill the plan precisely, the system automatically

recovers from such an error, since each scheduling cycle relies on the current

state of the system and performance statistics, but not on the execution of

previously issued plans.

During the plan execution, each time when a new file arrives at the site,

the handler decides either to keep the file for local processing or to forward it

to another site. In order to make the decision, the handler goes through the

following list of options and executes the first appropriate one, depending on

whether its requirements are satisfied:

1. If the received file is of input type and if there is a free CPU at this

site then the file is submitted for processing (see Figure 12a).

2. Otherwise, if there is a link with a counter which is greater than zero

for the corresponding file type (input or output) then the file is sent

over that link (see Figure 12b). The counter is decreased by the size of

the file.

115

7.4 Balance between multiple data sources

3. Otherwise, the file is kept at the local storage until it can be processed

(when a CPU becomes free or a new plan arrives).

NODE CPUs

>0

1.
receive

2. start processing

NCPUfree

F =01 F2=0

F3 >0

(a) Handler submits a received input

file for processing.

NODE CPUs

F1 F2
=0

=0

=0

1.
receive 2. forward

NCPUfree

F3 >0

(b) Handler forwards a received input

file to another site.

Figure 12: Plan execution by handlers at sites.

Such an order of options ensures that the file is processed as soon as it arrives

to the site with a free CPU, and all the CPUs are busy as long as there are

unprocessed input files at the local disk. No excessive transfers can occur

in the system because a solution to the maximum flow problem contains no

cycles and an input file is not forwarded unless all the CPUs are busy.

Another important role of the handler is to check the consistency of each

newly received file and confirm it to the sender. Only after the confirmation,

the transferred file can be deleted from the sender site, otherwise, data loss

may occur.

When processing of an input file starts, the handler makes a reservation

for the output file at the local disk, and when the processing is finished the

handler deletes the input file.

7.4 Balance between multiple data sources

The maximum flow problem can have multiple solutions, which means that

in certain networks the maximum total flow can be achieved by several al-

ternative flow assignments to edges. Intuitively, for a large enough network,

when the total flow is limited by the capacity of a subset of the edges (the

bottleneck) the flow over the remaining part of the network can be routed

in many different ways. This fact raises an important issue when it comes

116

7 Planning of distributed data production

to planning with multiple input sources. An example is given in Figure 13.

S1 and S2 are input sources, P1 – P3 are processing sites. The dash and dot-

S1

S2

P2

P1

P3

Dummy
source

Dummy
sink50

250

10

10

10

30

30

s t

Figure 13: Multiple solutions of the maximum flow problem.

ted lines are dummy edges, labels show their capacity, solid lines are network

links. The gray arrows in the background show two alternative flows through

the input sources. Here the total flow is limited by CPU throughput, while

the network structure allows to select from which input source to transfer the

data. However, classical network flow maximization algorithms do not select

between solutions with the maximal flow on any additional criteria [153].

When an input source gets depleted, the number of possible transfer paths

decreases and it potentially leads to the emergence of additional bottlenecks.

For this reason, a solution taking into account the remaining amounts of data

at the sources is needed to properly balance their usage. A helpful strategy

is to utilize sources with more data as much as possible from the beginning

but try to keep the smaller sources for later and utilize them when it allows

to maximize the overall flow.

With this concern, additional criteria for selection between multiple max-

imum flow solutions should be added to the problem. We have achieved this

by extension from the maximum flow problem to the minimum cost maxi-

mum flow problem in our planner. For such transition, we assign a cost coste
for each edge e ∈ E in addition to previous problem formulation. The cost

of a flow function flowe for a given graph is defined as
∑

e∈E flowe · coste.
A minimum cost maximum flow (min-cost max-flow) of a given network is a

maximum flow with a smallest possible cost. Known algorithms such as gen-

117

7.5 Initial data distribution

eralized push-relabel algorithm [208] can solve min-cost max-flow problem in

polynomial time.

In order to balance usage of multiple input sources, we assign costs to

dummy edges qi depending on the amount of input data remaining at the

sources. At the beginning of each planning cycle our planner does the fol-

lowing:

1. Sort input sources in descending order by the amount of available input

data.

2. Set costs of the dummy edges qi depending on the rank of the source i in

the sorted list. In the current implementation, the cost is set equal to the

rank.

3. Set the cost of the rest of the edges to one in order to take distances into

account.

Since the costs are updated at each planning cycle the priorities of the sources

change as they are getting depleted.

Influence of the particular values of costs can be better understood with

the following simplified example. Let us consider two sources with costs

cost1 and cost2. If there is a computational site at a distance (length of the

network path given that cost of real links is set to one) d1 from the first

source and d2 from the second, the cost per unit of flow to that site would be

cost1 + d1 and cost2 + d2, respectively. The site with a smaller resulting cost

will be selected to transfer the data (if there is enough network capacity).

For example, the first site will be selected if cost1 − cost2 < d2 − d1. This

shows that the difference between costs assigned to the sources defines an

additional number of transfers which are performed to establish the balance

between sources. In order to avoid excessive transfers, the range of costs

assigned to the sources should be kept reasonably small.

7.5 Initial data distribution

We can introduce an additional stage into our scheduling approach which

will allow to improve data locality prior to computations. This stage is not

mandatory and is designed to be executed in cases when storage and network

resources are accessible before the CPUs are pledged for the data production.

118

7 Planning of distributed data production

For this reason, the time required for the initial data distribution is not

included in the resulting makespan. This initial data distribution can be

performed using our planning approach with several modifications which are

described in the following text. A carefully planned initial data distribution

can help to reduce the subsequent data production makespan. In the real

world, it is usually possible to move data across several available storages

before the computation starts. For example, the STAR collaboration makes

agreements with external institutions to use their computational facilities

for data production during a predefined time period [21], in this case, the

access to the remote storage is usually granted before the access to CPU

resources. Under such conditions, it would be advantageous to move a part

of data to that remote storage before the actual computations. Another

example comes from the ATLAS experiment [4]. There, the raw data are

persistently stored at 12 geographically separated sites. Those raw data are

(re)processed (typically several times during years) using updated algorithms

and calibration data in order to improve quality of the resulting reconstructed

data. Such processing passes are planned by the experiment’s collaboration

in advance, so that the dataset to be processed and computational resources

to be used are known in advance. This gives an opportunity to adjust the

data distribution in order to decrease the makespan of the upcoming data

processing.

The general idea of the initial planning stage is to consider the entire

data production in one planning cycle where ∆T equals to an estimated

makespan. The produced plan is not expected to be highly accurate due to

the huge planning time interval, but it allows to find how much data should

be taken from each possible source. After the calculated data distribution is

established the data production can start as described before.

7.5.1 Model description

Let Z be the total size of input data to be processed. Some of the sites can

be used as input sources, the maximal amount of input data, which can be

placed at such site is Ki > 0. The task is to find how much data ki should

be placed at each source and how long the data production will take.

We can again apply the min-cost max-flow approach to the initial data

distribution problem. Similar as before (Sections 7.2.2 and 7.4), we transform

119

7.5 Initial data distribution

the graph of the computational network into capacitated {s, t} network and

set costs to all its edges. We set the capacity of each real network link

equal to the amount of data which can be transferred over it during the

data production cape = be ·∆T . The dummy source s is connected to each

input source via dummy edges qi with capacity Ki. Each processing site ci
is connected to a dummy sink t via a dummy link di with capacity cape =
NCPUi
αi
· ∆T which estimates its data processing throughput. The resulting

network is the same as in Figure 11, yet the capacities of the edges are set

as follows:

cape =

be ·∆T if e ∈ L
NCPUi
αi
·∆T if e = di ∈ D

Ki if e = qi ∈ Q
(28)

The coefficient αi should be derived from the statistics of previously finished

jobs; its variance can be significant given the heterogeneity of resources and

jobs. For this reason, the accuracy of αi estimation is a limiting factor for

the precision of the resulting initial plan. However, as explained before, the

initial plan does not have to be strictly fulfilled during the upcoming data

production itself.

In the current implementation, the costs of all of the edges are set to

one. This allows to reduce the number of transfers during the computational

stage, but potentially increases the number of required transfers before the

computations. Alternatively, the costs of dummy edges qi to the source sites

which do not contain significant portions of data yet can be set to one, while

the costs of the rest of the edges can be set to zero. As the result, the

planner will try to utilize existing placements of data as much as possible

(and will use additional sources only if this will allow to avoid network bot-

tlenecks), however, the number of transfers during the computational stage

may increase. The choice of alternatives should depend on the particular

use case. The advantage of the proposed approach is certainly its flexibility

which allows to adjust to real life conditions.

7.5.2 Solving procedure

The makespan of data production ∆T is not known in advance, in order to

find it we start with an estimation and then improve its value iteratively. The

iterations continue until we find a value of ∆T for which the maximum total

120

7 Planning of distributed data production

flow Φ equals to the total size of input data Z with a predefined precision ε.

The overall solving procedure for the initial planning problem is the following:

1. Calculate an optimistic (as if there are no network bottlenecks) esti-

mation for makespan ∆T = Z∑ NCPUi
αi

.

2. Construct the {s, t} network as described in Section 7.5.1.

3. Update capacities of the edges using the current value of ∆T .

4. Solve the max-flow min-cost problem. If | Z−Φ |< Z ·ε then go to (6).

5. Set a new value for the estimated makespan

∆T = Z
Φ
·∆Tprevious and go to (3).

6. Resulting flows flowe over dummy edges qi are the amount of data to

be placed at each source (ki = flowqi), ∆T is the expected makespan.

To summarize, this procedure allows to find a makespan estimation ∆T for

data production and amount of the input data ki to be initially placed at

each source site i.

7.6 Data replication

The data flow of a HENP experiment begins at a site where the detector is

located. Typically, the site (tier-0) also provides a persistent storage for all

the data related to the experiment. In addition to the main storage, overlap-

ping subsets of data are copied across multiple Tier-1 sites [4]. The degree

of replication for particular files can vary and change in time depending on

the computation history and collaboration plans. Each file can be assigned a

logical filename (lfn) uniquely defining it. A single lfn can point to multiple

physical files identified by physical filenames (pfn).

We assume that the data are replicated before the data production starts.

The planner never deletes those initial (persistent) file replicas. It considers

initial data locations and creates temporal file replicas when it allows to

speed the data access up. Therefore the planner distinguishes two types of a

physical file instance:

• Persistent instance is the one that was created before the data produc-

tion started and has to be kept.

121

7.6 Data replication

• Temporal instance is created when the file is transferred to a new site

as a result of the plan execution.

Only one temporal instance per lfn can exist at a time. This instance is

deleted after the file is processed. Forwarding a temporal replica from one

site to another implies creation of a new temporal replica at the destination

and deletion of an old one from the source. The temporal replica can be

understood as a ”traveling” instance which hops between sites according to

the plan until it gets processed.

There is a central service (called file catalog) which keeps track of all

the lfn’s of the input files in data production. The handlers at individual

sites can communicate through this service in order to ensure that all lfns

are processed exactly once and data are never transferred to a site where

another its copy is already present. File catalog provides information on the

number of physical instances for each lfn and their location. It also stores the

status information related to each lfn. Two statuses are used in the current

implementation:

• Queued status means that the lfn waits to be processed, no temporal

copy was created, neither was the job started.

• Used status means the file is being processed at one of the sites which

has its persistent copies, or a temporal copy was created to be processed

at another site.

Initially, all the file statuses are set to ”queued”. When a file is selected

to be processed at one of its initial locations the corresponding lfn status

is changed to ”used”. When a file is transferred from its initial location

the corresponding lfn status is changed to ”used” and a temporal replica is

created at the destination. From this moment, only this temporal replica is

allowed to be processed. Through the update of the status the other sites

with a persistent replica of the file are prevented from processing or sending

it out again. Since a max-flow problem solution contains no flow cycles the

temporal instance travels a limited path in the grid until it is processed, for

this reason, no excessive transfers take place.

At the beginning of data production each handler at a source site:

1. Registers persistent replicas at its site to the file catalog and sets their

status to ”queued”.

122

7 Planning of distributed data production

2. Organizes input files at the site into a queue where the files with fewer

replicas are prioritized. This allows to process the files with fewer

replicas first in order to leave more options for later planning cycles.

During the data production, each handler periodically scans its local

queue and removes files with status ”used” from it. Incoming input files

forwarded from other sites (the temporal instances) are stored and placed at

the beginning of the queue. Whenever there is a capacity to process a file

or to send it to another site, the handler takes the next file from the queue.

If it is a temporal instance, the file can be used without check since only a

single temporal replica can exist. Otherwise, if it is a persistent instance, the

handler checks its status.

• If the status is ”used” then discard it from the queue and proceed to

the next one.

• If the status is ”queued” then use the file and change its lfn status to

”used”.

Each new plan depends on the current state of the system but not on

previously issued plans. Therefore, failures during execution of a plan do

not affect future planning cycles. Recovery can be done using standard ap-

proaches. Loss of replicas at a given site would be detected by handlers and

removed from the possible replicated candidates. File corruptions can be

detected using checksums stored in the file catalog. The next cycle of plan-

ning would consider a new file distribution landscape. Timed-out and failed

actions can be re-queued within one planning cycle. A handler can perform

self-recovery at the start of a planning cycle (i.e. when a new plan is issued).

In such case, a handler verifies the content of the local disc and running jobs

and then it can proceed with the current plan. In case of a planner failure, it

restarts and requests current status from all the sites and then continues to

issue plans as normal. More statuses of the file replicas can be introduced in

order to ensure safe transactions. However, failures of the file catalog service

are beyond the scope of this work.

123

8 Simulations of distributed data production

8.1 Overview of the implementation

In order to validate our new job scheduling approach towards possible use

cases, we perform simulations with a wide scope of experimental problems.

In the simulations, we measure performance improvement gained by the ap-

proach compared to other common scheduling techniques. The simulations

are performed with the ”Grid Simulation Toolkit for Resource Modeling

and Application Scheduling for Parallel and Distributed computing” (Grid-

Sim) [209]. It is a Java library for discrete event simulation which provides

models of computational servers, job scheduling and execution, networking,

data transferring, etc. Previous experience of our colleagues [133] helped

to improve efficiency of the GridSim simulations. For our study, we have

implemented an additional functionality for plan generation and execution,

storage management and statistics collection on top of GridSim. The plan-

ner is implemented in Java using JGraphT [210] library which provides graph

objects and algorithms. The further described simulations were executed at

the Golias computational facility of the Institute of Physics of the Czech

Academy of Sciences.

8.1.1 Input data for simulations

The parameters of computational jobs used in our simulations were taken

from log records of real data production which was performed for the STAR

experiment (US) at KISTI (South Korea) computing facility [204]. During

that data production campaign 60,000 of files were processed during three

months in 2014 [21]. The average parameters of the set of jobs are provided

in Table 3.

Also, the dependence between job parameters is visualized in Figure 9

presented in Chapter 7.1. We have created larger datasets using a random

selection from the original one in order to use them as input for our simula-

tions. Such an approach allows us to test the stability of the results against

input variation and duration of simulated data production. Also, the larger

datasets are required for simulations of large-scale infrastructures. The size

and parameters of used datasets are explicitly specified for each set of simu-

124

8 Simulations of distributed data production

Table 3: Parameters of 60,000 data production jobs from the STAR experi-

ment used in simulations.

Parameter Units Average Min Max Total

Duration hours 46 12 64 314 years

Input size MB 4,320 895 4,780 259 TB

Output size MB 3,022 105 3,614 181 TB

α s/MB 38 9 49.2 -

β - 0.7 0.3 0.79 -

lations in the rest of this chapter.

In order to setup realistic parameters of simulated computational sites

and networks, online monitoring tools of CERN experiments [184, 211, 212]

were considered. According to these sources, the number of CPUs available

at sites varies from several units up to several thousands, while utilized net-

work bandwidth typically is 50 Mbps to 2 Gbps but can reach 10s of Gbps

for certain parts of the infrastructure. Since one of the main goals of our

approach is to improve utilization of sites with poor network connectivity, in

our simulations we have used lower values of bandwidth from the observed

spectra. In all the simulations the CPUs are assumed to be of the same

processing speed. The initial distribution of data varies in our experiments,

it is additionally explained in the description for each particular set of sim-

ulations.

