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Abstract

In the era of big data, the scale of computations and the amount of allocated
resources continues to grow rapidly. Large organizations operate computing
facilities consisting of tens of thousands of machines and process petabytes of
data. A lot of effort was made recently to optimize the design of such com-
puter clusters, resource management and corresponding computing models
including data access and job scheduling. Scientific computing (e.g. High En-
ergy and Nuclear Physics (HENP), astrophysics, geophysics, genome studies)
appears at the forefront of big data advancement. Due to the scale of com-
putations, these fields rely on aggregated resources of many computational
facilities distributed over the globe. Those facilities are owned by different
institutions and include grid, cloud and other opportunistic resources. Or-
chestration of massive computations in such a heterogeneous and dynamic
infrastructure remains challenging and provides many opportunities for op-
timization.

One of the essential types of the computations in HENP is distributed
data production where petabytes of raw files from a single source have to
be processed once (per production campaign) using thousands of CPUs at
distant locations and the output has to be transferred back to that source.
Similar workflows can be found in other distributed data-intensive applica-
tions. The data distribution over a large system does not necessarily match
the distribution of storage, network and CPU capacity. Therefore, bottle-
necks may appear and lead to increased latency and degraded performance.

The problems of job scheduling, network stream scheduling and data
placement are interdependent, but combined into a single optimization prob-
lem become computationally intractable in a general case. In practice, there
are multiple middleware components with different (overlapping) scopes of
the system, each providing optimization for its sub-problem. The examples
include workload management systems, job schedulers, data transfer services,
data management systems, etc. The end-to-end optimization becomes a mat-
ter of an interplay between middleware components. Automated high-level
orchestration can improve such interplay and reduce the effort for system
tuning.

The main goal of this thesis is to explore and develop a new approach
to optimization of large-scale data-intensive computations in HENP in gen-



eral, and the STAR experiment in particular. As the result of this thesis,
we propose a new high-level orchestration approach for distributed data pro-
duction. The underlying mathematical model introduces a new application
of network flow maximization algorithms. In our approach, a central planner
defines how much input and output data should be transferred over each net-
work link in order to maximize the computational throughput. Such plans
are created periodically for a fixed planning time interval using up-to-date
information on network, storage and CPU resources. The complexity of each
planning cycle depends on the number of sites and network links but not
the number of jobs. This allows to manage extensive datasets for processing
in large-scale infrastructures efficiently. The centrally created plans are exe-
cuted in a distributed manner by dedicated services running at participating
sites.

A wide scope of simulations based on the log records from real systems
and monitoring were performed for this Ph.D. thesis. The simulations have
shown that the proposed approach systematically provides a significant im-
provement in makespan and processing throughput compared to other sim-
ulated traditional techniques.



Abstrakt

Zpracovani rozsahlych dat vyzaduje ¢im dél vice vypocetnich prostredku.
Velké moderni organizace provozuji pocitacova centra obsahujici desitky tisic
stroju a zpracovavaji petabajty dat. Proto je v soucasnosti v popredi zdjmu
optimalizace navrhu vypocetnich clustertu, zpusobu ovladani zdroju, pristupu
k datum a pldanovani tuloh. Mezi hlavni zdjemce o zpracovani rozsahlych
dat patii mimojiné i védecké experimenty ve fyzice vysokych energii (High
Energy and Nuclear Physics, HENP), astrofyzice, geofyzice nebo v genetice.
Vzhledem k objemu vstupnich dat a potfebnych vypoctu se casto projevuje
tendence kombinovat zdroje z mnoha vzdélenych vypocetnich clusteru distri-
buovanych po celém svété. Ty casto patii ruznym organizacim a jsou tvoreny
systémem propojenych a spolupracujicich pocitacu usporadanych do ruznych
architektur (grid, cloud). Koordinace distribuovanych vypoctu v takovémto
heterogennim a dynamickém prostiedi je tak velkou vyzvou s velkym prosto-
rem pro optimalizaci.

Jednim z hlavnich typu vypoctu v HENP je distribuovand produkce dat,
kdy musi byt petabajty dat namérenych detektorem jednorazoveé zpracovany
(béhem tzv. produkéni doby) ve vzdélenych centrech. Vyslednd data jsou
bud posléna zpét do ptivodniho centra nebo jsou uloZena na jiném misté.
Podobné postupy lze nalézt i v jinych oblastech, kde se pracuje s rozsahlymi
soubory dat. Distribuce dat v rozsdahlych systémech nemusi nutné odpovidat
distribuci kapacity datovych tlozist, sité a procesori. Vzhledem k tomu muze
dojit ke vzniku kritickych mist s nizkou pruchodnosti, coz vede k poklesu
efektivity.

Otazky planovani loh, pfenosu dat a jejich umisténi spolu vzajemné
souvisi. PTi spojeni do jednoho problému se tak ale v obecném pripadé stavaji
vypocetné nefesitelnymi. Existuje nicméné mnoho druhtu tzv. middleware,
které poskytuji optimalizaci pro jisty diléi problém. Sem patii vyvazovace
zatéze, planovace uloh, prenos dat, sprava dat atd. Komplexni optimalizace
se tak stava zalezitosti interakce mezi jednotlivymi slozkami middlewaru.
Automatickd koordinace muze tuto interakci zlepSit, a tak i snizit nutnost
lidského zasahu do systému.

Hlavnim cilem predlozené préace je prozkoumat a vyvinout novy ptistup
k optimalizaci distribuovanych vypoc¢tu s rozsdhlymi daty v HENP obecné
a zejména se zamérenim na experiment STAR. Vysledkem vyzkumu prove-



deného v ramci této disertace je navrh nového pristupu ke koordinaci distri-
buované produkce dat zalozeného na pouziti algoritmu pro feseni problému
maximalizace toku v sitich. Centralni pldnova¢ urcuje kolik vstupnich a
vystupnich dat musi byt piendseno pres kazdou sifovou linku tak, aby byla
maximalizovana propustnost vypoctu. Planovani se pravidelné realizuje pro
pevné dany casovy tusek s prihlédnutim k aktudlnim informacim o stavu sité,
datovych tiloZist a procesorti. Dilezité je, Ze sloZitost kazdého vypocetniho
cyklu zévisi na poctu vypocetnich zdroju a sifovych linek a neni piitom
zavisla na poctu vypocetnich tdloh. Tento systém umoznuje efektivné zpra-
covat velké mnozstvi dat ve velkych infrastrukturach. Centralné vytvorené
plany se pak za pomoci specialnich sluzeb pracujicich ve zicastnénych vypo-
cetnich centrech vykondavaji distribuovane.

Pro tuto studii byla v rdmci této disertacni prace provedena Siroka skala
pocitacovych simulaci zaloZzenych na skuteénych zaznamech pochéazejicich ze
zurndlu (logu) monitorovacich systému. Simulace ukézaly, ze navrhovany
pristup poskytuje systematické a vyrazné zlepseni doby zpracovani dat, a
tudiz i produktivity vypocetnich clusteru ve srovnani s jinymi tradi¢nimi
metodami.
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Glossary

ALICE A Large Ion Collider Experiment. A HENP experiment at LHC.

34

ATLAS A Toroidal LHC ApparatuS. A HENP experiment at LHC.
big data a paradigm describing a new generation of technologies and ar-
chitectures, designed to economically extract value from very large

volumes of a wide variety of data, by enabling high-velocity capture,
discovery, and/or analysis.

BNL Brookhaven National Laboratory.

cache policy heuristic used to select an entry to evict with regard to cache
cleanup. [152

central storage the main data storage facility of a HENP experiment. Typ-
ically, is situated close to the detector (at Tier-0 site) and permanently
stores all the data related to the experiment.

CERN European Organization for Nuclear Research (derived from French:
Conseil Européen pour la Recherche Nucléaire).

cloud a model for enabling access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with minimal

management effort or service provider interaction.

cluster group of closely linked computers, working together through fast lo-
cal area networks; in opposite to Grid, resources are not geographically

spread. [47]

CMS Compact Muon Solenoid. A HENP experiment at LHC.
CP constraint programming.

CSP constraint satisfaction problem. Consists of variables, their domains

and constraints in form of mathematical expressions over variables.
DAG Directed Acyclic Graph.

23



data center a cluster dedicated to storage, processing and providing access
to large amounts of data.

data prestaging placing input data close (in the access sense) to the point
of computation before it starts. Also referred as prefetching.

data production an organized processing of raw data (from a detector)
in order to produce data ready for analysis (reconstructed physical
events). Also referred as reconstruction or preprocessing.

DDM Distributed Data Management (system).

DPS Data Placement Service. [T3

graph data structure that holds a collection of vertices and a collection of
edges that connect pairs of vertices.

grid distributed and dynamic computing environment consisting of various
loosely coupled resources acting together to perform large tasks.

HENP High Energy and Nuclear Physics.

HPC High Performance Computing.
IT Information Technology. (0]

job (or computational job) an atomic unit of computational work for schedul-
ing. The terminology varies in related publications (also depends on
specifics of computing platform). We use the term from the perspective
of scheduling in grid computing.

Ifn logical file name. [121
LHC Large Hadron Collider. A particle accelerator facility at CERN.
LHCb Large Hadron Collider beauty. A HENP experiment at LHC.

load balancing methodology to distribute workload across multiple resources
to achieve optimal utilization.
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makespan total time spent on execution of a set of tasks. [128

min-cost max-flow minimum cost maximum flow. A problem of finding a
maximum flow with a smallest possible cost over a given network.

MPI Message Passing Interface. Message passing standard on a wide variety
of parallel computing architectures.

NP-hard non-deterministic polynomial-time hard. Class of problems from

computational complexity theory that are, informally, “at least as hard
as the hardest problems in NP”.

pfn physical file name. [121

planning selection and organization of actions in order to reach the goal or
change of the system.

queue structure which stores tasks waiting for execution. Tasks are selected

according to the applied dispatching rules.

resource entity which executes, processes or supports the task (e.g. CPU
for a computational job, network link for data transfer, storage for data
placement).

RHIC Relativistic Heavy Ion Collider. A particle accelerator facility at
BNL.

scheduling allocation of resources to planned tasks over given time periods.

511

site a separate computing facility in grid (e.g. cluster, server, supercom-
puter, data center, external cloud).

STAR Solenoidal Tracker at RHIC. A HENP experiment at RHIC.

task an atomic unit of schedulable work. We use the term in a more gen-
eral meaning, which does not necessarily refer to a computational job
executed at a machine, but includes other types of atomic work, e.g. a
transfer of a file over a network link. (5l
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Tier-0 site of the highest level in a hierarchical grid architecture. In HENP,
the main computing facility of an experiment, typically close to the

detector.

Tier-1 sites of the second highest level in a hierarchical grid architecture.
In HENP, regional data centers which disseminate / aggreagte data
to / from computing facilities of lower tiers and permanently store sig-
nificant replicas of experimental data.