Parameters αi, β and f̂in of the planner were set to the average values

from the Table 3. For the selection of the planning time interval ∆T it

is important to notice that it should be short enough to provide a better

adaptability to changing states of the resources, but at the same time long

enough so that average values and estimations remain applicable. After a set

of testing simulations ∆T was set to 12 hours, and the upper limit for the

disk usage δ was set to 95 %.

125

8.1 Overview of the implementation

8.1.2 Network models

Let us briefly describe network models provided by GridSim and used in our

simulations, more details can be found in [213]. When a simulated entity (i.e.

computational site) executes a ”transfer file” command, the file is stored to

the output queue and then it is processed by other network entities. Each

network entity (e.g. router, link) has its own queue. We have used two file

transfer models provided by the GridSim framework:

• Sequential: Files are transferred one by one in the order as they appear

in the queue, only one transfer at a time is performed. This corresponds

to modeling a network link as a unary space-shared resource.

• Parallel: All the files in the queue are being transferred simultaneously,

sharing the bandwidth. In particular, newly started transfers delay

those in progress. In this case a network link is modeled as a time-

shared resource.

The general behavior of real networks, where many streams of data are

transferred concurrently by independent applications, is more realistically

described with the parallel model. However, dedicated data transfer tools

(e.g. FDT [206], GridFTP [214], BBCP [199]) for transfer of large sets of

files can achieve behavior similar to sequential model of GridSim.

Let us illustrate how the difference between the two models can affect

distributed data processing. Consider a situation when a set of files is being

transferred from one site to another simultaneously by different jobs. In

both models, the complete transfer time of the set is the same, but in the

sequential one, files will start to arrive earlier. As the result, the processing

starts and finishes earlier, releasing resources for the next portions of data,

which allows to reduce an overall makespan.

A comparative study of parallel and sequential transfer models in the real

network can be found in [215]. The author has shown that transferring files

sequentially (but using multiple threads) is advantageous for HENP compu-

tations compared to parallel transfer of multiple files. However, the parallel

transfer is a more common model for current distributed data processing in

HENP. It corresponds to many jobs running independently and performing

uncoordinated concurrent access to the remote data over a shared network.

126

8 Simulations of distributed data production

8.1.3 Simulated scheduling approaches

In order to test our planning approach against others, we have simulated

distributed data production under the scheduling approaches listed below.

• PLANNER: This approach uses the planning proposed in our research

(described in Chapter 7). The sequential transfer mode is used as the

preferable one.

• PUSHpar: Whenever there is a free CPU at a remote site, the next

input file is sent there from the central storage. When a site receives an

input file, it starts processing, and after it is finished it sends the output

file back to the central storage. When the central storage receives an

output file it sends the next input file to the freed CPU. The process

continues until all the data are processed. The shortest network path

is used for file transfers. The parallel transfer mode is used here. This

scheduling approach corresponds to the distributed data production

setup in many HENP experiments, including the data production at

KISTI for the STAR experiment [21] in particular.

• PUSHseq: The job scheduling is performed exactly as in the previous

approach, but the sequential transfer mode is used. The main purpose

of these simulations is to study the effects of the sequential file trans-

ferring on the data production and, also, to estimate which part of the

performance improvement in the PLANNER approach is achieved by

the sequential transferring itself.

In addition to that, in experiments with a large number of sites and in-

put sources we have simulated another scheduling policy which we denote as

PULL. This scheduling policy is currently implemented many HENP experi-

ments. While details of the implementations may differ, the general pattern is

very similar: a pilot job [4] is submitted to each available CPU in the system

which is responsible for requesting input data (pulling), starting computa-

tional jobs and transferring output data. When the CPU is ready to process

data, the pilot job requests the distributed data management (DDM) system

for a new input file. The DDM checks the data availability and redirects the

request to one of the sites storing the data. The selection of the site may be

arbitrary or depend on either current load or communication latency to the

127

8.1 Overview of the implementation

requester. After the source site is selected the pilot job transfers the data to

the local storage and starts to process the job. When the file is processed

the pilot job transfers the output to a predefined destination and requests for

the next input. As one can see, under such model the CPU allocation and

data access are concurrent and uncoordinated. Under the best case scenario

all the jobs are transferring data from the fastest available source. We have

simulated a pull scheduling approach using the following algorithm executed

at each processing site:

• Initialization

1. Ping all available sources, form a queue ordered by connection speed

and set the fastest source as selected for this processing site

• Simulation start

1. Whenever a CPU becomes free request next input file from the active

source

2. When an input file is received submit a job

3. When a job is finished transfer the output to its destination

4. When the current source is depleted, switch to the next one in the

queue

5. Repeat until all the data are processed

Output files can be sent to a single storage, or to multiple ones, using the

same reasoning as for input files. The sequential transfer mode is used in the

simulations with PULL approach in order to make a fair comparison against

PLANNER.

In the case of a single input source and an output destination, both PUSH

and PULL approaches result in a similar scheduling as there is no choice of

options for the PULL approach. Therefore, in such simulations we compare

the PLANNER against PUSHseq/PUSHpar. In other cases, when the input

data are initially stored at multiple sites, we test the PLANNER against

PULL approach, because it corresponds to the current setup of the largest

HENP experiments.

The main metrics used for the performance comparison is the makespan,

which is calculated as time passed from the start of the first input file transfer

(or job submission) until the completion time of the last output file transfer.

128

8 Simulations of distributed data production

To compare two scheduling approaches, a makespan improvement for pro-

cessing the same dataset on the same resources can be calculated as follows:

makespan improvement =
C1
max − C2

max

C1
max

(29)

8.2 Base model

8.2.1 Single remote site

We start verification of our approach with a relatively simple case where the

infrastructure consists of a central storage and a single remote site. Such a

setup corresponds to data production of the STAR experiment performed at

KISTI computing facility [21]. In the real setup, the only remote site had

1,000 CPUs and the point-to-point network bandwidth was approximately

2 Gbps. Despite our planner is primarily designed to address more complex

infrastructures (where many options for optimization exist), consideration of

such case is also necessary. First of all, it allows to ensure that the perfor-

mance of the planner is at least as good as other simple approaches even

for a trivial use case. The simulations of the smaller problem allow us to

understand the limitations of distributed data production. In particular, we

consider the following questions: What is the minimum required bandwidth

required to saturate a given number of CPUs at the remote site? How many

CPUs at the remote site can be exploited efficiently with a given network

bandwidth? How does a selection of a scheduling approach influence those

values? The simulations provide answers which can be used when planning

future data production campaigns.

Figure 14 present the results of simulations where the number of CPUs

at the remote site is 1,000, the size of its storage is 15 TB and the network

bandwidth is changing from 50 Mbps to 2 Gbps. The makespan improvement

of the planner against other approaches is shown as a function of bandwidth.

Each point in the plot is an average of simulations with five different datasets

(60,000 jobs in each). The values of the deviations are smaller than 0.07 %

which confirms stability of the results, therefore the error bars are not visible

in the plot. The plot shows that the PLANNER can provide up to 32 %

of makespan improvement compared to PUSHpar approach. At the same

time, the difference in performance between the PLANNER and PUSHseq is

129

8.2 Base model

0.0 0.5 1.0 1.5 2.0
Bandwidth (Gbps)

0

5

10

15

20

25

30
M

a
ke

sp
a
n
 i
m

p
ro

v
e
m

e
n
t

(%
)

PLANNER vs PUSHseq
PLANNER vs PUSHpar

Figure 14: Makespan improvement of the planner as a function of network

bandwidth to the remote site.

negligible. This shows that the main part of the improvement is gained due

to the sequential data transfer. In parallel transfer mode independent jobs

compete for the network bandwidth and as a result the latency increases

leading to longer makespan. The difference increases as the available net-

work bandwidth becomes smaller. Additional observations have shown, that

the PUSHpar approach fails to utilize 100 % of available CPUs when the

bandwidth is below 700 Mbps: a significant fraction of CPU’s are waiting for

input data. Under PUSHseq approach the earlier transfer requests are not

delayed by those arrived later, therefore the fraction of waiting jobs remain

smaller. For the PUSHseq approach the bandwidth 300 Mbps is sufficient

to keep the number of utilized CPUs close to 100 %. The PLANNER, in

its turn, transfers the data to the remote site in advance (whenever there

is free network capacity) so that the CPUs can start processing of the next

portion of data as soon as they finish the previous one. As the result for the

PLANNER the bandwidth of 250 Mbps is sufficient to utilize all the CPUs.

It also provides a higher CPU utilization compared to PUSHpar when the

bandwidth is below the critical value.

Another set of simulations (see Figure 15) was performed with a fixed

network bandwidth (1 Gbps) and a changing number of CPUs at the remote

130

8 Simulations of distributed data production

1000 2000 3000 4000 5000 6000
Number of CPUs

0

2

4

6

8

10

12

14

16

18

M
a
ke

sp
a
n
 i
m

p
ro

v
e
m

e
n
t

(%
)

PLANNER vs PUSHseq
PLANNER vs PUSHpar

Figure 15: Makespan improvement of the planner as a function of the number

of CPUs at the remote site.

site from 1,000 to 6,000 with a step of 500. The size of the local disk was

adjusted to the number of CPUs (15 TB for every 1,000 CPUs). Addition

of CPUs allows to decrease the makespan proportionally to their number

unless the network performance becomes a bottleneck. After the network is

saturated the addition of more CPUs does not influence the makespan. How-

ever, the maximal number of CPUs which are used to achieve the shortest

makespan depends on the scheduling approach and the transfer model. The

shortest makespan for all three approaches was approximately 28 days. The

PUSHpar simulation reveals the worst performance. Such approach has its

shortest makespan reached with 6,000 CPUs and at any given time a signif-

icant fraction of CPUs is waiting for input data. As in the previous case,

the performance of the PLANNER and PUSHseq approaches is close. Serv-

ing data transfer requests in FIFO order provides a significant improvement

compared to bandwidth sharing. The shortest makespan was achieved using

5,000 CPUs by both approaches.

We can conclude, that for distributed data-intensive applications over

slow networks organized data transfer is advantageous compared to concur-

rent sharing of bandwidth by many jobs.

131

8.2 Base model

8.2.2 Fully connected network

The next set of simulations is dedicated to testing our planner with a more

complex and general use case. The computational infrastructure of large

HENP experiments consists of many sites. Their connectivity to the central

storage (Tier-0) is not always perfect, especially if those are opportunistic

resources outside of the primary infrastructure. Let us consider three rep-

resentative cases: a ”fast” site (network bandwidth is not saturated even if

all the CPUs are running data production jobs), a ”medium” (the available

bandwidth is close to the average I/O of running jobs, but not to the peak)

and a ”slow” (the bandwidth is too small to saturate available CPUs with

data, I/O waiting time is increased). Since the sites belong to a complex

network, there often exists a path between them which do not share network

links with the shortest path to the central storage. Moreover, some of the

sites are connected via direct dedicated links. The data can be forwarded be-

tween the sites in order to address network bottlenecks. To discover and use

such alternative routes the planner considers data movements in the entire

network. In this set of simulations we study how the use of such alternative

transfer paths can improve computational performance. The infrastructure

for these simulations is depicted in Figure 16. It consists of three compu-

tational sites named FAST, MEDIUM and SLOW which are connected to

the central storage with 1 Gbps, 300 Mbps and 100 Mbps network links,

respectively. In addition to that, all the sites are interconnected with links

of equal capacity (the dotted lines in Figure 16). The capacity of those links

CENTRAL
STORAGE

FAST

MEDIUM SLOW

1 Gbps

0.3 Gbps 0.1 Gbps

0.1 Gbps0.1 Gbps

0.1 Gbps

Figure 16: Simulated infrastructure with a fully connected network topology.

is changing from 10 to 500 Mbps in different simulations in order to study

132

8 Simulations of distributed data production

how the use of alternative transfer paths can improve the data production

efficiency. Each site has 1,000 of CPUs and a local disc of 15 TB size.

The results of the simulations are given in Figure 17. The plot shows how

0.0 0.1 0.2 0.3 0.4 0.5
Bandwidth (Gbps)

5

10

15

20

25

M
a
ke

sp
a
n
 i
m

p
ro

v
e
m

e
n
t

(%
)

PLANNER vs PUSHseq
PLANNER vs PUSHpar

Figure 17: Dependence of makespan improvement on bandwidth between

remote sites.

the makespan improvement of the PLANNER compared to PUSHpar and

PUSHseq depends on the bandwidth of the links between the remote sites.

Each point in the plot is an average of five simulations with different datasets

(60,000 jobs in each), and the error bars represent a standard deviation. The

planner has reached up to 27 % improvement against the current scheduling

approach (PUSHpar) and up to approximately 19 % improvement against the

PUSHseq. Additional monitoring has shown that the planner, as expected,

redirects a part of the input flow from the ”FAST” site to the ”MEDIUM”

and ”SLOW”; and from ”MEDIUM” to ”SLOW”. This allows to balance the

network load in order to avoid congestion and achieve higher CPU utilization.

Figure 18 shows the CPU utilization (percentage of busy CPUs over the

total number of provided CPUs) as a function of time for one of the sim-

ulations with 100 Mbps interconnecting links. As it can be observed, both

PUSHpar and PUSHseq models did not manage to utilize 100 % of CPUs,

and the number of busy CPUs is fluctuating over time. At the same time, the

133

8.2 Base model

0 10 20 30 40 50 60
Time (days)

0

20

40

60

80

100
T
o
ta

l
C

P
U

 u
sa

g
e
 (

%
)

PLANNER

PUSHseq

PUSHpar

Figure 18: Total CPU usage in the simulation with 100 Mbps links between

remote sites.

PLANNER reaches 100 % CPU utilization shortly after the start and main-

tains it until the end of data production. This is achieved due to distributing

the network load over the links which would be idle otherwise.

In these set of simulations an average makespan improvement of PUSHseq

over PUSHpar is 10 %. As in the previous simulations with a single link,

sequential transfer mode appeared to be advantageous. More importantly,

these simulations have demonstrated that our planner can efficiently schedule

data transfers in a network and decrease processing makespan. Compared to

the approach which also uses the sequential transfer model but relies on the

shortest path only (PUSHseq) our approach provides an improvement which

is up to 19 % for the simulated infrastructure.

8.2.3 Random scale-free networks

Scale-free topology is often used to present common properties of communi-

cation networks [216]. In this set of simulations, we test our planner over a

wide set of arbitrary infrastructures. Each infrastructure consists of 30 sites

interconnected with a random scale-free network. The network bandwidth,

amount of CPUs and storage were down-scaled compared to real facilities,

in order to keep the complexity of the simulations within a reasonable limit.

This also illustrates the fact that only a fraction of overall resources are typ-

ically available for data production (the rest are used for other activities e.g.

user analysis and simulations). To generate a random infrastructure we use

134

8 Simulations of distributed data production

the following steps:

1. Generate a random scale-free network of 30 sites.

2. Set the site with the highest network degree as a Tier-0 (the only input

source and output destination). No CPUs at Tier-0 are considered.

3. For the rest of the sites, set the number of CPUs between 100 and 200

at random. The storage size is 30 GB per each CPU.

4. For each link set a random bandwidth between 0.05 and 0.15 Gbps.

20 distinct infrastructures were generated and used for the simulations. Sev-

eral examples are provided in Figure 19, where the site’s size is proportional

(#6) (#9)

(#12) (#18)

Figure 19: Examples of randomly generated infrastructures.

to the number of CPUs, link thickness is proportional to the bandwidth

and the Tier-0 site is colored in white. We simulated data production at

135

8.2 Base model

each infrastructure using 3 scheduling approaches (PLANNER, PUSHpar

and PUSHseq) and 5 datasets (60,000 jobs each).