Tier-2 level of sites in a hierarchical grid architecture. In HENP, large
computing facilities of scientific institutes and universities.

Tier-3 level of sites in a hierarchical grid architecture. In HENP, such sites
have no formal roles assigned, which provides flexibility to join and
leave for specific tasks.

unary resource resource with an ability to execute only one task at any
time. Sometimes is also called a serial or a disjunctive resource.

weighted graph graph with an associated label (weight) to every edge. It
is often used in networking where weight represents bandwidth of a

link.
WLCG Worldwide LHC Computing Grid.
WMS Workload Management System.

workflow set of tasks (including computational jobs), which may have spe-
cific dependencies between each other. The terminology varies in re-
lated publications (also depends on specifics of computing platform).
We use the term from the perspective of scheduling in grid computing.
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1 Introduction

1.1 Motivation

Modern experiments in High Energy and Nuclear Physics (HENP) engage
processing of large volumes of data derived from complex detectors and sim-
ulations [4], 5 [6]. Data-intensive distributed computing has become an es-
sential part of this scientific field. The computational infrastructure of the
largest HENP experiments running at BNL RHIC and CERN LHC, spans
across the globe and features many tens of facilities processing petabytes of
data annually [7, 8]. Similarly, many other scientific fields, such as astro-
physics, biology and Earth science to name a few, as well as industries and
commercial companies handle enormous volumes of data.

When running data-intensive applications on distributed computational
resources long 1/O overheads may be observed as access to remotely stored
data is performed. Uncoordinated concurrent data access over a shared net-
work can lead to an increased latency [9] 10, [11]. Latency and bandwidth can
become the major limiting factors for the overall computation performance
and can reduce the CPU time / wall time ratio due to excessive I/O waits [12].
In such case the benefit of usage of distributed resources is hindered due to
network congestion [I3]. In particular, a small fraction of computational
jobs which cannot access data efficiently (“stragglers”) can increase an over-
all makespan dramatically. Intuitively, those jobs could be completed faster
if scheduled to different resources (even if they wait in a queue) or if the
data are efficiently prefetched beforehand. For this reason, optimization of
data access and management is an important issue when defining a comput-
ing model of a HENP experiment [4, [14], setting up a new computational
facility [I5] or upgrading/tuning an existing one [16] [17].

Data processing can be divided into several phases with its own specifics
of jobs. This thesis focuses on a particular phase which is called data prepro-
cessing in big data terminology [18]. In this phase a large set of input data
undergoes a single pass of processing and produces output data which is fur-
ther utilized in other phases. The particular example considered in this study
is data production (see Section [5)) in HENP. However, the devised techniques
can be further extended to other data processing workflows. In data produc-
tion, raw data from a detector are processed in order to reconstruct physical
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events which are then analyzed by scientists. The data are stored in the
main data center close to the detector and are further distributed for remote
processing. The processing has a data level of parallelism, which means that
it can be divided into independent computational jobs applying the same
processing on different subsets of data. The data production is performed
by campaigns, when a recently accumulated dataset has to be processed on
an available set of resources. Such campaign typically lasts several months
and processes hundreds of terabytes of data. Sometimes, the processing is
repeated (after a significant time) when it allows improving the quality of
the output. The reconstructed data can be effectively utilized only after an
entire campaign is finished. For this reason, it is highly desirable to execute
data production with the shortest possible makespan at given resources. Also
importantly, data production (and simulations) makes the largest computing
demand of the STAR and other HENP experiments [19]. Its optimization
may lead to a huge overall saving in computational power.

However, common computing models (see Section and optimization
approaches (see Section 4)) to data-intensive applications do not match the
data production case well. This is mainly due to the specific properties of such
workflow: (a) the data originates from a single source (detector) and has to
be disseminated to geographically distributed resources, (b) there is no data
re-usage across data production jobs within a single campaign. Despite the
named differences from other types of computations (analysis, simulations),
data production is often approached by general scheduling techniques, and
that may lead to sub-optimal performance and increase the requirements for

computational infrastructure (CPU, network, storage).

Data aware schedulers (see Section[4.1)) typically exploit (a) spatial and/or
(b) temporal data locality for optimization. In the first case (a), the jobs are
allocated where the data are already present or as close as possible (e.g.
using an estimation of prestaging overhead). In the second case (b), the
jobs sharing the data are grouped together in order to reduce the number
of required transfers. If we offload data production from a central facility to
remote resources, which do not have the data already prestaged, the data lo-
cality cannot be exploited. This is because the jobs process non-overlapping
portions of data stored at the same location. Therefore, a permutation of
data production jobs between sites would not help.
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Common job schedulers (see Sections and do not consider such
details as data transfer routing, bandwidth sharing and storage scheduling.
Optimization of data transfer and prestaging for scheduled jobs is delegated
to other components of the system (see Sections and . As the re-
sult, concurrency between newly scheduled jobs may lead to system overload
if network or storage bottlenecks are present. However, these components
cannot influence the job scheduler decisions. Moreover, optimization of data
transfer applied in practice is often limited to parameter tuning (e.g. block
size, number of active streams, etc.), replica selection and compliance with

predefined deadlines.

Being an important aspect of data access optimization, virtually every
data replication strategy (Section aims to improve availability of popular
data with respect to (upcoming) requests . However, this principle cannot be
directly applied to data production, since the raw data are processed exactly
once within a single campaign, and the campaigns are separated by large time
gaps making the re-use of cached data irrelevant. The raw data experience
infrequent access compared to other data types, e.g. reconstructed data.
Therefore, it would be impractical to keep many replicas of raw data in the
system.