Figure 20 shows the makespan improvements our PLANNER provides

10 11 12 13 14 151 16 17 18 19 202 3 4 5 6 7 8 9
Infrastructure number

0

5

10

15

20

25

30

35

40

M
a
ke

sp
a
n
 i
m

p
ro

v
e
m

e
n
t

(%
)

PLANNER vs PUSHseq

PLANNER vs PUSHpar

Figure 20: Makespan improvement of the planer in randomly generated in-

frastructures.

compared to two other approaches for each of 20 generated infrastructures.

For each infrastructure the results are averaged over 5 simulations with dis-

tinct datasets, the error bars show the standard deviation. In all of the

simulations, the planner has consistently demonstrated a positive improve-

ment compared to both PUSHseq and PUSHpar. The magnitude depends

on the properties of a particular infrastructure: presence of bottlenecks and

opportunities to automatically mitigate their influence. The makespan im-

provement by the PLANNER is within 5 – 27 % and 11 – 37 % compared to

PUSHseq and PUSHpar, respectively. As before, the organized (sequential)

transfer execution appeared to be more efficient than uncoordinated (paral-

lel) one.

8.2.4 Real infrastructure

In order to test the scalability of the planner, we have performed simula-

tions using data on Tier-1 sites of one of the currently largest experiments in

HENP. We have used statistics of 10 computational sites obtained from on-

line monitoring tools. However, the designed parameters of such a network

136

8 Simulations of distributed data production

are well balanced and a transfer latency does not influence the computa-

tional performance significantly. Under these conditions, all the simulated

approaches provide similar performance. For a better illustration of the plan-

ner abilities, we have added a dummy site called ”PLUTO” to the initial grid.

The site has a significant amount of CPUs but a limited connection (1 Gbps)

to the Tier-0 while it has a reasonable connection to two other Tier-1 sites.

Such situation can often emerge in real life, when there are computational

resources provided at sites outside of the CERN network infrastructure. The

final grid setup used in the simulations is provided in Figure 21. The ag-

CERN
10 site-6

4,739
67 TB

site-1
5,406
76 TB

10

site-3
558
7 TB

20

site-4
4,265
60 TB

20

site-8
3,416
48 TB

10

site-7
576
8 TB

10

site-5
1,254
18 TB10

2060

20

site-10
12,447
174 TB

site-2
4,052
56 TB

site-9
2,362
33 TB

2

site-PLUTO
12,000
168 TB

1

10

2

Name
CPUs for "A" exp.

Disk cache

 Bandwidth (Gbps)

Legend:

10

Figure 21: Simulated grid of Tier-1 sites of one of the largest HENP experi-

ments.

gregated number of simulated CPUs is 39,075. The amount of disk space at

sites was set proportional to the number of CPUs since we assume that only

a part of the overall storage can be dedicated to data production. For these

simulations we used a set of 500,000 jobs which was generated using random

selection from the original set.

The plot in Figure 22 shows how the total CPU utilization in the sim-

ulated grid changes with time for PUSHseq and PLANNER scheduling ap-

proaches. Unfortunately, the results for PUSHpar approach are not presented

here as the underlying GridSim model for the parallel network mode appeared

to be too computationally demanding. However, this approach has shown

the worst performance in all previous simulations. As one can observe in Fig-

ure 22, the PLANNER has reached 100 % of the overall CPU performance

137

8.3 Influence of background network traffic

Figure 22: Results of simulations of the realistic Tier-1 grid.

since it was able to utilize all the CPUs at the ”PLUTO” site using alternative

(indirect) transfer paths. Such approach allows to use more computational

resources outside of the primary network infrastructure. The makespan im-

provement in the considered case is 21 %, an increase in throughput which

would not have been easily possible without reasoning and a planner.

During the simulations with the realistic size of grid, an average runtime

of the planner was measured. The result shows that planning for 12 hours

of data production is done within 7 milliseconds. This allows to apply this

approach for online planning of data production in the real environment.

8.3 Influence of background network traffic

Network infrastructure is often shared between several experiments, as a

result, transfer latency may increase when several network activities are

ongoing simultaneously. We have studied the influence of the background

traffic on the efficiency of data production comparing different scheduling

approaches with the help of simulations. The simulated infrastructure con-

sisted of a single remote computational site with 1,000 CPUs and 14 TB local

disk connected via 1 Gbps network link to the central storage (Tier-0). Both

sites were sending unrelated files of 12 GB size every 1,000 seconds to each

other, the number of those files to be sent at once was changing in different

simulations. Since simulations with background traffic appeared computa-

tionally challenging in GridSim, we used a smaller set of jobs. The same

set of 7,000 jobs from the original set of the log records was used in each

simulation. The performance of the simulated scheduling approaches is com-

138

8 Simulations of distributed data production

pared in Figure 23. As one can see in the plot, our PLANNER shows better

Figure 23: Results of simulations with background traffic.

performance in all the simulations and the gain in performance increases as

the level of background traffic grows. The PLANNER’s makespan increases

just by 0.17 % when changing from 0 to 0.8 Gbps of the concurrent transfer

submission rate while the makespan for the PUSHseq and PUSHpar is much

higher corresponding to 24 % and 120 %, respectively. This is achieved due to

file transfers in advance before computation, so that the jobs are not delayed

by the network latency.

It is important to consider the maximal possible network latency when

setting up the planning time interval ∆T . If ∆T is too small, the transfers

started at one planner cycle may be completed at the next one and that

can compromise the preciseness of the plan execution. The simulations have

shown that ∆T set to 6 – 12 hours is large enough to avoid such issues.

8.4 Multiple input sources and arbitrary networks

8.4.1 Simulated infrastructure

Here we simulate data production in arbitrary large-scale heterogeneous in-

frastructures where data are distributed between multiple sites. The infras-

tructures are generated using random scale-free networks [216]. We have

modified the generation procedure described in Section 8.2.3 in order to im-

pose additional features common for data grids. For instance, in HENP

computing (see Section 5), the data are typically placed at regional cen-

ters (Tier-0/1) which have better connectivity to each other than the rest

139

8.4 Multiple input sources and arbitrary networks

of sites. Also, larger computing facilities typically have a better network

connection and many smaller sites are connected through them. In order

to model such properties, we set the link bandwidth, number of CPUs and

storage size to correlate with the network degree of a site. The number of

CPUs is defined as a product of two factors: network degree and random.

The latter one is needed to increase heterogeneity of the system. The stor-

age size is set proportional to NCPUi. The link bandwidth is a product of

a reference bandwidth and the smallest values of network degree and NCPi
of connected sites. We vary the reference bandwidth in order to generate in-

frastructures with different network performance. However, we set the limits

for the reference bandwidth and the random factor for CPUs in such a way,

that the resulting infrastructures would comply with observations from the

online monitoring data of HENP experiments (such as MonAlisa [184]). The

resulting procedure is described in the following way:

1. Generate a scale-free graph with N vertices.

2. M vertices with the highest degree are configured as input sources.

3. The rest of the vertexes are configured as processing sites, whereNCPUi
is proportional to the vertex degree and a random value. The size of

the local disk is set to 15 GB per CPU.

4. Each edge of the graph is set as a network link. Its bandwidth is

defined as a reference bandwidth multiplied by the smallest NCPUi
and network degree of the sites connected by the link.

Thirteen generated computational networks used in the simulations consisted

of 30-50 sites and were varying in a total number of CPU’s (4,000 – 23,000),

network structure and bandwidth of the links. Figure 24 shows an example

of such network with 50 sites, 8 input sources, 77 links and 6,663 CPUs. The

red vertexes at the picture are input sources, the blue vertexes are processing

sites, where the label is the number of CPUs. The thickness of the links

illustrates the bandwidth.

Four simulations were done for each generated network: PULL and PLAN-

NER using multiple input sources; and PULL(single) and PLANNER(single)

using a single input source. In case of multiple input sources, the initial data

distribution was established using our approach described in Chapter 7.5. In

140

8 Simulations of distributed data production

Figure 24: Example of a randomly generated infrastructure with multiple

input sources.

case of a single source, the site with the best connectivity (largest degree)

was used. S0 site in Figure 24 is an example. In both cases, the output data

was transferred to a single output destination which was, again, the site with

the best connectivity (S0). In each simulation, the same dataset consisting

of 60,000 jobs (259 TB of input data) was submitted for data production,

and the resulting makespan and CPU utilization over time were compared.

8.4.2 Results

In all the simulations the PLANNER has reached the highest CPU utilization

(both peak and average) and a significantly shorter makespan. The results

of the simulations are summarized in Table 4. For each setup (denoted in

the first column) the table provides parameters of the infrastructure, initial

data distribution planned by our approach (percentage of the entire dataset

placed at each input source), makespan of the PULL(single) approach and the

makespan improvement of other approaches over it. Figure 25 (parts 1 and 2)

contains plots of total CPU usage over time for each scheduling approach in

each setup. Under the PULL model a small fraction of jobs which is processed

the last increases the overall makespan dramatically. This can be seen as a

long ”tail” for both PULL and PULL(single) threads in the plots. It is a well

known drawback of remote data access in scale-free networks. Such behavior

141

8.4 Multiple input sources and arbitrary networks

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 25: (Part 1) Results of simulations with randomly generated infras-

tructures and multiple input sources.

142

8 Simulations of distributed data production

(h) (i)

(j) (k)

(l) (m)

Figure 25: (Part 2) Results of simulations with randomly generated infras-

tructures and multiple input sources.

143

8.4 Multiple input sources and arbitrary networks

Table 4: Results of simulations with randomly generated infrastructures and

multiple input sources.

Reference Planned initial Makespan Makespan improvement

S
it
e
s

S
o
u
rc

e
s

L
in

k
s bandwidth data distribution PULL

(single)

PULL PLANNER

(single)

PLANNER

CPUs kbps/CPU % seconds % % %

a 30 6 41 9,609 300 55, 30, 8, 3, 2, 2 1,993,700 -14 34 37

b 40 5 54 13,425 300 65, 12, 20, 3, 0 1,422,138 -25 26 29

c 50 5 69 20,982 300 57, 14, 5, 12, 12 1,571,094 2 49 52

d 50 5 81 6,771 200 44, 34, 16, 6, 0 3,927,620 -12 44 51

e 50 8 77 6,663 250 45, 20, 4, 1, 15, 6,

9, 0

4,346,099 -6 57 60

f 30 5 42 22,463 500 44, 41, 15, 0, 0 1,116,891 -45 31 37

g 50 5 72 6,717 200 56, 10, 10, 15, 9 4,275,359 -46 56 58

h 50 5 72 5,704 300 29, 16, 29, 14, 12 5,893,276 15 56 64

i 50 5 91 7,210 300 47, 38, 8, 2, 5 2,554,741 -9 31 32

j 50 5 69 4,327 300 48, 10, 19, 21, 2 4,087,063 -7 35 36

k 50 5 73 6,084 400 66, 15, 7, 3, 9 3,140,344 -17 36 38

l 50 5 73 4,342 400 69, 15, 8, 1, 7 3,381,916 -24 20 21

m 50 5 75 5,970 500 33, 39, 16, 2, 10 3,397,126 -2 42 43

Average makespan improvement: -15 40 43

Standard deviation: 17 12 13

can be explained by the lack of coordination between CPU allocation and

file transferring: the jobs are allocated to the first CPU which becomes free

with no reasoning about the resulting latency. As a consequence, significant

portions of data are sent to distant (in a network sense) processing sites,

especially at the end of the computation. At the same time, the closer sites

run out of input data and remain idle. In contrast, the PLANNER considers

how much data can be transferred and processed at each site within each

planning time interval and distributes the load accordingly. This allows to

decrease the makespan dramatically: by 43 % on average with deviation 13 %

in all the simulations (PLANNER compared to PULL(single), please, note,

that PULL(single) has better performance than PULL as discussed later).

Such a significant makespan improvement has a great value for applications

where the dataset has to be processed completely before its future usage can

start (e.g. user analysis in HENP processes the outcome of data production).

The initial data distribution helps to reach the peak processing through-

put faster (compare PLANNER and PLANNER(single) in Figure 25 parts

1 and 2) and thereby provides an additional decrease of the makespan by

6 % on average compared to a single input source. It becomes even more

advantageous (up to 18 %) if the network has regions with poor connectivity

144

8 Simulations of distributed data production

to the primary input source as in cases d, f and h. In such case, transferring

a portion of input data to that region before the processing starts allows

to utilize resources more efficiently. However, our initial data distribution

does not bring any advantage for the PULL approach, because this approach

does not address well the case of multiple sources without data replication.

When multiple sources contain unique portions of data the transfer latency

increases for the PULL algorithm at late stages (when only sources with av-

erage connectivity left) compared to the case with a single source (with the

best connectivity). Let us note that most of the modern DDM systems can

provide data replication across sites. It allows to select a closer input source

for each particular job, which is beneficial for the PULL model. We consider

data replication in the next section.

8.5 Data replication

8.5.1 Simulated infrastructure

In this section our simulations are focused on another extremely important

features — data replication and heterogeneous infrastructure composed of

Tier-0,1,2 sites. We took the structure of the Tier-1 network of a real LHC

experiment (see Section 8.2.4) as a core. Since the detailed network data for

Tier-2 sites was not available, we added those sites randomly, using scale-free

algorithm applied in Section 8.4.1. The resulting procedure was the following

(see Figure 26):

• Ten Tier-1 computational sites (B0 – B9, colored magenta) and the pri-

mary network infrastructure of one of the largest HENP experiments

are used as a core. The number of CPUs, storage size and network

bandwidth are downscaled by the factor of two. This allows to run the

simulations within a reasonable time. The total number of simulated

CPUs at those ten sites is 19,536. We assume that each Tier-1 site

initially stores a partial replica of input data (replicated from Tier-0).

The replicas are of an equal size and non-overlapping.

• Another Tier-1 site (B10, colored blue) with a significant portion of

CPUs (6,000), slow connection to Tier-0 and no locally stored input

data is added to the system in order to challenge compared schedul-

145

8.5 Data replication

C37C37

C31C31

C30C30

C25C25

C38C38

C23C23

C28C28

C29C29

C17C17

C33C33

C32C32

C13C13

C26C26

C21C21

C10C10

C34C34

C35C35

B7B7
C4C4

C19C19

C24C24

B6B6

C6C6

C20C20

C5C5

C14C14

C36C36

C15C15

C9C9

C27C27

C8C8

C16C16
C22C22

B4B4
C1C1

B1B1

B8B8

B10B10

C3C3

B9B9

C0C0

C12C12

B2B2

C2C2

C11C11

C7C7

C18C18

B3B3

B5B5

B0B0

Tier-0Tier-0

Figure 26: Simulated infrastructure with data replication.

ing approaches. The site represents a large computing facility which

is outside of the primary network infrastructure. Such case can illus-

trate the usage of opportunistic resources or resources of an external

volunteering organization possibly from a distant part of the globe.

• A single Tier-0 site (colored red) is considered as a storage only, i.e.

it is another source of input files and the only destination for output

files. We assume that the Tier-0 site persistently stores the entire

input dataset, and all the output files have to be copied there. In

many of the experiments, the Tier-0 has a significant computational

power and is often used for data production. However, processing data

at the Tier-0 site does not require remote data access and, therefore,

is removed out of the scope of our simulations. This simplification

decreases the number of simulated CPUs and, therefore, reduces the

complexity of the simulations. Nevertheless, our approach can include

data processing at Tier-0 site with just a trivial change in configuration.

• The number of CPUs and storage size at Tier-2 sites were assigned

randomly with respect to values observed in real infrastructure (∼100

CPUs, ∼ 3 TB). The sites were connected to the rest of the infras-

tructure using an algorithm for a scale-free network generation [216].

146

8 Simulations of distributed data production

The bandwidth of the corresponding links was set within 0.1 – 1 Gbps.

The simulated infrastructure contains 39 Tier-2 sites (C0 – C38, colored

blue) with 11,019 CPUs in total.

The resulting computational network used in our simulations consists of

51 sites with 36,555 CPUs in total and 82 network links. At Figure 26

the size of the nodes is proportional to the number of CPUs at the site,

thickness of the edges is proportional to the bandwidth of network links.