In practice, static replication approaches are applied to raw data: a fixed
number of backup copies is stored. For example, LHC experiments follow a
standard strategy whereas each raw file is persistently stored at the central
(Tier-0) site and has two replicas at distinct regional centers (Tier-1) [4].
However, a significant fraction of computational power is dispersed at smaller
national and institutional facilities (Tier-2,3) or external clouds. Therefore,
the data locality can be exploited for data production only if the computation
is limited to Tier-0,1 resources. The offloading of data production to other
resources would allow to decrease its makespan and speed up the delivery of
reconstructed data for user analysis. Such offloading requires data prestaging
(in and out) at remote sites. Similarly, the STAR experiment at BNL [20]
stores the raw data at its central facility and offloads data production to
remote sites upon agreement.

To enable efficient data production at remote sites, experiments often
use custom setups for each given distributed infrastructure [19, 21]. When
there are few remote sites involved in the data processing, the load can be
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tuned manually and simple heuristic may work, but, as the number of sites
grows and the environment is constantly changing (site outage, fluctuations
of network throughput and CPU availability), an automated planning of
workflows becomes a necessity. An important example arises from a workflow
optimization which was done for the inclusion of the ANL computational
facility into the data production of the STAR experiment [22]. In this case,
the throughput of a direct on-demand network connection between BNL and
ANL was not sufficient to saturate all the available CPUs at the remote site.
At the same time, the lack of available storage space at ANL did not allow
to prestage the data in advance. An optimization was achieved by feeding
CPUs at ANL from two sources: directly from BNL and through LBNL as
an intermediate site. Such counter-intuitive solution was established after
the complex analysis of the workflow performance in the multi site system
with respect to storage and network. This example illustrates an efficient use
of indirect data transfers which cannot be derived using simple heuristics.
To summarize, the management of distributed data intensive computa-
tions has been an important research topic for decades and its relevancy still
grows as the big data paradigm spreads its fields of application. Due to its
complexity, the problem of end-to-end optimization is decomposed into sev-
eral sub-problems. Optimization is often provided by separated components
at distinct levels. The global optimization can be achieved by ensuring inter-
play and coherence between components, parameter tuning and a high level
orchestration. Also, there exist case specific solutions which combine several
sub-problems in order to achieve better optimality. To our best knowledge,
no such solutions are adjusted to specifics of distributed data production.
Moreover, as it was discussed above and illustrated in the ANL case, the op-
timization approaches designed for common workflows with spatial and/or

temporal data locality do not fit the data production case well.

1.2 Contribution

The main goal of this thesis is to explore and develop a new approach to
optimization of large-scale data-intensive computations in HENP in general,
and STAR experiment in particular. In this thesis we propose a novel high-
level orchestration approach for distributed data production. The approach
exploits specific properties of the workflow in order to consider CPU, network
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and data scheduling within a single tractable optimization problem. Data
distribution is dynamically adjusted during computation in order to make
the best use of provided resources. The underlying mathematical model in-
troduces a new application of network flow maximization algorithms to job
scheduling and load balancing problems. Rethinking of existing job schedul-
ing policies which shifts the priority towards efficient data management has
shown its potential for large-scale data-intensive computations such as data
production in HENP. With the help of simulations based on data from real
systems our approach is validated and compared to scheduling techniques
used in practice. Also, the realistic simulations study the influence of net-

work performance on the overall computational efficiency.

In earlier work, which was completed in collaboration between BNL and
NPI CAS, a new approach for optimization of data transfer in distributed
systems was proposed by Michal Zerola [I1]. Our initial idea was to extend
that previous work, and include CPU and storage scheduling into consider-
ation. We have proposed our first scheduling approach based on constraint
programming in [23]. That work allowed us to study the problem of joint co-
scheduling of jobs, transfers and data placement and revealed the potential
for optimization of resource usage. However, the limitations of such approach
were encountered. The underlying constraint satisfaction problem in its gen-
eral formulation appeared excessively complex. After refining the problem
formulation, we have discovered that it can be efficiently solved with network
flow maximization algorithms. We have presented the initial ideas of the new
model at the MISTA 2015 conference [24]. Shortly after, we have completed
the model with solving procedures, implementation, execution algorithm and
performed simulations of base use cases [25]. This article also summarizes
the most important contributions of the thesis as a detailed journal publica-
tion which was recently accepted after significant revisions along the time.
Further, we continued the development of the planning approach based on
network flow maximization, extending it to more use cases and evaluating in
large-scale simulations. In [26] we studied the influence of background net-
work traffic and simulated data production in Tier-1 network of one of the
largest HENP experiments. We added load balancing between multiple data
sources and optimization of initial data distribution in work [27]. There we
also performed simulations of data production in randomly generated large-
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scale grids imitating real infrastructures. In [28] we extended our approach to
deal with data replication across the system and simulated a heterogeneous
grid of Tier-0,1,2,3 sites.

In order to further optimize data access for computations, we have stud-
ied applicability of known caching algorithms to data access patterns in
HENP [29].

The list of the corresponding publications with the primary authorship
of the author of this thesis is also provided in Appendix [A]

1.3 Structure of the Thesis

In Chapters [2]-[f| we discuss the state of the art of distributed data-intensive
computing. First, in Chapter 2| we consider big data paradigm, its applica-
tions and technologies in order to provide a broader context for our work.
Then, Chapter |3 focuses on modern approaches to resource management and
job scheduling in distributed systems. Chapter [4] is dedicated to optimiza-
tion of data access for computations. The specifics of computing in HENP
is summarized in Chapter [5]

Then, in Chapter [6 we apply constraint programming to build an initial
model which allows to study the potential for optimization of data produc-
tion. The lessons learned from the study allowed us to better understand the
problematics and discover the limitations of the first model. Based on the
first experience, we have developed a novel job scheduling approach.