Five different datasets were created using random selection from the original

set of log records of data production of the STAR experiment. Each dataset

consists of 600,000 input files with total size of 2.7 PB on average. The

corresponding average total size of output files is 1.8 PB. The total time for

sequential processing of such dataset is 3,129 CPU years on average. In these

simulations the PLANNER was compared against the PULL.

8.5.2 Results

The simulations with the described infrastructure have shown that compar-

ing to PULL the PLANNER allows to process each given dataset with a

makespan shorter by 7 % on average with deviation 0.8 %. A typical depen-

dence of the total CPU usage over time during the data production for both

PULL and PLANNER is compared in Figure 27. As one can see on the

0 5 10 15 20 25 30 35 40
Time (days)

0

20

40

60

80

100

T
o
ta

l
C

P
U

 u
sa

g
e
 (

%
)

with data replication

PLANNER

PULL

Figure 27: Results of simulations with

data replication.

0 5 10 15 20 25 30 35 40 45
Time (days)

0

20

40

60

80

100

T
o
ta

l
C

P
U

 u
sa

g
e
 (

%
)

single data source

PLANNER

PULL

Figure 28: Results of simulations

without data replication.

plot, the PULL model fails to utilize all the available CPUs efficiently in the

simulated case: a significant fraction of CPUs is waiting for input/output

transfers and, for this reason, the actual computations are delayed. In such

situation, when the network performance becomes a bottleneck, uncoordi-

nated concurrent data transfer by multiple processes becomes inefficient as

147

8.5 Data replication

it leads to congestion and increased latency. In contrast, the PLANNER

transfers balanced portions of input data in advance before their processing,

output transfers do not delay CPUs and the network usage is planned in

order to avoid congestion. This allows to reach the maximum CPU usage

which otherwise would be hindered by the limited network performance.

For better illustration, we provide CPU usage per site for PULL and

PLANNER in Figures 29 and 30 respectively. Each plot shows the perfor-

0 5 10 15 20 25 30 35 40
Time (days)

0

20

40

60

80

100

C
P
U

 u
sa

g
e
 (

%
)

PLANNER

B10

C14

C3

C21

C24

C11

C5

Figure 29: Results of simulation with

PULL approach: 7 sites with the low-

est CPU usage.

0 5 10 15 20 25 30 35 40
Time (days)

0

20

40

60

80

100

C
P
U

 u
sa

g
e
 (

%
)

PLANNER

B10

C14

C3

C21

C24

C11

C5

Figure 30: Results of simulation with

PLANNER approach: 7 sites with the

lowest CPU usage.

mance of seven sites with the lowest CPU utilization under the PULL ap-

proach. Sites, such as C3, C11 and C5 (see Figure 26), share network links

for data access. As a result, simultaneous I/O access saturates the network

capacity and the CPU usage at those sites is degraded. C21 and C24 switch

to distant input sources when the closest ones are depleted which increases

the latency. Sites, such as B10 and C14 do not have enough connection

bandwidth to keep all their CPUs utilized. Despite alternative input sources

and transfer routes are available for those sites, the PULL model does not

distribute (balance) network load across them. Using the PLANNER, the

transfers are distributed in time, between possible sources and over alterna-

tive routes in order to match the network capacity. This allows to transfer

the data to/from the bottleneck sites efficiently.

In order to study the advantage of data replication, we have performed

an additional simulation where all the input data are initially stored at the

Tier-0 site only. The results are presented in Figure 28. Comparing it to

Figure 27 one can conclude that for the studied use case the PLANNER

provides a close computational efficiency with and without data replication.

This result can be understood considering that our PLANNER creates tem-

148

8 Simulations of distributed data production

poral copies asynchronously to the data processing that is, moves data closer

to the resources as the CPUs are busy for later consumption. The time for

moving files being less than the processing time (and the storage capacity

allowing the data copies), the difference between replication and no replica-

tion is not seen, illustrating the importance (for this use case) of networking

bandwidth as a resource. In contrast, the data replication is required to

increase the performance of the PULL for two reasons. First, it allows to

increase peak performance due to a better distribution of the network load.

Second, without data replication, the PULL had a noticeable makespan in-

crease. This delay is due to a small fraction of slow jobs, which are executed

at large network distances from the data placement and, therefore, suffer

an I/O overhead. Those jobs are observed as a ”tail” at the end of the

plot in Figure 28. Such effect is reduced with data replication where jobs

have a choice of input sources and use the one with the fastest connection.

Nevertheless, the PLANNER has shown advantage both with/without data

replication. The planner considers how much data can be processed during

the planning time interval and distributes data and jobs accordingly: if the

data cannot be processed at a remote site faster than at its current location

it will not be sent there. Therefore, the overall makespan is not compro-

mised by a small fraction of delayed jobs. In this simulation the PLANNER

provides 19 % of makespan improvement compared to the PULL. Similar

observations were made in the simulations from the previous Section 8.4.2.

8.6 Computational time

In all the simulations presented in Section 8 we have measured the time

required by our planner to produce a solution. In the simulations using base

model the average solving time is 7 ms. In more complex simulations with

many tens of sites (Sections 8.5.2 and 8.4.1) the average solving time is 30 ms

with deviation 14 ms for 500 planner runs analyzed. Since the planning time

interval has the order of magnitude of hours, no additional optimization of

the planner regarding the solving time is necessary. The short solving time is

achieved due to the efficient underlying model of the problem which allows to

apply a network flow maximization algorithm. As the scale of the simulated

computational network compares to real systems in HENP, such solving time

meets the requirements for planning in real infrastructures.

149

8.7 Summary of simulations

8.7 Summary of simulations

In this chapter, we have presented simulations of distributed data production

based on data from real systems. A wide scope of use cases was studied

including large-scale heterogeneous infrastructures and shared networks with

high background traffic. In these simulations our planning approach was

compared against the approaches currently used in the field. The simulations

have shown a consistent advantage of the planner which provides higher CPU

usage during computations and shorter makespan. The observed values of

makespan improvement vary in a wide range and should be considered in

the context of the simulated use cases. In small and fast (compared to

processing throughput) networks all the simulated approaches have shown

close performance. In case of complex infrastructures, network bottlenecks

and high background traffic the planner usage becomes clearly beneficial

providing 7 – 60 % shorter makespan.

As the planner adjusts data distribution during computations the initial

data distribution has a minor influence on its performance (in contrast to the

PULL approach) in the simulated use cases. Initial data distribution estab-

lished using our method can provide an additional makespan improvement

and increase efficiency of CPU usage at an early stage of data production. It

has shown a stable positive effect which varies from 1 to 18 % with an average

of 6 % of makespan improvement, depending on the network properties.

The plan generation takes 30 ms on average for the largest simulated in-

frastructures which match the complexity of real systems. Since the planning

has only to be repeated every 6 – 12 hours, such solving time leaves reserve

to consider even larger (prospective) systems.

Overall, we can conclude, that according to the experiments our approach

provides optimization for distributed data production in complex networks

while no drawbacks were observed for fast and/or simple networks.

150

9 Cache management for distributed data storage in HENP

9 Cache management for distributed data stor-

age in HENP

Management of distributed data storage with a high degree of replication

raises an important question of efficient space usage at sites. Our job schedul-

ing approach described in Chapter 7 assumes temporal file replicas to be re-

moved from a computing site as soon as its processing is finished. However,

if there is enough space, it is beneficial to keep data for further reuse. In case

of input (raw) data, such retention would speed the data access up in case

of future (repeated) data production campaigns. The advantage of keeping

more replicas is even more obvious in case of output (reconstructed) data as

those files are typically accessed multiple times by many analysis jobs. After

the files are transferred to their destinations or processed, temporal copies

remaining after the plan execution may be used to improve data availabil-

ity. For this reason, storage clean-ups can be performed asynchronously from

data transfer/processing in order to keep potentially reusable data as long

as possible but remove it upon demand for free space.

A storage of a HENP computational site accommodates data related to

several types of computing activities: data production, user analysis and

simulations. It can be seen as a cache where a part of an entire dataset of a

collaboration (experiment) is placed. If a file requested by a job is missing at

the local storage it has to be accessed over an outer network which introduces

additional latency. Another case is a large data center with a hard drive array

backed with a tertiary storage. The hard drive arrays provide much faster

data access than a tertiary storage, but they have larger cost, therefore, the

available space is limited. For example, in large collaborations, several Tier-1

sites permanently store significant fractions of the entire dataset (100 % in

case of Tier-0) on tape and serve data requests from other sites. The data

from a tertiary storage is recovered to a hard drive upon request and then

sent over the network. If the requested data are already on the disks an

overall latency is significantly smaller. To summarize, the local hard drive

array at a computing site can be considered as a cache for both outgoing

data requests of locally running jobs and incoming data requests of remote

jobs. Also, the concept of caching is utilized in data transfer tools such as

Falcon [11].

151

9.1 Data access patterns in HENP

When managing the content of cache it is desirable to keep the data

which are the most likely to be accessed in future and delete the rest when

space is needed for new data. Plenty of existing cache policys address this

task. However, those algorithms are designed to match particular applica-

tions (CPU registers, RAM, file systems, web etc.), therefore, a careful study

is needed to find the appropriate one for a given use case. In this chapter,

we compare performance of known caching algorithms with respect to data

access patterns observed in HENP computations.

In this study, all the caching algorithms were implemented following the

concept known as ”water-marking”. Water-marking is an approach where

thresholds are set for the cache cleanup starts and stops. It considers the

current disk space occupied by the data in cache while the high-mark and the

low mark for the cache size can be set up as needed. When the used cache size

exceeds the high-mark, the cache clean-up starts, and files are deleted until

the used cache size gets below the low mark. The time interval between clean-

ups depends on the combination of high/low marks, cache size and data-

flow. Therefore with watermarking concept more computational demanding

algorithms can be implemented as the cleanup may be independent of data

transfer. In heterogeneous grid the size of storage at sites varies significantly:

it can be comparable to the entire dataset at Tier-0 site, or can make up just

a fraction of a percent at small Tier-2 sites. The size of cache influences its

performance and is also considered in this study.

9.1 Data access patterns in HENP

In order to study caching, several data access patterns were extracted from

log files of data management systems of HENP computing sites. Three dif-

ferent access patterns were used as input for our simulations:

STAR1: the pattern was extracted from Xrootd [65] log taken from

the Tier-0 site of the STAR experiment (RCF@BNL). It consist of

access records made during a 3 months period (June – August 2012) for

all data available in STAR.

STAR2: the pattern was extracted from the same source (Xrootd of

RCF@BNL) but within a different time period: 7 months in August

2012 – February 2013.

152

9 Cache management for distributed data storage in HENP

GOLIAS computing farm is a part of regional computing center for

particle physics at the Institute of Physics (FZU) in Prague and a

part of a Tier-2 site for the ATLAS experiment. The facility also

performs data processing for another experiment — AUGER, which

makes less than 1% of the total requests. The pattern was extracted

from DPM [197] log for a 3 months period (November 2012 – February

2013).

The usage of access patterns corresponding to different time periods and

experiments allows to verify consistency of the results. The parameters of

the three access patterns are given in Table 5. Both STAR access patterns

Table 5: Summary of three user access patterns used in simulations.

STAR1 STAR2 GOLIAS

Time period months 3 7 3

Number of requests ×106 33 52 21

Data transferred PB 50 80 10

Maximal number of requests per file − 192 203 94,260

Average number of requests per file − 19 15 5

Number of unique files ×106 1.8 1.7 3.8

Total size of dataset PB 1.45 2 1

Maximal file size GB 5.3 5.3 18

Average file size GB 0.8 1 0.3

have similar parameters. It is noteworthy to mention that the first one was

taken right before the Quark Matter 2012 conference and the second one,

right after. It is important as the user analysis intensifies before a conference

and without verification, it would be doubtful if our findings would be stable

over time. The number of files requested only once during the studied period,

is less than 10% in both patterns.

The GOLIAS access pattern is taken from another experiment with dif-

ferent data-storage structure, DPM is used here within a Tier-2 data access

context (user analysis). This access pattern is much less uniform and differs

from the other two: the size of files is not explicitly limited and can reach

18 GB, the number of requests per file varies from 1 up to 94,260, with an

average 5. In this dataset, 44 % of the files were requested only once.

153

9.1 Data access patterns in HENP

When analyzing an access pattern one can subtract a set of unique file-

names. It is a set of all files requested at least once during the period of

consideration. The histograms at the Figure 31 represent the distribution of

(file size)
10

log
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

nu
m

be
r

of
 fi

le
s

0

50

100

150

200

250

300

350
310×

(file size)
10

log
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

nu
m

be
r

of
 fi

le
s

0

50

100

150

200

250

300

310×

(a) (b)

(file size)
10

log
0 2 4 6 8 10

nu
m

be
r

of
 fi

le
s

0

100

200

300

400

500

600

700

310×

(c)

Figure 31: Distribution of files by size for three access patterns: (a) STAR1,

(b) STAR2, (c) GOLIAS.

those unique files by size for each dataset. Here one can see that the file size

distribution at GOLIAS is more dispersed than in STAR. Also, as it can be

observed at the histograms, in STAR maximal file size is limited to 5.3 GB

(the files of larger size are split into several files). This fact explains the

second peak at the histograms for STAR1 and STAR2 datasets. At GOLIAS

there is no limitation for the file size, two peaks at the histogram can be

explained with the presence of files with different types of data.

Another important characteristic of an access pattern is a distribution

of a time interval between two consequent requests for the same file. These

histograms are given in Figure 32. In both STAR access patterns the dis-

tribution is close to log-normal with the peak time interval corresponding to

24 hours. This can be explained by the behavior of users. One can imag-

ine a situation when a scientist checks a result of computational job in the

morning, edits the code and then resubmits the analysis on the same dataset,

and the new output will be available by the next working day. The GOLIAS

154

9 Cache management for distributed data storage in HENP

 (time in seconds)
10

log
0 1 2 3 4 5 6 7

nu
m

be
r

of
 r

eq
ue

st
s

0

500

1000

1500

2000

2500

3000

310×

1 day1 minute

 (time in seconds)
10

log
0 1 2 3 4 5 6 7

nu
m

be
r

of
 r

eq
ue

st
s

0

1000

2000

3000

4000

5000
310×

1 day1 minute

(a) (b)

 (time in seconds)
10

log
0 1 2 3 4 5 6 7

nu
m

be
r

of
 r

eq
ue

st
s

0

100

200

300

400

500

600

310×

1 day
1 minute

(c)

Figure 32: Distribution of time intervals between sequential requests for the

same file in three access patterns : (a) STAR1, (b) STAR2, (c) GOLIAS.

access pattern is less regular. This can be explained with the large amount

of jobs submitted automatically with different intervals, and different type

of jobs having various duration.

Each access pattern can be represented as a contour plot (see Figure 33)

where axes are the number of requests for a particular file and its size, color

represents the number of files with the same coordinates on the plot. The

hot spots on the contour plot allow to reveal common cases of file usage. In

all three access patterns the densest area corresponds to small files that have

been accessed several times only. In both STAR patterns multiple other hot

spots are visible. For example, a set of large files (average 4.8 GB) which

makes 6 % of the entire dataset by number and 37 % by size is responsible

for 15 % of requests and 47 % of data traffic. In contrast to that, 58 % of files

have a small size (average 0.1 GB) make 8 % of dataset size and receive just

16 % of requests and 1 % of data traffic. The further analysis of the STAR

155

9.1 Data access patterns in HENP

file size (GB)
0 1 2 3 4 5

nu
m

be
r

of
 r

eq
ue

st
s

0
20
40
60
80

100
120
140
160
180
200

nu
m

be
r

of
 fi

le
s

1

10

210

310

410

510

(a)

file size (GB)
0 1 2 3 4 5

nu
m

be
r

of
 r

eq
ue

st
s

0
20
40
60
80

100
120
140
160
180
200

nu
m

be
r

of
 fi

le
s

1

10

210

310

410

(b)

file size (GB)
0 2 4 6 8 10 12

nu
m

be
r

of
 r

eq
ue

st
s

0
100
200
300
400
500
600
700
800
900

1000

nu
m

be
r

of
 fi

le
s

1

10

210

310

410

510

610

(c)

Figure 33: Data access patterns represented as contour-plots: (a) STAR1,

(b) STAR2, (c) GOLIAS.

access patterns has shown that in both cases a set of approximately 6 % of

files by total size can be selected in such a way, that it makes 20 % of requests

and 18 % of network traffic. The horizontal lines on the plots reveal looping

access pattern: repeated processing of a set of files of various size. The

GOLIAS access pattern shows fewer features on the contour plot. It has two

”tails” aside from the densest area: small files used hundreds of times and

large files used tens of times. Keeping those small ”popular” files in cache

would obviously increase data access speed.

To summarize, the analysis of data access patterns has shown a hetero-

geneous distribution of files by size and access rates. The ”popularity” of a

file cannot be predicted by its size alone. At the same time, there exist a

subset of files which make a significant fraction of requests and data flow.

Therefore, an algorithm which would keep such files in cache can improve

overall performance.

156

9 Cache management for distributed data storage in HENP

9.2 Summary of caching algorithms

The efficiency of caching can be estimated by two quantities, the cache hits

H and cache hits per megabyte of data Hd(cache data hits):

H =
Ncache

Nreq −Nset

(30)

Hd =
Scache

Sreq − Sset
(31)

where Nreq is the total number of requests, Sreq is the total amount of trans-

ferred data in bytes, Nset is the number of unique filenames, Sset is the total

size of unique files in bytes, Ncache is the number of files transferred from

cache is Scache is the amount of data transferred from cache in bytes.

By maximizing the cache hits H one reduces the number of files trans-

ferred from external sources and thus reduces the overall makespan due to

transfer startup overhead for each file. By maximizing the cache data hits

Hd one reduces the network load and transmission overhead, since more data

is reused from the local cache.

If the access pattern is completely random, the expected cache hit and

cache data hits would be equal to cache size/storage size, so it can be useful

to compare the actual cache performance to this estimation.

Altogether 27 different caching algorithms were simulated. But the ma-

jority of studied algorithms did not bring any improvements over the simplest

one (FIFO). Only the algorithms that appeared to be the most efficient are

discussed here:

- First-In-First-Out (FIFO): evicts files in the same order they en-

tered the cache. Performance of this trivial algorithm provides a good

comparison benchmark against more sophisticated ones which can de-

mand significant computational resources.

© Least-Recently-Used (LRU): evicts the set of files which were not

used for the longest period of time.

• Least-Frequently-Used (LFU): evicts the set of files which were

requested fewer times since they entered the cache.

F Most Size (MS): evicts the set of files which have the largest size.

157

9.3 Evaluation and comparison of caching algorithms

+ Adaptive Replacement Cache (ARC) [217]: splits cached files into

two lists: L1 contains files which were accessed once, and L2 contains

files which were accessed more than ones since they entered the cache.

LRU is then applied to both lists. The self adjustable parameter

a =
cache hits in L1

cache hits in L2
(32)

defines the number of cached files in each list. The general idea is to

invest more in the list which delivers more hits.

∗ Least Value based on Caching Time (LVCT) [218]: Deletes files

with the smallest value of the Utility Function:

UtilityFunction =
1

CachingT ime · FileSize
(33)

where CachingT ime of a file F is the total size of all files accessed after

the last request for the file F.

5 Improved-Least Value based on Caching Time (ILVCT) [219]:

Deletes files with the smallest value of the Utility Function:

UtilityFunction =
1

AccessedF iles · CachingT ime · FileSize
(34)

where CachingT ime is the same as for LVCT and AccessedF iles is a

number of files requested after the last request for the selected file.

9.3 Evaluation and comparison of caching algorithms

Three series of simulations with three access patterns were performed for

each algorithm (90 simulations in total for each algorithm):

• Ten simulations with cache size 1 – 90 % of the dataset with a fixed

low mark 75% and a high-mark 95%. These simulations study the case

when a large storage at a site is managed as cache. Such case is aligned

with a DPM and Xrootd use where most (if not all) of the dataset

resides on hard drive arrays.

158

9 Cache management for distributed data storage in HENP

• Ten simulations with cache size 1.2 – 0.0025% of the dataset with fixed

low mark 75% and high-mark 85%. We used those simulations to un-

derstand the behavior of cache cleanup if the cache size is by several

orders less than the dataset size. This is the case of a separate cache

of data transfer tools or computing sites with a lack of storage space.

• Ten simulations with fixed cache size 10% of the dataset, fixed high-

mark 95% and variable low mark within 0 – 90%. We performed those

simulations to better understand the effect of data retention in cache

(delete the least in hope of re-use).

In order to compare one algorithm against another an average improve-

ment can be calculated in a following way:

Average improvement =

∑n
i=1

value2i−value1i
value1i

n
, (35)

where n is the total amount of simulations with equal parameters for both

algorithms, i is the number of the simulation, value1i is cache hits or cache

data hits of a reference algorithm (FIFO) and value2i is cache hits or cache

data hits of a compared algorithm.

Table 6 contains the results of comparison of all the algorithms presented

Table 6: Average improvement of caching algorithms over FIFO.

Algorithm cache hits cache data hits

MS 116 % -20 %

LRU 8 % 5 %

LFU -27 % -18 %

ARC 13 % 11 %

LVCT 86 % 2 %

ILVCT 28 % 2 %

here against FIFO. Results of simulation series 1 and 2 were used to calculate

the average improvement (60 values for each algorithm). According to our

results, the LFU algorithm does not bring any improvement over FIFO due

to its well known flaw — it accumulates files which were popular for a short

period of time, and those files prevent newer ones from staying in cache.

159

9.3 Evaluation and comparison of caching algorithms

The ARC algorithm was developed as an improvement to LRU, and not

surprisingly, it outperforms LRU by ≈5% in cache hits and ≈7% in cache

data hits. Therefore, LFU and LRU algorithms could be excluded from the

further analysis in our case studies.

The detailed results of simulations for all 3 series are given in Figures 34 –

36. The performance of FIFO and 3 algorithms appeared to be the most

efficient (MS, ACR and LVCT) is presented at the plots. Difference between

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

FIFO

LVCT

MS

Figure 34: Simulated performance of caching algorithms for cache of large

size.

Tier-2 and Tier-0 access patterns leads to distinct cache performance. Only

the data dedicated for the ongoing analysis are placed at the Tier-2 site,

while at the Tier-0 site all the experimental data are stored. As a result —

the access pattern at the Tier-2 site has stronger access locality. STAR1 and

STAR2 access patterns correspond to Tier-0 site and GOLIAS to a Tier-2

site. Thus, any particular algorithm at the plots delivers higher cache hits

and cache data hits for GOLIAS access pattern than for STAR1 and STAR2.

The behavior of algorithms is similar within each dataset that is, their

respective performance ordering is the same. This observation implies that if

one of the algorithms appears to be the most efficient for one of the datasets

it is also the most efficient for the other datasets. This statement is also true

for the rest of simulated algorithms not present at our final figures. Though

the communities represented by the STAR and GOLIAS access patterns are

160

9 Cache management for distributed data storage in HENP

-410 -310 -210

-310

-210

-110

1
cache hits

cache size / storage size
-410 -310 -210

-310

-210

-110

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

FIFO

LVCT

MS

Figure 35: Simulated performance of caching algorithms for cache of small

size.

somewhat similar, this result is slightly surprising as our case studies rep-

resent two time sequences within the same usage and totally uncorrelated

experiments. It would be interesting to compare those algorithms in a differ-

ent experimental context (outside the HENP communities) but such study

is outside the scope of this work.

The MS algorithm has shown outstanding cache hits, but the lowest cache

data hits. At the same time, the LVCT has cache hits comparable to the

MS while cache data hits are 2% improved over the FIFO. This algorithm

could be the preferable one when the cache hits is the target parameter for

optimization. The ARC algorithm has shown the highest cache data hits for

the studied access patterns.

The dependence of algorithms’ performance on the low mark is presented

in Figure 36. With higher low mark the number of clean-ups increases and

that is why the difference between algorithms becomes more notable. Per-

formance of efficient algorithms (FIFO, LRU, ARC and LVCT) increases

steadily with the low mark. One should be careful when setting up a cache

low mark at a particular site, since a higher low mark can increase cache per-

formance significantly, but at the same time it can result in running cache

clean-ups too often, consuming significant computational resources (and po-

tentially increasing the chance to interfere with data transfers hence, degrad-

161

9.3 Evaluation and comparison of caching algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

low mark
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

LVCT

MS

FIFO

LRU

Figure 36: Simulated dependence of cache performance on the low mark.

ing transfer performances if delete/writes/read overlap).

Regardless of the cache size, Tier-level and specificity of an experiment

the LVCT and ARC appeared to be the most efficient caching algorithms

for the considered application. While we found the result surprising at first,

we attribute this result to an access pattern which is intrinsically similar in

nature. LVCT and ARC could certainly be safely used in data transfer and

management tools for HENP computing.

• If the goal is to minimize makespan due to a transfer startup overhead

the LVCT algorithm should be selected.

• If the goal is to minimize the network load and transmission overhead

the ARC algorithm is an option.

162

10 Conclusion and outlook

10 Conclusion and outlook

10.1 Summary of the results

As the result of the Ph.D. thesis, a novel orchestration approach for large-

scale distributed data-intensive computations is proposed. The approach

introduces a new iterative scheduling method based on network flows algo-

rithms with polynomial complexity. The scheduling problem at each iteration

is formulated in such a way that its complexity depends on the number of

sites and network links but not the number of jobs. As a consequence, the ap-

proach can effectively address processing of extensive datasets. A wide range

of simulations using GridSim and data from real systems was performed for

this research in order to demonstrate the viability of the approach on the

rich set of problems. Work on this Ph.D. thesis was driven by the current

computing needs of running High Energy and Nuclear Physics experiment —

STAR, which offloads petabytes of data for remote processing. The results

expand to similar HENP experiments, including the ones at CERN, as well

as to other data-intensive fields.

Having carefully analyzed state of the art resource management in big

data systems, we have concluded, that an important type of computations in

HENP — data production, which accounts for a large fraction of all compu-

tations, is not fully addressed by the known scheduling approaches. Unlike

other common big data workloads, data production cannot efficiently rely on

spatial or temporal data locality, because there is no data reuse between the

jobs. Offloading data production to remote sites, sometimes connected over

unreliable networks, requires a different type of optimization with respect

to job scheduling and data access than provided by common approaches.

In practice, data production often involves ad-hoc setups and requires in-

creased effort from the personnel. As the computing collaboration grows,

aggregates more resources and, therefore, increases complexity and hetero-

geneity, more sophisticated orchestration of computing activities is needed

for efficient operation. This work presents a solution to this problem and

provides an automated, flexible and adaptable planning for data production.

We presented a formal description of the problem in a form of a constraint

satisfaction problem. This model allowed to consider CPU allocation, data

transfer and storage management within a single scheduling problem includ-

163

10.1 Summary of the results

ing resource sharing. Previous known approaches (see Section 4) consider

those interdependent problems separately (e.g. [191]) or partially ignore re-

source sharing (e.g. [141, 159]), which limits the possibilities for end-to-end

optimization. We tested the model, analyzed its limitations and identified

key factors for the primary use case. This allowed to develop a more special-

ized and efficient approach for data production.

The new approach is based on network flow algorithms. It includes

necessary aspects for efficient orchestration of data production and at the

same time remains computationally tractable. While a general job schedul-

ing problem is known to be NP-hard, the proposed formulation allows to

solve the considered case using a polynomial algorithm. We have imple-

mented the planner and complemented it with the execution method, where

a centrally created plan is processed by distributed services running at sites.

Unlike workload management systems currently used, our approach prior-

itizes data placement and transfer over CPU allocation. It readjusts data

distribution continuously and preemptively in order to match the observed

system performance (network, CPU, storage) and maximize throughput of

the computations.

Further, we have extended the base model to consider data provenance

and replication across a distributed system. We also presented a method to

optimize initial data distribution knowing the properties of upcoming compu-

tations and parameters of the system. Such initial data distribution combined

with our planning allows to achieve peak system performance faster and fur-

ther decrease the makespan. These extensions allow to apply our approach

to a greater variety of systems, beyond specifics of the STAR experiment

alone.

We have demonstrated efficiency of our planning approach in a wide scope

of simulations based on data obtained from real systems. The simulations

studied an influence of network performance on the overall efficiency of com-

putations and compared our planner to other approaches used in practice.

We have considered concurrent background traffic over shared networks, var-

ious network topologies, large-scale heterogeneous systems, non-uniform ini-

tial data distribution and presence of data replication. In all the studied

use cases our planner has consistently demonstrated shorter makespan and

better CPU utilization than other simulated approaches. For instance, in

164

10 Conclusion and outlook

randomly generated scale-free networks the improvement reaches 11 – 37 %

compared to the approach currently used in practice. The measured short

solving times confirm that the planner can be used in the HENP production

environment and potentially in the largest prospective infrastructures.

We have also studied applicability of general caching policies to HENP

data management. The evaluations revealed stability of data access patterns

over time and across experiments. We have identified the policies which can

be efficiently used along with our scheduling approach or independently for

data management at sites.

While initially focused on distributed data production in HENP, our ap-

proach can also be helpful in other applications where a large set of data un-

dergoes a single pass of processing on geographically spread resources. The

approach is especially beneficial when the network performance is a limiting

factor.

The results achieved within the work on this thesis were presented at

the following international conferences: 2013/2014/2016 international work-

shop on Advanced Computing and Analysis Techniques in physics research

(ACAT), 2016 international conference on Computing in High Energy and

nuclear Physics (CHEP), 2016 IEEE Symposium Series on Computational

Intelligence (IEEE SSCI), 2015 Multidisciplinary International Scheduling

conference: Theory and Applications (MISTA). The corresponding contribu-

tions were published in Journal of Physics: Conference Series, Proceedings

of the 7th Multidisciplinary International Scheduling Conference, Proceed-

ings of the IEEE Symposium on Computational Intelligence in Scheduling

and Network Design. A paper “Planning of distributed data production for

High Energy and Nuclear Physics” is accepted for publication in the Cluster

Computing journal.

10.2 Future work

Since our approach has been thoroughly tested in simulations based on real

data and systems, the next planned step is to deploy it to the production

environment of the STAR experiment. The deployment should include inte-

gration with other services, such as monitoring, workload management, data

transfer tools and file catalog. Further, the planner can also benefit from inte-

gration with the components providing Software Defined Networking and/or

165

10.2 Future work

Dynamic Circuit Provisioning (see Section 4.3). This would allow to ensure

bandwidth guarantees, controls over network streams according to instanti-

ated plans, and proactively account for other concurrent network activities

planned ahead. Such integration was envisioned during the design and test-

ing of the planner. It does not require changes to our approach or external

services but a proper information exchange between all the components.

The approach can also be adopted by other fields with workloads simi-

lar to data production in HENP. Such workloads feature data-intensive dis-

tributed computations with data-level parallelism, where each portion of data

is processed once. It may include, for example, data cleansing, log analysis,

feature extraction, event reconstruction from sensor data, image recognition

and tagging, generation of subtitles for video files. We expect our approach

to provide a considerable improvement in efficiency of computing for such

workloads, which merits a future practical evaluation.

Further studies could also evaluate the optimization which our approach

can possibly provide to another important type of computations in HENP

— the simulations (see Section 5.1). Such computations do not require large

volumes of input data, however, the amount of output data is comparable to

data production. Here, we anticipate our approach to mitigate network and

storage bottlenecks when transferring the output data from external sites to

the permanent storage. The planner can also be helpful to predict how many

simulation jobs can effectively run at each site given the network and storage

status. For the embedding (event overlay) type of simulations, utilizing raw

data, planning of input transfers may also become advantageous.

There are multiple possibilities to further extend our planning approach.

First, it is possible to identify network links with high background traffic and

decrease the load on those links using alternative transfer paths as illustrated

in Figure 37. This should improve load balancing in worst-case scenarios

of congested networks. Such reasoning can be implemented by monitoring

recent network performance and setting higher costs to the network links

where large background traffic is detected.