The main contribution of the thesis is presented in the two subsequent
chapters. In Chapter [7] we propose a novel approach to data production
planning based on network flow maximization. We formalize the details
of a considered problem and present the base model, solving method and
plan execution. Then we gradually extend our approach to reason on more
aspects of data production management. In Chapter |8 the new approach is
validated in simulations based on data obtained from real HENP computing
systems. There, our planner is compared against scheduling policies currently
used in practice. The extensive simulations consider various use cases. We
start with base use cases needed to understand the behavior of the system,
proceed with realistic infrastructures and confirm the results over a wide set
of randomly generated large-scale setups. In the simulations we also consider
background network traffic, balancing between multiple data sources, initial
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data distribution and data replication.

In Chapter [9] we provide an additional study of caching algorithms for
distributed data processing in HENP, which helps to further improve the
efficiency of data access.

A conclusion to the work and future outlook are given in Chapter (10

A list of related publications by the author of this thesis is provided in
Appendix [A]
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The combined amount of data accumulated in digital world over past decades,
as well as rapidly increasing speed of its generation, has overwhelmed the ca-
pacity of traditional data processing/management approaches. The ability of
pioneering enterprises (both scientific and industry) to access/manage /process
data at a new unprecedented scale allowed to extract new, previously not
available, value out of extremely rich, detailed and diverse datasets. Early
success examples have ignited the emergence of paradigm. The
quantitative growth of data available to organizations has lead to a qual-
itative shift of its combined value: scientific (e.g. statistical) methods of
data analysis have been adopted by other communities, which allowed them
to gain valuable insights into their domains and make better informed and
timed decisions. Technologies dealing with big data have grown into a vast
ecosystem and provided new functionality to enterprises and individuals:
modern society has a commodity to access and utilize (sometimes implicitly)
the information at a scale and speed unimaginable few decades ago.

While still remaining a hot research topic due to a huge variety of par-
ticular applications, the term big data captures specific properties of modern
data-intensive applications. Multiple concurrent definitions exist which focus
on different aspects of the phenomena. The first definition of the trend (with-
out spelling “big data” itself) was given as early as 2001 using the concept of
3 Vs: Volume, Velocity and Variety [30]. Later the concept was extended to
4 Vs adding Value as another important aspect, making the most commonly
accepted definition of the big data term. For instance, in 2011 International
Data Corporation (IDC) [31] has defined big data in the following way:

“Big data technologies describe a new generation of technologies
and architectures, designed to economically extract value from
very large volumes of a wide wvariety of data, by enabling high-

velocity capture, discovery, and/or analysis.”

Similarly, the National institute of Standards and Technology (NIST)
defines big data as [32]:

“Big data is where the data volume, acquisition velocity, or data
representation limits the ability to perform effective analysis using
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traditional relational approaches or requires the use of significant

horizontal scaling for efficient processing.”
The aforementioned concept of 4 Vs can be summarized as follows:

Volume. There is no fixed margin which separates “normal data”
from big data. The datasets referred in related studies vary from ter-
abytes and petabytes to exabytes, while the sheer volume of data ag-
gregated on the Internet and faced by modern search engines counts in
zettabytes. Big data is when the size of the data itself becomes part of
the problem [33].

Velocity. The speed at which the data are generated e.g. by scientific
experiments, individual users, commercial transactions, mobile devices
and sensors introduces additional challenges to its capture, storage and

processing.

Variety. The data coming from different sources can be structured,
semi-structured or unstructured (e.g. text messages or multimedia).
Extraction of value in such case often requires additional processing
including filtering, format transformation, consistency checks, redun-

dancy removal and error correction.

Value (or Veracity). The reliability, credibility and representativeness
of data may vary. For example, a large fraction of social media con-
tent, web and e-mails is made up by spam; clickstream and mobile
traffic are subject to noise. However, information of interest can still
be extracted from a huge volume of data with a low value density. A
complex workflow and data itself are prone to errors of various nature,

therefore, obtaining reliable outcomes of analysis is not a trivial task.

The data-value chain in big data applications consists of the following
stages: generation, acquisition, storage, analysis [18].

In this chapter, we provide a short overview of big data as a concept,
its application domains and technologies. More detailed overview including
the history of the field, discussion on definition, classification with many
particular examples can be found in [I8, B4, 35, B0, B7]. The paper [3§]
provides an insight into current agenda and perspective research topics as of
2016.
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2.1 Applications

Information Technology solutions addressing the new data-intensive
paradigm were pioneered by scientific communities such as High Energy and
Nuclear Physics (HENP), astronomy and biology [39], as well as innovative
companies such as Google, Amazon, Twitter, Facebook, Microsoft, Oracle,
Apache, IBM and many others. Those solutions, while intensively evolving
during past years, are being widely adopted and further developed by more
organizations and companies.

In a collection of articles [40] authors combine experience from multiple
domains (Earth, environment and health care studies) in order to demon-
strate how these scientific fields were transformed by the exponential increase
in scientific data. They also demonstrate how the big data related technol-
ogy has influenced the scientific and scholarly communication, emphasizing
the trend of governments and funding agencies investing into open access to
both scientific data and publications.

Big data technologies have found its application in various scientific do-
mains. Let us quickly go over the map of modern big data science. In
computational biology repositories containing petabytes of data about genes,
proteins, small molecules and medical records are shared by many research
groups around the world. Data analysis allows to study genes, tumors, live
organisms, viruses, protein interaction, brain activity, etc. [39]. In medical
science and health care sector large volumes of data are shared for collab-
oration on clinical trials, personnel training, epidemics detection and moni-
toring, development of new diagnostics/treatment/drugs/vaccines [41]. Tens
of petabytes of data belonging to climate science mostly origin from satellite
instruments and numerical climate model simulations, but also include other
diverse instrumental data. Two major challenges in this domain were high-
lighted in [42]. The first is to ensure that the expanding volumes of data are
easily and freely available to enable new scientific research. The second is
to make these data and the results useful to a broad interdisciplinary audi-
ence, because there is a growing interest by other communities of researchers.
Social sciences are also among the most benefited from the rapid growth of
available data. While it operated surveys of thousands or so in the past, now
the researchers can harvest millions of social media post, huge quantities of
social networking information, location, search queries, related datasets from
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biological sciences and much more [43]. In astrophysics big data technolo-
gies are applied to process the data originating from telescopes, satellites,
gravitational wave detectors [44] and large-scale simulations. The Berkeley
Open Infrastructure for Network Computing (BOINC) developed for Search
for Extraterrestrial Intelligence (SETT) [45] was a milestone in the develop-
ment of volunteering computing. NASA and ESA space agencies utilize big
data approaches to process information delivered by active missions as well
as to design new missions [46]. Big data paradigm became an essential part
of modern HENP experiments, it is discussed in more details in Section [5
In industry, big data technologies have found a broad spectrum of ap-
plications. The examples include search/indexing systems [47], online re-
tail [35], social networks [48], [49], multimedia services [50], recommendation
engines [51], business intelligence [50], customer analytics [52], finance [35],

logistics [53] and engineering [35].

2.2 Technologies
2.2.1 Big data and HPC

It is important to notice, that two “worlds” of big data technologies can
be distinguished based on the type of utilized software stack. The first one
addresses big data problems using (customized) software which is generally
attributed to High Performance Computing . The second one uses the
technologies initially designed for big data problems specifically. Such di-
vision can be explained through history and application specifics. By the
time when the need for data-intensive computing has emerged, many corre-
sponding scientific fields already had well developed software/infrastructure
for large-scale distributed computing (HPC). Therefore, it was a natural
choice to gradually extend existing frameworks to the new data-intensive
problems. This also allowed to keep interoperability of the system for both
data and CPU intensive applications. At the early stage, when the require-
ments and applicability of data-intensive computing where not yet clearly
understood, there was no necessity to re-design already mature solutions of
HPC. Alternatively, other enterprises (such as Google and Yahoo), designed
their own solutions to address data-intensive computing on commodity hard-

ware specifically. As the concepts of big data became better understood and
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wide spread, such solutions were adopted and further extended by more or-
ganizations. A good side by side comparison of HPC and “pure” big data
approaches to data-intensive computing can be found in [54] and [55]. Both
of the approaches have many similarities and adopt concepts from each other,
therefore, a convergence is envisioned by many researchers in the field. As
of today, according to the studies, the HPC like approach provides better
performance optimization for specific applications, while the “pure” big data

ecosystem provides greater flexibility and fault tolerance.

The driving force behind the development of big data technologies is the
need to develop scalable solutions for parallel data processing. Technologies
for data-intensive computing can be classified into three categories: file sys-
tems, programming models and databases. Some of the solutions are highly
specialized for particular types of applications, while the others are designed
for greater generality. Often, the file systems and computing models are

co-designed to achieve optimization for a particular set of applications.

2.2.2 File systems

Storage solutions addressing the challenges of big data scale became a corner-
stone of the technology of the new paradigm. According to CAP theorem [56],
a storage system can ensure only two out of three desired properties: Con-
sistency, Availability and Partition tolerance. For instance, traditional rela-
tional databases operating relatively small datasets provide consistency and
availability (while typically running on a single server). ACID (Atomic, Con-
sistent, Isolated, Durable) [57] systems were designed to ensure consistency
and partition tolerance but feature a limited availability (eventual availabil-
ity) which can hinder throughput of dependent applications. Such systems
are useful in cases with a moderate load but strong requirements on data
consistency (e.g. financial transactions). The next step into big data era
was the emergence of BASE (Basic Availability, Soft-state, Eventual consis-
tency) systems [58]. Such systems sacrifice strong consistency in order to
ensure availability and partition tolerance. This approach matches the de-
mand for high I/O flow in distributed data-intensive applications and became
common in past years.

Google File System (GoogleFS) [59] and MapReduce [47] introduced by
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Google were among early big data technologies which shaped the concept of
future relevant solutions. Both GoogleFS and MapReduce were developed
in parallel and are mutually optimized. GoogleFS was designed as a scalable
distributed file system for data-intensive applications hosted on unreliable
commodity hardware. It implies little data reuse within a single application
run. In GoogleFS multiple data servers storing the data are managed by
a master server which holds metadata. The master redirects user requests
to data servers, controls locks, manages namespace, guides data replication,
balances load and performs garbage collection. In this way the GoogleFS
separates file system control, which passes through the master, from data
transfer, which passes directly between data servers and clients. It treats
component failures as a norm rather than an exception, optimizes for huge
files that are mostly (concurrently) appended to and then (sequentially) read,
and provides fault tolerance by constant monitoring, data replication and
automatic recovery. MapReduce is a programming model and an associated
implementation for processing and generating large datasets. A User speci-
fies a map function that process key/value pairs, and a reduce function that
merges all intermediate values associated with the same intermediate key.
Programs written in such style are automatically parallelized and executed
on a large cluster of (commodity) machines. The runtime system takes care
of the details of partitioning the input data, scheduling the program’s execu-
tion across a set of machines, handling machine failures, and managing the
required inter-machine communication. It was proven that MapReduce can
emulate any distributed computation [60].