Second, multiple other practical optimizations can be achieved by adjust-

ment of the cost function. For example, more reliable resources, faster CPUs

and external clouds with lower lease price can be prioritized. Such extension

requires to define the cost function in such a way that would balance the

166

10 Conclusion and outlook

REMOTE-1 REMOTE-2

STORAGE

high
background

balancing
network

load

Figure 37: Load balancing in networks with high background traffic.

importance of the optimization goals. This allows fine-tuning of the planner

according to secondary optimization goals, practical for real-life scenarios.

Third, optimization for energy efficiency can be naturally integrated into

the proposed planning model. Analysis of instantiated plans can detect un-

used resources (e.g. machines and network hardware). Presence of idle re-

sources in the plan indicates the existence of bottlenecks in the system which

prevent efficient usage of those resources. Therefore, such resources can be

powered off in order to reduce expenses. The proposed execution approach

leaves enough time to bring those resources back by the time when their usage

becomes efficient and is planned. Alternatively, resources not used for data

production can be reassigned to other computing activities. For instance,

if the network bandwidth is not sufficient to saturate all available CPUs at

a remote site with raw data for data production, the unused CPUs can be

assigned simulation jobs. Such automated reasoning added to our planner

could greatly simplify resource provisioning typically performed by site and

grid administrators.

As the ultimate goal, the planner could be extended to more general work-

loads, beyond the specifics of data production. The expected advantage is to

have a uniform and efficient orchestration for many types of workflows within

a large-scale computing collaboration/enterprise. This would require consid-

eration of mutual dependency between the jobs and data re-usage, which

could be based on our studies. Scheduling of execution, data placement and

transfer considering each individual job was discussed in Section 6. Opti-

mization of data transfer between N sources and M destinations was earlier

addressed by Michal Zerola [11]. The further research may consider union the

presented concepts into a multistage scheduling approach. In such approach

167

10.2 Future work

our planner can be used for efficient load balancing in the first scheduling

stage. Then, at the further stages, data transfer path and CPU allocation for

each job can be mapped onto the initial plan in order to provide fine-grained

optimization. Such possibility deserves a careful study in future.

168

10 Conclusion and outlook

169

11 Bibliography

[1] Malte Schwarzkopf. The evolution of cluster scheduler ar-

chitectures. Firmament Blog http://firmament.io/blog/

scheduler-architectures.html. Accessed: September 2017.

[2] Tevfik Kosar and Miron Livny. Stork: Making data placement a first

class citizen in the grid. In 24th International Conference on Distributed

Computing Systems, pages 342–349. IEEE, 2004.

[3] Jamie Shiers. The Worldwide LHC Computing Grid (Worldwide LCG).

Computer physics communications, 177:219–223, 2007.

[4] Ian Bird et al. Update of the Computing Models of the WLCG and the

LHC Experiments. Technical Report CERN-LHCC-2014-014. LCG-

TDR-002, CERN, Geneva, 2014.

[5] Costin Caramarcu, Christopher Hollowell, William Strecker-Kellogg,

Antonio Wong, and Alexandr Zaytsev. The role of dedicated data

computing centers in the age of cloud computing. Journal of Physics:

Conference Series, 898(8), 2017.

[6] Bruce Gibbard and Thomas Throwe. The RHIC computing facility. Nu-

clear Instruments and Methods in Physics Research Section A: Acceler-

ators, Spectrometers, Detectors and Associated Equipment, 499(2):814

– 818, 2003.

[7] Ian Bird. LHC computing (WLCG): Past, present, and future. Grid

and Cloud Computing: Concepts and Practical Applications, 192:1–29,

2016.

[8] HB Newman, A Mughal, I Kassymkhanova, J Bunn, R Voicu,

V Lápádátescu, and D Kcira. Networking for high energy physics.

Grid and Cloud Computing: Concepts and Practical Applications, 192,

2016.

170

http://firmament.io/blog/scheduler-architectures.html
http://firmament.io/blog/scheduler-architectures.html

[9] Artur Barczyk. Advanced networking for scientific applications. Grid

and Cloud Computing: Concepts and Practical Applications, 192:185–

205, 2016.

[10] Shishir Bharathi and Ann Chervenak. Data staging strategies and their

impact on the execution of scientific workflows. In 2nd International

workshop on data-aware distributed computing. ACM, 2009.

[11] Michal Zerola, Jérôme Lauret, Roman Barták, and Michal Šumbera.

One click dataset transfer: toward efficient coupling of distributed

storage resources and CPUs. Journal of Physics: Conference Series,

368(1), 2012.

[12] Joanna Ko lodziej and Samee Ullah Khan. Data scheduling in data

grids and data centers: a short taxonomy of problems and intelligent

resolution techniques. In Transactions on computational collective in-

telligence X, pages 103–119. Springer, 2013.

[13] Zhang Junwei, Lee Bu-Sung, Tang Xueyan, and Yeo Chai-Kiat. Impact

of parallel download on job scheduling in data grid environment. In 7th

International Conference on Grid and Cooperative Computing, pages

102–109, 2008.

[14] Marco Cattaneo, Philippe Charpentier, Peter Clarke, and Stefan

Roiser. Recent and planned changes to the LHCb computing model.

Journal of Physics: Conference Series, 513(3), 2014.

[15] Dagmar Adamova, Jiri Chudoba, Marek Elias, Lukas Fiala, Tomas

Kouba, Milos Lokajicek, and Jan Svec. WLCG Tier-2 site in Prague:

a little bit of history, current status and future perspectives. Journal

of Physics: Conference Series, 608, 2015.

[16] Jǐŕı Horký, Miloš Lokaj́ıček, and Jakub Peisar. Influence of distribut-

ing a Tier-2 data storage on physics analysis. 15th Int. Workshop on

Advanced Computing and Analysis Techniques in Physical Research

(2013) Accessed: December 2013.

171

[17] Latchezar Betev, Andrei Gheata, Mihaela Gheata, Costin Grigoras,

and Peter Hristov. Performance optimisations for distributed analysis

in ALICE. Journal of Physics: Conference Series, 523(1), 2014.

[18] Han Hu, Yonggang Wen, Tat-Seng Chua, and Xuelong Li. Toward

scalable systems for big data analytics: A technology tutorial. IEEE

Access, 2:652–687, 2014.

[19] Geydar Agakishiev, Nikita Balashov, Wayne Betts, Lidia Didenko, Lev-

ente Hajdu, Vladimir Korenkov, Evgeniy Kuznetsov, Jérôme Lauret,

Valery Mitsyn, and Yury Panebratsev. STAR’s approach to highly ef-

ficient end-to-end grid production. In 26th International Symposium

on Nuclear Electronics and Computing, 2017.

[20] K. H. Ackermann et al. STAR detector overview. Nuclear Instruments

and Methods in Physics Research, A499:624–632, 2003.

[21] Levente Hajdu et al. STAR experience with automated high efficiency

Grid based data production framework at KISTI/Korea. In HEPiX

Workshop. Oxford University, UK, 2015.

[22] Jan Balewski, Jerome Lauret, Doug Olson, Iwona Sakrejda, Dmitry

Arkhipkin, et al. Offloading peak processing to virtual farm by

STAR experiment at RHIC. Journal of Physics: Conference Series,

368(012011), 2012.

[23] Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Planning for distributed workflows: constraint-based coscheduling of

computational jobs and data placement in distributed environments.

Journal of Physics: Conference Series, 608(1), 2015.

[24] Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Model for planning of distributed data production. In Proceedings of the

7th Multidisciplinary International Scheduling Conference (MISTA),

pages 699–703, 2015.

[25] Dzmitry Makatun, Jérôme Lauret, and Hana Rudová. Planning of dis-

tributed data production for High Energy and Nuclear Physics. Cluster

Computing, 2018. (Accepted).

172

[26] Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Simulations and study of a new scheduling approach for distributed

data production. Journal of Physics: Conference Series, 762(1), 2016.

[27] Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Network flows for data distribution and computation. Proceedings of

the IEEE Symposium on Computational Intelligence in Scheduling and

Network Design, 2016.

[28] Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Provenance-aware optimization of workload for distributed data pro-

duction. Journal of Physics: Conference Series, 898(5), 2017.

[29] Dzmitry Makatun, Jérôme Lauret, and Michal Šumbera. Study of cache

performance in distributed environment for data processing. Journal

of Physics: Conference Series, 523(1), 2014.

[30] Doug Laney. 3D data management: Controlling data volume, velocity

and variety. META Group Research Note, 6(70), 2001.

[31] John Gantz and David Reinsel. Extracting value from chaos. IDC

iView, 1142, 2011.

[32] Michael Cooper and Peter Mell. Tackling big data, NIST information

technology laboratory, computer security division. In Federal Computer

Security Managers’ Forum, 2012.

[33] Mike Loukides. What is data science? O’Reilly Media, Inc., 2011.

[34] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications,

challenges, techniques and technologies: A survey on big data. Infor-

mation Sciences, 275:314–347, 2014.

[35] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile

Networks and Applications, 19:171–209, 2014.

[36] Raghavendra Kune, Pramod Kumar Konugurthi, Arun Agarwal,

Raghavendra Rao Chillarige, and Rajkumar Buyya. The anatomy of

big data computing. Software: Practice and Experience, 46:79–105,

2016.

173

[37] Mayer-Schönberger Viktor and Cukier Kenneth. Big data: A revolution

that will transform how we live, work, and think. 2013.

[38] Ahmed Abbasi, Suprateek Sarker, and Roger HL Chiang. Big data

research in information systems: Toward an inclusive research agenda.

Journal of the Association for Information Systems, 17(2), 2016.

[39] Vivien Marx. Biology: The big challenges of big data. Nature, 498:255–

260, 2013.

[40] Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth paradigm:

data-intensive scientific discovery, volume 1. Microsoft research Red-

mond, WA, 2009.

[41] Trudie Lang. Advancing global health research through digital tech-

nology and sharing data. Science, 331:714–717, 2011.

[42] Jonathan T Overpeck, Gerald A Meehl, Sandrine Bony, and David R

Easterling. Climate data challenges in the 21st century. Science,

331:700–702, 2011.

[43] Gary King. Ensuring the data-rich future of the social sciences. Science,

331:719–721, 2011.

[44] Ewa Deelman et al. GriPhyN and LIGO, building a virtual data grid for

gravitational wave scientists. In 11th IEEE International Symposium

on High Performance Distributed Computing, HPDC-11, pages 225–

234. IEEE, 2002.

[45] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer. SETI@ home: an experiment in public-resource computing.

Communications of the ACM, 45:56–61, 2002.

[46] Rupak Biswas. NASA advanced computing environment for sci-

ence and engineering. https://ntrs.nasa.gov/archive/nasa/casi.

ntrs.nasa.gov/20170007408.pdf. Accessed: December 2017.

[47] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-

cessing on large clusters. Communications of the ACM, 51:107–113,

2008.

174

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170007408.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170007408.pdf

[48] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, Peter Vajgel,

et al. Finding a needle in Haystack: Facebook’s photo storage. In 9th

USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI), volume 10, 2010.

[49] Roshan Sumbaly, Jay Kreps, and Sam Shah. The big data ecosystem at

LinkedIn. In ACM SIGMOD International Conference on Management

of Data, pages 1125–1134. ACM, 2013.

[50] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data con-

cepts, methods, and analytics. International Journal of Information

Management, 35(2):137 – 144, 2015.

[51] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In International

Conference on Collaboration Technologies and Systems (CTS), pages

42–47. IEEE, 2013.

[52] Sunil Erevelles, Nobuyuki Fukawa, and Linda Swayne. Big data con-

sumer analytics and the transformation of marketing. Journal of Busi-

ness Research, 69(2):897 – 904, 2016.

[53] Matthew A. Waller and Stanley E. Fawcett. Data science, predictive

analytics, and big data: A revolution that will transform supply chain

design and management. Journal of Business Logistics, 34(2):77–84,

2013.

[54] Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, and Ge-

offrey C Fox. A tale of two data-intensive paradigms: Applications,

abstractions, and architectures. In IEEE International Congress on

Big Data, pages 645–652, 2014.

[55] Hamid Reza Asaadi, Dounia Khaldi, and Barbara Chapman. A com-

parative survey of the HPC and big data paradigms: Analysis and

experiments. In IEEE International Conference on Cluster Computing

(CLUSTER), pages 423–432, 2016.

[56] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. ACM Sigact

News, 33:51–59, 2002.

175

[57] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Computing Surveys (CSUR), 15:287–317,

1983.

[58] Dan Pritchett. BASE: An ACID alternative. Queue, 6:48–55, 2008.

[59] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google

file system. In SIGOPS Operating Systems Review, volume 37, pages

29–43. ACM, 2003.

[60] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of

computation for MapReduce. In 21st annual ACM-SIAM symposium

on Discrete Algorithms, pages 938–948, 2010.

[61] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[62] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. The Hadoop Distributed File System. In IEEE 26th Sympo-

sium on mass storage systems and technologies. IEEE, 2010.

[63] Spencer Shepler, Mike Eisler, David Robinson, Brent Callaghan,

Robert Thurlow, David Noveck, and Carl Beame. Network file system

(NFS) version 4 protocol. https://tools.ietf.org/html/rfc3530,

2003. Accessed: January 2018.

[64] John H Howard et al. An overview of the Andrew File System. Carnegie

Mellon University, Information Technology Center, 1988.

[65] Xrootd. http://xrootd.slac.stanford.edu/. Accessed: September

2017.

[66] Jakob Blomer, Carlos Aguado-Sánchez, Predrag Buncic, and Artem

Harutyunyan. Distributing LHC application software and conditions

databases using the CernVM file system. Journal of Physics: Confer-

ence Series, 331(4), 2011.

[67] Philip Schwan et al. Lustre: Building a file system for 1000-node

clusters. In Proceedings of the Linux symposium, pages 380–386, 2003.

176

https://tools.ietf.org/html/rfc3530
http://xrootd.slac.stanford.edu/

[68] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and

Carlos Maltzahn. Ceph: A scalable, high-performance distributed file

system. In 7th symposium on Operating systems design and implemen-

tation, pages 307–320. USENIX, 2006.

[69] Michael Poat, Jérôme Lauret, and Wayne Betts. POSIX and object dis-

tributed storage systems performance comparison studies with real-life

scenarios in an experimental data taking context leveraging OpenStack

Swift and Ceph. Journal of Physics: Conference Series, 664, 2015.

[70] Michael Poat and Jérôme Lauret. Performance and advanced data

placement techniques with Ceph’s distributed storage system. Journal

of Physics: Conference Series, 762, 2016.

[71] Alex Davies and Alessandro Orsaria. Linux Journal, 2013(235), 2013.

[72] Jakob Blomer. Experiences on file systems: Which is the best file

system for you? Journal of Physics: Conference Series, 664(4), 2015.

[73] Yuduo Zhou. Large scale distributed file system survey.

http://grids.ucs.indiana.edu/ptliupages/publications/

Large%20Scale%20Distributed%20File%20System%20Survey.pdf.

Accessed: September 2017.

[74] Maria Girone. Distributed data management and distributed file sys-

tems. Journal of Physics: Conference Series, 664(4), 2015.

[75] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. Dryad: distributed data-parallel programs from sequential

building blocks. In ACM SIGOPS operating systems review, volume 41,

pages 59–72. ACM, 2007.

[76] Marc Snir. MPI–the Complete Reference: the MPI core, volume 1.

MIT press, 1998.

[77] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using

OpenMP: portable shared memory parallel programming, volume 10.

MIT press, 2008.

177

http://grids.ucs.indiana.edu/ptliupages/publications/Large%20Scale%20Distributed%20File%20System%20Survey.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Large%20Scale%20Distributed%20File%20System%20Survey.pdf

[78] George Almasi. PGAS (Partitioned Global Address Space) languages.

In Encyclopedia of Parallel Computing, pages 1539–1545. Springer,

2011.

[79] Adaptive Computing and Green Computing. Torque resource manager.

http://www.adaptivecomputing.com. Accessed: November 2015.

[80] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-

puting in practice: the Condor experience. Concurrency and Compu-

tation: Practice and Experience, 17:323–356, 2005.