Hadoop [61] is an open source implementation of MapReduce. It was
co-designed with the Hadoop Distributed File System (HDFS) [62] which is
an open source version of GoogleF'S. Since it is an open-source project it has
been widely adopted in big data community and further derivative versions
with different focuses have forked.

A broad spectrum of distributed file systems exists, however, none of
them can be seen as a one-size-fits-all solution, as they are optimized for spe-
cific use cases. For example, Network File System (NFS) [63] has a simple
architecture where a single server exports a local directory tree to a number
of clients. The capability of the single server limits the scalability of such
approach. Andrew File System (AFS) [64] distributes the responsibility for
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file system subtrees to different servers. However, static partitioning of a file
system tree limits its applicability. XrootD [65] uses tree based routing in
hierarchy of servers and is optimized for high-throughput access to HENP
datasets. The CernVM File System [60] is designed to distribute software
binaries. Lustre [67] is optimized as a scratch space for cooperating appli-
cations on supercomputers. Ceph [6§] file system has distributed meta-data
architecture which overcomes the bottleneck of the central meta-data server
(as in GoogleF'S, HDFS) at the cost of increased complexity of the system.
This file system has been recently used in STAR experiment [69, [70]. Decen-
tralized file systems (GlusterFS [71]) allow clients to compute the location
of data/meta-data by means of a distributed hash-table. Many of the dis-
tributed file systems (e.g. Ceph) provide build-in data redundancy where
the same data are replicated across multiple servers in order improve data
availability and sustain frequent joins and leaves of the nodes. However, in
such cases, the data placement is defined by the internal logics of the file
system and does not necessarily match data access patterns or availability
of computing power. A compact overview of most popular distributed file
systems can be found in [72] and [73].

Large organizations, such as experiment collaborations in HENP, store
data in a global federation of various cluster file systems rather than in a sin-
gle, globally distributed file system [72]. Data Federation seeks to integrate
data management and data access, resulting in a global management system
that can handle replication and transfer of data to storage or to running ap-
plications [74]. All LHC experiments currently rely on XrootD for the wide
area delivery of the data files, though several use the local experiment catalog
for discovery. Such heterogeneity of file systems and limitations of coordina-
tion should be accounted for when optimizing data-intensive computations
across multiple distinct facilities.

2.2.3 Computing models

We have already discussed MapReduce and Hadoop (in conjunction with
their relevant file systems GoogleFS and HDFS), let us briefly summarize
several other common computing models.

Dryad [75] is a general purpose computing engine developed by Microsoft.
It considers a computation as a Directed Acyclic (DAG)): programs
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are graph vertexes and communication channels are graph edges. The graph

may change during the execution.

HPC infrastructures/software were traditionally designed for scientific ap-
plications aiming towards high-end computing capabilities. Computing and
data elements are typically separated in HPC. The workload consists of mul-
ticore jobs using [76], OpenMP [77] or PGAS [78] APIs for communi-
cation. The jobs are typically allocated and managed by batch scheduling
systems such as PBS/Torque [79] (gang scheduling). Generally, these systems
focus on managing computing slots. Various approaches are applied to en-
able and optimize data-intensive jobs on HPC infrastructures. For instance,
pilot jobs generalize the concept of a placeholder to provide multi-level and
application level scheduling. This enables data-aware scheduling and data
staging. Modern grid middleware tools (e.g. Condor [80], DIRAC [&1]) pro-
vide data access and management support for distributed MPI applications.
More details on conjunction of big data and HPC paradigms can be found
in [54].

Spark [82] 83| generalized MapReduce and multiple specialized computing
models. While previous solutions provided fault tolerance through data repli-
cation, Spark has a different approach. It introduced Resilient Distributed
Datasets (RDD) [84] —a read only collection of objects partitioned across a
set of machines that can be rebuilt if a partition is lost. Users can explic-
itly store an RDD (in memory or at persistent storage) across machines and
reuse it in multiple parallel operations (similar to MapReduce tasks). RDDs
achieve fault tolerance through a notion of linage: if a partition of an RDD
is lost, the RDD has information about how it was derived from other RDDs
and is able to rebuild just that partition. By default, RDDs are lazy and
ephemeral. That is, partitions are materialized on demand when they are
used in a parallel operation. RDDs are the best suited for batch applications
that apply the same operation to all elements of a dataset, but less efficient
for applications that make asynchronous updates to shared state (such as
storage systems for web applications or an incremental web crawler). Due to
its efficient (in-memory) data sharing, linage-based fault recovery, generality
(applicable to batch, iterative and streaming computing) and open-source
development model, Spark has seen a wide usage in big data community
recently.
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While the computing models described above are mostly focused on batch
processing, there is also a number of solutions for real-time (streaming) data
processing. Such solutions are used for processing messages and updating
databases, continuous querying on data streams, parallelizing an intense
query on the fly (e.g. a search query) and more [85]. Kafka [49, 86] and
Storm [87] are example of big data engines for stream processing.

Database functionality is often implemented on top of the two above
(e.g. BigTable [88] on GoogleFS and MapReduce, HBase [89] on Hadoop).
There are also independent database solutions for big data as MongoDB [90]
and Cassandra [91].