[81] Stuart K Paterson and Andrei Tsaregorodtsev. DIRAC optimized

workload management. Journal of Physics: Conference Series, 119(6),

2008.

[82] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott

Shenker, and Ion Stoica. Spark: Cluster computing with working sets.

HotCloud, 10, 2010.

[83] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram

Venkataraman, Michael J Franklin, et al. Apache Spark: A unified en-

gine for big data processing. Communications of the ACM, 59:56–65,

2016.

[84] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and

Ion Stoica. Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing. In 9th USENIX conference on

Networked Systems Design and Implementation. USENIX Association,

2012.

[85] Shanjiang Tang, Bingsheng He, Haikun Liu, and Bu-Sung Lee. Re-

source management in big data processing systems. http://www.comp.

nus.edu.sg/~hebs/pub/shangresource16.pdf. Accessed: March

2017.

178

http://www.adaptivecomputing.com
http://www.comp.nus.edu.sg/~hebs/pub/shangresource16.pdf
http://www.comp.nus.edu.sg/~hebs/pub/shangresource16.pdf

[86] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed

messaging system for log processing. In 6th International Workshop

on Networking Meets Databases (NetDB 2011), 2011.

[87] Rajiv Ranjan. Streaming big data processing in datacenter clouds.

IEEE Cloud Computing, 1:78–83, 2014.

[88] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-

rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E Gruber. Bigtable: A distributed storage system for struc-

tured data. ACM Transactions on Computer Systems (TOCS), 26,

2008.

[89] Lars George. HBase: the definitive guide: random access to your

planet-size data. O’Reilly Media, Inc., 2011.

[90] Kristina Chodorow. MongoDB: The Definitive Guide: Powerful and

Scalable Data Storage. O’Reilly Media, Inc., 2013.

[91] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating Systems Review,

44:35–40, 2010.

[92] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad

Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,

Hitesh Shah, Siddharth Seth, et al. Apache Hadoop YARN: Yet an-

other resource negotiator. In Proceedings of the 4th annual Symposium

on Cloud Computing. ACM, 2013.

[93] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos:

A platform for fine-grained resource sharing in the data center. In Pro-

ceedings of the USENIX Conference on Networked Systems Design and

Implementation, volume 11, 2011.

[94] Charlie Catlett, William E Allcock, Phil Andrews, Ruth Aydt, Ray

Bair, Natasha Balac, Bryan Banister, Trish Barker, Mark Bartelt, Pete

179

Beckman, et al. Teragrid: Analysis of organization, system architec-

ture, and middleware enabling new types of applications. Technical

report, IOS Press, 2008.

[95] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny,

Alain Roy, Paul Avery, Kent Blackburn, Torre Wenaus, Frank

Würthwein, et al. The Open Science Grid. Journal of Physics: Con-

ference Series, 78(1), 2007.

[96] European Grid Infrastructure (EGI). https://www.egi.eu/. Ac-

cessed: June 2017.

[97] Ian Foster and Carl Kesselman. The history of the grid. Advances in

Parallel Computing, 20:3–30, 2010.

[98] Šimon Tóth and Miroslav Ruda. Distributed job scheduling in Meta-

Centrum. Journal of Physics: Conference Series, 608(1), 2015.

[99] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing.

computer security division, information technology laboratory, national

institute of standards and technology gaithersburg. http://faculty.

winthrop.edu/domanm/csci411/Handouts/NIST.pdf, 2011. Novem-

ber: June 2017.

[100] Seyyed Mohsen Hashemi and Amid Khatibi Bardsiri. Cloud computing

vs. grid computing. ARPN journal of systems and software, 2:188–194,

2012.

[101] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing

and grid computing 360-degree compared. In Grid Computing Envi-

ronments Workshop. IEEE, 2008.

[102] Raquel V Lopes and Daniel Menascé. A taxonomy of job scheduling

on distributed computing systems. IEEE Transactions on Parallel and

Distributed Systems, 27:3412–3428, 2016.

[103] B Bockelman et al. Commissioning the HTCondor-CE for the Open

Science Grid. Journal of Physics: Conference Series, 664(6), 2015.

180

https://www.egi.eu/
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

[104] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John

Wilkes. Omega: flexible, scalable schedulers for large compute clusters.

In 8th ACM European Conference on Computer Systems, pages 351–

364. ACM, 2013.

[105] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou,

Zhengping Qian, Ming Wu, and Lidong Zhou. Apollo: Scalable and

coordinated scheduling for cloud-scale computing. In USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI), vol-

ume 14, pages 285–300, 2014.

[106] Nomad. https://www.nomadproject.io/docs/internals/

scheduling.html. Accessed: September 2017.

[107] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Spar-

row: Distributed, low latency scheduling. In 24th ACM Symposium on

Operating Systems Principles, pages 69–84, 2013.

[108] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil:

Reconciling scheduling speed and quality in large shared clusters. In

Proceedings of the 6th ACM Symposium on Cloud Computing, pages

97–110, 2015.

[109] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,

Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,

Raghu Ramakrishnan, and Sarvesh Sakalanaga. Mercury: Hybrid cen-

tralized and distributed scheduling in large shared clusters. In 2015

USENIX Annual Technical Conference (USENIX ATC 15), pages 485–

497, 2015.

[110] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy

Zwaenepoel. Hawk: Hybrid datacenter scheduling. In 2015 USENIX

Annual Technical Conference (USENIX ATC 15), pages 499–510, 2015.

[111] Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The

EASY—LoadLeveler API project. In Job Scheduling Strategies for

Parallel Processing, Lecture Notes in Computer Science, volume 1162,

pages 41–47. Springer, 1996.

181

https://www.nomadproject.io/docs/internals/scheduling.html
https://www.nomadproject.io/docs/internals/scheduling.html

[112] Songnian Zhou. LSF: Load sharing in large heterogeneous distributed

systems. In 1st Workshop on cluster computing, volume 136, 1992.

[113] David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the

Maui scheduler. In Workshop on Job Scheduling Strategies for Parallel

Processing, pages 87–102. Springer, 2001.

[114] Cray Inc. Introducing NQE. Technical Report 2153 2.97, Seattle, WA,

1997.

[115] Brett Bode, David M Halstead, Ricky Kendall, Zhou Lei, and David

Jackson. The Portable Batch Scheduler and the Maui scheduler on

Linux clusters. In Annual Linux Showcase and Conference, 2000.

[116] Wesley Emeneker, Dave Jackson, Joshua Butikofer, and Dan Stanzione.

Dynamic virtual clustering with Xen and Moab. In International Sym-

posium on Parallel and Distributed Processing and Applications, pages

440–451. Springer, 2006.

[117] Ian Foster. The globus toolkit for grid computing. In Cluster Comput-

ing and the Grid, volume 1. IEEE, 2001.

[118] Anand Natrajan, Marty A Humphrey, and Andrew S Grimshaw. Grid

resource management in Legion. In Grid resource management, pages

145–160. Springer, 2004.

[119] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. Large-scale cluster management

at Google with Borg. In 10th European Conference on Computer Sys-

tems. ACM, 2015.

[120] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and

John Wilkes. Borg, Omega, and Kubernetes. Communications of the

ACM, 59:50–57, 2016.

[121] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson,

and Steven Hand. Firmament: Fast, centralized cluster scheduling at

scale. In 12th USENIX Conference on Operating Systems Design and

Implementation, pages 99–115. USENIX Association, 2016.

182

[122] Muhammad Bilal Qureshi, Maryam Mehri Dehnavi, Nasro Min-Allah,

Muhammad Shuaib Qureshi, Hameed Hussain, Ilias Rentifis, Nikos

Tziritas, Thanasis Loukopoulos, Samee U Khan, Cheng-Zhong Xu,

et al. Survey on grid resource allocation mechanisms. Journal of Grid

Computing, 12:399–441, 2014.

[123] Fatos Xhafa and Ajith Abraham. Metaheuristics for scheduling in dis-

tributed computing environments, volume 146. Springer, 2008.

[124] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao.

A taxonomy of data grids for distributed data sharing, management,

and processing. ACM Computing Surveys (CSUR), 38(1):B1–B53,

2006.

[125] Jia Yu and Rajkumar Buyya. A taxonomy of workflow management

systems for grid computing. Journal of Grid Computing, 3:171–200,

2005.

[126] Maria Alejandra Rodriguez and Rajkumar Buyya. A taxonomy and

survey on scheduling algorithms for scientific workflows in IaaS cloud

computing environments. Concurrency and Computation: Practice and

Experience, 29(8), 2017.

[127] C Vijaya and DRP Srinivasan. A survey on resource scheduling in

cloud computing. International Journal of Pharmacy and Technology

(IJPT), 8:26142–26162, 2016.

[128] Sucha Smanchat and Kanchana Viriyapant. Taxonomies of workflow

scheduling problem and techniques in the cloud. Future Generation

Computer Systems, 52, 2015.

[129] Yoav Etsion and Dan Tsafrir. A short survey of commercial cluster

batch schedulers. School of Computer Science and Engineering, The

Hebrew University of Jerusalem, 44221, 2005.

[130] A Forti, A Pérez-Calero Yzquierdo, T Hartmann, M Alef, A Lahiff,

J Templon, S Dal Pra, M Gila, S Skipsey, C Acosta-Silva, et al. Mul-

ticore job scheduling in the Worldwide LHC Computing Grid. Journal

of Physics: Conference Series, 664(6), 2015.

183

[131] Fatos Xhafa and Ajith Abraham. Computational models and heuristic

methods for Grid scheduling problems. Future generation computer

systems, 26(4):608–621, 2010.

[132] Dalibor Klusáček and Hana Rudová. Multi-resource aware fairsharing

for heterogeneous systems. In Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science, number 8828, pages

53–69. Springer, 2014.

[133] Dalibor Klusáček and Hana Rudová. A metaheuristic for optimizing

the performance and the fairness in job scheduling systems. In Ar-

tificial Intelligence Applications in Information and Communication

Technologies, volume 607, pages 3–29. Springer, 2015.

[134] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and

Ponnuswamy Sadayappan. Selective reservation strategies for back-

fill job scheduling. In Job Scheduling Strategies for Parallel Process-

ing, Lecture Notes in Computer Science, volume 2537, pages 55–71.

Springer, 2002.

[135] Fatos Xhafa, Javier Carretero, Leonard Barolli, and Arjan Durresi.

Immediate mode scheduling in grid systems. International Journal of

Web and Grid Services, 3(2):219–236, 2007.

[136] Fatos Xhafa, Leonard Barolli, and Arjan Durresi. Batch mode schedul-

ing in grid systems. International Journal of Web and Grid Services,

3(1):19–37, 2007.

[137] David A Lifka. The ANL/IBM SP scheduling system. In Workshop

on Job Scheduling Strategies for Parallel Processing, pages 295–303.

Springer, 1995.

[138] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability,

workloads, and user runtime estimates in scheduling the IBM SP2 with

backfilling. IEEE Transactions on Parallel and Distributed Systems,

12:529–543, 2001.

[139] David Talby and Dror G Feitelson. Supporting priorities and improv-

ing utilization of the IBM SP scheduler using slack-based backfilling.

184

In Symposium on Parallel and Distributed Processing, pages 513–517.

IEEE, 1999.

[140] Dalibor Klusáček and Hana Rudová. A metaheuristic for optimizing

the performance and the fairness in job scheduling systems. In Ar-

tificial Intelligence Applications in Information and Communication

Technologies, pages 3–29. Springer, 2015.

[141] Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov, and Francine

Berman. Heuristics for scheduling parameter sweep applications in

grid environments. In Proceedings of the 9th Heterogeneous Computing

Workshop, pages 349–363. IEEE, 2000.

[142] Holger H Hoos and Thomas Stützle. Stochastic local search: Founda-

tions and applications. Elsevier, 2004.

[143] Xingwu Zheng, Zhou Zhou, Xu Yang, Zhiling Lan, and Jia Wang.

Exploring plan-based scheduling for large-scale computing systems. In

International Conference on Cluster Computing (CLUSTER), pages

259–268. IEEE, 2016.

[144] Dalibor Klusáček and Hana Rudová. Performance and fairness for users

in parallel job scheduling. In Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science, number 7698, pages

235–252. Springer, 2013.

[145] Javier Carretero, Fatos Xhafa, and Ajith Abraham. Genetic algorithm

based schedulers for grid computing systems. International Journal of

Innovative Computing, Information and Control, 3(6):1–19, 2007.

[146] Pablo Moscato et al. On evolution, search, optimization, genetic al-

gorithms and martial arts: Towards memetic algorithms. Caltech con-

current computation program, C3P Report, 826, 1989.

[147] Graham Ritchie. Static multi-processor scheduling with ant colony

optimisation & local search, 2003.

[148] James Kennedy. Particle swarm optimization. In Encyclopedia of ma-

chine learning, pages 760–766. Springer, 2011.

185

[149] Hongbo Liu, Ajith Abraham, and Aboul Ella Hassanien. Scheduling

jobs on computational grids using a fuzzy particle swarm optimization

algorithm. Future Generation Computer Systems, 26(8):1336 – 1343,

2010.

[150] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware

scheduling for heterogeneous datacenters. In ACM SIGPLAN Notices,

volume 48, pages 77–88. ACM, 2013.

[151] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-

efficient and QoS-aware cluster management. In ACM SIGPLAN No-

tices, volume 49, pages 127–144. ACM, 2014.

[152] Aram Galstyan, Karl Czajkowski, and Kristina Lerman. Resource allo-

cation in the grid using reinforcement learning. In International Joint

Conference on Autonomous Agents and Multiagent Systems, volume 3,

pages 1314–1315. IEEE, 2004.

[153] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network

flows: theory, algorithms, and applications. Prentice Hall, 1993.

[154] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal

Talwar, and Andrew Goldberg. Quincy: fair scheduling for distributed

computing clusters. In SIGOPS 22nd Symposium on Operating Systems

Principles, pages 261–276. ACM, 2009.

[155] David Bernstein. Containers and cloud: From lxc to Docker to Kuber-

netes. IEEE Cloud Computing, 1:81–84, 2014.

[156] Michael R Garey and David S Johnson. Computers and intractability:

a guide to the theory of NP-completeness. W.H. Freeman and Co, New

York, 1979.

[157] Maciej Drozdowski. Scheduling for Parallel Processing. Springer, 1st

edition, 2009.

[158] Oliver Sinnen. Task Scheduling for Parallel Systems. Wiley Series on

Parallel and Distributed Computing. Wiley, 2007.

186

[159] Elizeu Santos-Neto, Walfredo Cirne, Francisco Brasileiro, and Aliandro

Lima. Exploiting replication and data reuse to efficiently schedule data-

intensive applications on grids. In Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science, volume 3277, pages

210–232, 2005.

[160] Marcio Faerman, Alan Su, Richard Wolski, and Francine Berman.

Adaptive performance prediction for distributed data-intensive appli-

cations. In ACM/IEEE Conference on Supercomputing, pages 36–51.

[161] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. DENS:

data center energy-efficient network-aware scheduling. Cluster comput-

ing, 16:65–75, 2013.

[162] Thomas Phan, Kavitha Ranganathan, and Radu Sion. Evolving to-

ward the perfect schedule: Co-scheduling job assignments and data

replication in wide-area systems using a genetic algorithm. In Work-

shop on Job Scheduling Strategies for Parallel Processing, Lecture Notes

in Computer Science, volume 3834, pages 173–193. Springer, 2005.

[163] Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand,

and Yves Robert. Bandwidth-centric allocation of independent tasks

on heterogeneous platforms. In Parallel and Distributed Processing

Symposium. IEEE, 2001.

[164] R Kingsy Grace and R Manimegalai. Dynamic replica placement and

selection strategies in data grids—a comprehensive survey. Journal of

Parallel and Distributed Computing, 74:2099–2108, 2014.

[165] Uras Tos, Riad Mokadem, Abdelkader Hameurlain, Tolga Ayav, and

Sebnem Bora. Dynamic replication strategies in data grid systems: a

survey. The Journal of Supercomputing, 71:4116–4140, 2015.

[166] Vincent Garonne, Graeme A Stewart, Mario Lassnig, Angelos Molfetas,

Martin Barisits, Thomas Beermann, Armin Nairz, Luc Goossens, Fer-

nando Barreiro Megino, Cedric Serfon, et al. The ATLAS distributed

data management project: Past and future. Journal of Physics: Con-

ference Series, 396(3), 2012.

187

[167] Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny. The

Kangaroo approach to data movement on the grid. In 10th IEEE In-

ternational Symposium on High Performance Distributed Computing,

pages 325–333. IEEE, 2001.

[168] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat

Jaeger, Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao.

Scientific workflow management and the Kepler system. Concurrency

and Computation: Practice and Experience, 18(10):1039–1065, 2006.

[169] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott

Callaghan, Philip J Maechling, Rajiv Mayani, Weiwei Chen,

Rafael Ferreira da Silva, Miron Livny, et al. Pegasus, a workflow man-

agement system for science automation. Future Generation Computer

Systems, 46:17–35, 2015.

[170] J Rehn, T Barrass, D Bonacorsi, J Hernandez, I Semeniouk, L Tuura,

and Y Wu. PhEDEx high-throughput data transfer management sys-

tem. Computing in High Energy and Nuclear Physics (CHEP), 2006.

[171] Vincent Garonne, R Vigne, G Stewart, M Barisits, M Lassnig, C Serfon,

L Goossens, A Nairz, et al. Rucio–the next generation of large scale

distributed system for ATLAS data management. Journal of Physics:

Conference Series, 513(4), 2014.

[172] Ann L Chervenak, Alex Sim, Junmin Gu, Robert Schuler, and Nandan

Hirpathak. Efficient data staging using performance-based adaptation

and policy-based resource allocation. In Euromicro International Con-

ference on Parallel, Distributed and Network-Based Processing, pages

244–247. IEEE, 2014.

[173] Ann L Chervenak, Alex Sim, Junmin Gu, Robert E Schuler, and Nan-

dan Hirpathak. Adaptation and policy-based resource allocation for

efficient bulk data transfers in high performance computing environ-

ments. In 4th International Workshop on Network-Aware Data Man-

agement. IEEE Press, 2014.

188

[174] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten

Schwan, and Fang Zheng. Datastager: scalable data staging services

for petascale applications. Cluster Computing, 13:277–290, 2010.

[175] Vlad Lapadatescu, Andrew Melo, Azher Mughal, Harvey Newman,

Artur Barczyk, Paul Sheldon, Ramiro Voicu, Tony Wildish, Kaushik

De, Iosif Legrand, et al. Integrating Network-Awareness and Network-

Management into PhEDEx. Proceedings of Science, 2016.

[176] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Chris-

tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.

Software-defined networking: A comprehensive survey. Proceedings of

the IEEE, 103:14–76, 2015.

[177] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia

Obraczka, and Thierry Turletti. A survey of software-defined network-

ing: Past, present, and future of programmable networks. IEEE Com-

munications Surveys & Tutorials, 16:1617–1634, 2014.

[178] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,

Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling

for data center networks. In 7th USENIX Conference on Networked

Systems Design and Implementation, volume 10, 2010.

[179] Michael Bredel, Zdravko Bozakov, Artur Barczyk, and Harvey New-

man. Flow-based load balancing in multipathed layer-2 networks using

OpenFlow and multipath-TCP. In 3rd workshop on hot topics in soft-

ware defined networking, pages 213–214. ACM, 2014.

[180] Ian Foster, Alain Roy, and Volker Sander. A quality of service archi-

tecture that combines resource reservation and application adaptation.

In 8th International Workshop on Quality of Service, pages 181–188.

IEEE, 2000.

[181] Iosif Legrand. Monitoring and control of large-scale distributed sys-

tems. Grid and Cloud Computing: Concepts and Practical Applica-

tions, 192, 2016.

189

[182] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kompella. The only

constant is change: incorporating time-varying network reservations

in data centers. ACM SIGCOMM Computer Communication Review,

42:199–210, 2012.

[183] Stefano Bagnasco et al. AliEn: ALICE environment on the grid. Jour-

nal of Physics: Conference Series, 119(6), 2008.

[184] MonAlisa: Grid online monitoring data of the ALICE experiment.

http://alimonitor.cern.ch/. Accessed: October 2015.

[185] Kaushik De et al. The future of PanDA in ATLAS distributed com-

puting. Journal of Physics: Conference Series, 664, 2015.

[186] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk

Kutscher, and Borje Ohlman. A survey of information-centric net-

working. IEEE Communications Magazine, 50(7), 2012.

[187] George Xylomenos, Christopher N Ververidis, Vasilios A Siris, Nikos

Fotiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V Kat-

saros, and George C Polyzos. A survey of information-centric network-

ing research. IEEE Communications Surveys & Tutorials, 16:1024–

1049, 2014.

[188] Xueyan Tang and Jianliang Xu. QoS-aware replica placement for con-

tent distribution. IEEE Transactions on parallel and distributed sys-

tems, 16:921–932, 2005.

[189] Riad Mokadem and Abdelkader Hameurlain. Data replication strate-

gies with performance objective in data grid systems: a survey. Inter-

national Journal of Grid and Utility Computing, 6:30–46, 2014.

[190] Tarek Hamrouni, Sarra Slimani, and F Ben Charrada. A survey of dy-

namic replication and replica selection strategies based on data mining

techniques in data grids. Engineering Applications of Artificial Intelli-

gence, 48:140–158, 2016.

[191] Kavitha Ranganathan and Ian Foster. Decoupling computation and

data scheduling in distributed data-intensive applications. 11th IEEE

190

http://alimonitor.cern.ch/

International Symposium on High Performance Distributed Computing,

pages 352–358, 2002.

[192] Stefania Pandolfi. CERN data centre passes the 200-petabyte

milestone. https://home.cern/about/updates/2017/07/

cern-data-centre-passes-200-petabyte-milestone. Accessed:

July 2017.

[193] Ariana Tantillo. Brookhaven lab’s scientific data and computing center

reaches 100 petabytes of recorded data. https://www.bnl.gov/rhic/

news2/news.asp?a=12061&t=today. Accessed: June 2017.

[194] Costin Caramarcu, Christopher Hollowell, William Strecker-Kellogg,

Antonio Wong, and Alexandr Zaytsev. The role of dedicated data

computing centers in the age of cloud computing. Journal of Physics:

Conference Series, 898(8), 2017.

[195] Ilka Antcheva, Maarten Ballintijn, Bertrand Bellenot, Marek Biskup,

Rene Brun, Nenad Buncic, Ph Canal, Diego Casadei, Olivier Couet,

Valery Fine, et al. ROOT — a C++ framework for petabyte data

storage, statistical analysis and visualization. Computer Physics Com-

munications, 180(12):2499–2512, 2011.

[196] Rene Brun, L Urban, Federico Carminati, Simone Giani, M Maire,

A McPherson, F Bruyant, and G Patrick. GEANT: Detector descrip-

tion and simulation tool. Technical report, CERN, 1993.

[197] Disk pool manager (DPM). https://svnweb.cern.ch/trac/lcgdm/

wiki/Dpm. Accessed: May 2015.

[198] Gaurav Khanna, Umit Catalyurek, Tahsin Kurc, Rajkumar Ket-

timuthu, P Sadayappan, and Joel Saltz. A dynamic scheduling ap-

proach for coordinated wide-area data transfers using GridFTP. In

Parallel and Distributed Processing (IPDPS). IEEE, 2008.

[199] Andrew Hanushevsky, Artem Trunov, and Les Cottrell. Peer-to-peer

computing for secure high performance data copying. In International

Conference on Computing in High Energy and Nuclear Physics, 2001.

191

https://home.cern/about/updates/2017/07/cern-data-centre-passes-200-petabyte-milestone
https://home.cern/about/updates/2017/07/cern-data-centre-passes-200-petabyte-milestone
https://www.bnl.gov/rhic/news2/news.asp?a=12061&t=today
https://www.bnl.gov/rhic/news2/news.asp?a=12061&t=today
https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm
https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm

[200] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Con-

straint Programming. Elsevier, Amsterdam, 2006.

[201] Pavel Troubil and Hana Rudová. Integer linear programming mod-

els for media streams planning. International Conference on Applied

Operational Research, 11:509–522, 2011.

[202] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand,

Gregory J Duck, and Guido Tack. MiniZinc: Towards a standard CP

modelling language. In Principles and Practice of Constraint Program-

ming, pages 529–543. Springer, 2007.

[203] Guido Tack, Mikael Lagerkvist, and Christian Schulte. Gecode: an

open constraint solving library. In Workshop on Open-Source Software

for Integer and Constraint Programming (OSSICP), 2008.

[204] Korea institute of science and technology information KISTI. http:

//en.kisti.re.kr/. Accessed: February 2015.

[205] Adrian Casajus, Ricardo Graciani, Stuart Paterson, Andrei Tsare-

gorodtsev, et al. DIRAC pilot framework and the DIRAC Workload

Management System. Journal of Physics: Conference Series, 219(6),

2010.

[206] Iosif Legrand, Harvey Newman, Ramiro Voicu, Catalin Cirstoiu, Costin

Grigoras, Ciprian Dobre, Adrian Muraru, Alexandru Costan, Mihaela

Dediu, and Corina Stratan. MonALISA: An agent based, dynamic

service system to monitor, control and optimize distributed systems.

Computer Physics Communications, 180:2472–2498, 2009.

[207] Frederic Magoules, Thi-Mai-Huong Nguyen, and Lei Yu. Grid Resource

Management: Towards Virtual and Services Compliant Grid Comput-

ing. CRC Press, Inc., 1st edition, 2008.

[208] Andrew V Goldberg. An efficient implementation of a scaling

minimum-cost flow algorithm. Journal of Algorithms, 22:1 – 29, 1997.

[209] Rajkumar Buyya and Manzur Murshed. GridSim: A toolkit for

the modeling and simulation of distributed resource management and

192

http://en.kisti.re.kr/
http://en.kisti.re.kr/

scheduling for grid computing. The Journal of Concurrency and Com-

putation: Practice and Experience (CCPE), 14, 2002.

[210] Barak Naveh et al. JGraphT. http://jgrapht.sourceforge.net.

Accessed: September 2017.

[211] WLCG REsource, Balance & USage (REBUS). https://rebus.cern.

ch/. Accessed: October 2015.

[212] LHC Optical Private Network (LHCOPN). http://lhcopn.web.

cern.ch/lhcopn/. Accessed: December 2015.

[213] Anthony Sulistio, Gokul Poduval, Rajkumar Buyya, and Chen-Khong

Tham. Constructing a grid simulation with differentiated network ser-

vice using GridSim. In 6th International Conference on Internet Com-

puting, 2005.

[214] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael

Link, Catalin Dumitrescu, Ioan Raicu, and Ian Foster. The Globus

striped GridFTP framework and server. In ACM/IEEE conference on

Supercomputing. IEEE, 2005.

[215] Michal Zerola. Distributed Data Management in Experiments at RHIC

and LHC. PhD thesis, Czech Technical University, 2012.

[216] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On

power-law relationships of the internet topology. In ACM SIGCOMM

Computer Communication Review, volume 29, pages 251–262. ACM,

1999.

[217] Megiddo, Nimrod, and Modha. Outperforming LRU with an adaptive

replacement cache algorithm. Computer, 37:58–65, 2004.

[218] Song Jiang and Xiaodong Zhang. Efficient distributed disk caching in

data grid management. In IEEE International Conference on Cluster

Computing (CLUSTER’03), pages 446–451, 2003.

[219] Jagdish Prasad Achara, Abhishek Rathore, Vijay Kumar Gupta, and

Arti Kashyap. An improvement in LVCT cache replacement policy for

193

http://jgrapht.sourceforge.net
https://rebus.cern.ch/
https://rebus.cern.ch/
http://lhcopn.web.cern.ch/lhcopn/
http://lhcopn.web.cern.ch/lhcopn/

data grid. In 13th International Workshop on Advanced Computing

and Analysis Techniques in Physics Research, 2010.

194

A List of publications

A List of publications

1. Dzmitry Makatun, Jérôme Lauret, and Hana Rudová. Planning of dis-

tributed data production for High Energy and Nuclear Physics. Cluster

Computing, 2018. (Accepted).

2. Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Provenance-aware optimization of workload for distributed data pro-

duction. Journal of Physics: Conference Series, 898(5), 2017.

http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052038/meta

3. Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Network flows for data distribution and computation. Proceedings of

the IEEE Symposium on Computational Intelligence in Scheduling and

Network Design, 2016.

http://ieeexplore.ieee.org/abstract/document/7850083/

4. Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Simulations and study of a new scheduling approach for distributed

data production. Journal of Physics: Conference Series, 762(1), 2016.

http://iopscience.iop.org/article/10.1088/1742-6596/762/1/012023/meta

5. Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Model for planning of distributed data production. In Proceedings of

the 7th Multidisciplinary International Scheduling Conference (MISTA),

pages 699–703, 2015.

http://www.schedulingconference.org/previous/publications/displaypub.

php?key=2015-699-703-A&filename=mista.bib

6. Dzmitry Makatun, Jérôme Lauret, Hana Rudová, and Michal Šumbera.

Planning for distributed work flows: constraint-based coscheduling of

computational jobs and data placement in distributed environments.

Journal of Physics: Conference Series, 608(1), 2015.

http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012028A/meta

195

http://iopscience.iop.org/article/10.1088/1742-6596/898/5/052038/meta
http://ieeexplore.ieee.org/abstract/document/7850083/
http://iopscience.iop.org/article/10.1088/1742-6596/762/1/012023/meta
http://www.schedulingconference.org/previous/publications/displaypub.php?key=2015-699-703-A&filename=mista.bib
http://www.schedulingconference.org/previous/publications/displaypub.php?key=2015-699-703-A&filename=mista.bib
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012028A/meta

7. Dzmitry Makatun, Jérôme Lauret, and Michal Šumbera. Study of

cache performance in distributed environment for data processing. Jour-

nal of Physics: Conference Series, 523(1), 2014.

http://iopscience.iop.org/article/10.1088/1742-6596/523/1/012016/meta

196

http://iopscience.iop.org/article/10.1088/1742-6596/523/1/012016/meta

	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Big data paradigm
	Applications
	Technologies
	Big data and HPC
	File systems
	Computing models

	Job scheduling in distributed computing
	Distributed platforms
	Scheduler architectures
	Examples

	Scheduling models
	Terminology
	Jobs
	Resources
	Optimization

	Scheduling methods
	Immediate mode heuristics
	Batch mode heuristics
	Backfilling
	Meta-heuristics
	Network flows

	Optimization of data access
	Data aware job scheduling
	Examples

	Data transfer and placement
	Network usage optimization
	Data replication
	Replica placement
	Replica selection

	Computing in High Energy and Nuclear Physics
	Computing activities
	Tiers

	Study of distributed job and data transfer scheduling using constraint programming
	Model and solution overview
	Model assumptions
	Solution overview
	Constraints at the planning stage
	Constraints at the scheduling stage

	Simulation, results
	Limitations of the model

	Planning of distributed data production
	Elements of the model
	Planner based on network flows
	Output flow planning
	Input flow planning
	Capacities of dummy edges
	Solving Procedure

	Plan execution
	Balance between multiple data sources
	Initial data distribution
	Model description
	Solving procedure

	Data replication

	Simulations of distributed data production
	Overview of the implementation
	Input data for simulations
	Network models
	Simulated scheduling approaches

	Base model
	Single remote site
	Fully connected network
	Random scale-free networks
	Real infrastructure

	Influence of background network traffic
	Multiple input sources and arbitrary networks
	Simulated infrastructure
	Results

	Data replication
	Simulated infrastructure
	Results

	Computational time
	Summary of simulations

	Cache management for distributed data storage in HENP
	Data access patterns in HENP
	Summary of caching algorithms
	Evaluation and comparison of caching algorithms

	Conclusion and outlook
	Summary of the results
	Future work

	Bibliography
	List of publications