Many of the computing models implement their own application-level
resource management. This allows to dynamically schedule jobs to avail-
able resources. Hierarchical scheduling is applied to enable concurrency
control between multiple frameworks which are sharing resources. In such
system, application-level schedulers communicate with a central component
(master scheduler) which orchestrates allocation. The common examples of
such scheduling include YARN [02] and Mesos [93]. A summary of popular
big data computing models and corresponding resource management can be
found in [85]. We further discuss the topic of resource management in more
details in Sections [3] and [4l
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The programming model defines the data processing workflow and its divi-
sion into parallel jobs. Many existing big data frameworks implement their
own application-level scheduling. The elastic frameworks (Hadoop, Dryad)
can scale its resources up and down, i.e., it can start using nodes as soon
as it acquires them and release them as soon as the job is completed. In
contrast, a rigid framework, such as MPI, can start running its jobs only
after it has acquired a fixed quantity of resources, and cannot scale up dy-
namically to take advantage of new resources or scale down without a large
impact on performance. A resource management system enables execution
of jobs from multiple frameworks on shared resources. There are multiple
functions which a resource management should provide. It includes resource
discovery, scheduling, allocation, monitoring, fault recovery and compliance
with authentication and security mechanisms. In this thesis we focus on job

scheduling and data access aspects of resource management.

3.1 Distributed platforms

While big data frameworks vary in their architecture, they commonly utilize
parallel processing where a large computation is split into many parallel
jobs. Those jobs are executed on various types of distributed computational
resources. Such resources are organized in multiple different ways depending
on their purpose, hardware, ownership and legacy aspects. In this regard,
such terms as supercomputers, computer clusters, data centers, grid and
cloud are often referred. Let us briefly explain this terms here.

A supercomputer, according to the traditional notion, has many proces-
sors connected by a local high-speed computer bus. At present time, the
term mostly refers to specialized systems designed to address specific com-
putationally intensive problems.

In computing, a large number of processors are used in proximity
to each other. In other words, computer cluster consists of a set of loosely or
tightly connected computers that work together so that they can be viewed
as a single system. The components of a cluster are usually connected to
each other through fast local area networks, with each node (machine) run-

ning its own instance of an operating system. In most circumstances, all of
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the nodes use the same hardware and the same operating system. Dedicated
middleware (such as RMS and DMS standing for Resource/Data Manage-
ment Systems) allows to use the machines aggregated into a cluster for the

common goal.

A can be viewed as a computer cluster dedicated to storage,
management, processing and providing access to large volumes of data.

is a collection of computer resources from multiple locations to reach
a common goal. In the grid computing approach, the processing power of
many computers, organized as distributed, diverse administrative domains,
is opportunistically used whenever a computer is available. The grid can
be thought of as a distributed system with non-interactive workloads that
involve a large number of files. Therefore, grid computers tend to be more
heterogeneous and geographically dispersed (thus not physically coupled)
than cluster computers. The resources that are integrated into grid are typi-
cally dedicated computational platforms, either high-end supercomputers or
general-purpose clusters. Examples include LHC Computing Grid [4], Tera-
Grid [94], Open Science Grid [95], European Grid Infrastructure (EGI) [96],
NorduGrid [97] and MetaCentrum in Czech Republic [9§].

Grids can be classified by topology into hierarchical, P2P (federated),
hybrid and arbitrary graphs. Hierarchical topology assumes a structured
network, generally in the form of a tree or a star. It is adopted in many sci-
entific projects and a multi-tier data grids (such as initial computing model of
LCG). In P2P architectures nodes act autonomously, possessing functional-
ity of both servers and clients at the same time. P2P offers more flexibility in
communication among components compared to hierarchy, however, it adds
complexity to the design and management. Hybrid architectures combine at
least two other architectures. For example, it can be a hierarchical topology
combined with a P2P-like communication of components at the same level
of hierarchy. Finally, in arbitrary graph topology nodes are freely connected
and can wary in roles. A scale-free network of servers and clients connected
via the Internet can be an example. Another example is a grid which was
initially designed as hierarchical but more elements and connections were

added arbitrarily over time.

is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks,
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servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.
The cloud infrastructure can be viewed as containing both a physical layer
and an abstraction layer. The physical layer consists of the hardware re-
sources that are necessary to support the cloud services being provided, and
typically includes server, storage and network components. The abstrac-
tion layer consists of the software deployed across the physical layer, which

manifests the essential cloud characteristics [99].

The arising concept of cloud federations involves usage of resources pro-
vided by multiple clouds from distinct provides in order to execute large-scale
computations. This concept resembles the main aspects of grid computing
by the definition.

Cloud computing is based on several other computing research areas such
as High Performance Computing (HPC), virtualization, utility computing
and grid computing [I00]. Viewed in a broader sense, the concepts of grid
and cloud computing have many similar features. Like the grid, the cloud is
a utility computing model that involves a dynamically growing and shrinking
collection of heterogeneous, loosely coupled nodes, all of which are aggregated
together and present themselves to a client as a single pool of compute and /or
storage resources. Most of the major differences come from the difference in
respective clients. In grid, clients run massive workflows, generally non-
interactive (e.g. large-scale scientific experiments), and the resources are
owned and administrated by multiple organizations. In cloud, the resources
owned by a single enterprise are tenanted by thousands (or millions) of clients
running smaller workflows, but often sensitive to response time. Nevertheless,
in both grids and clouds there is a common need to manage large facilities;
to define methods by which consumers discover, request, and use resources
provided by central facilities; and to implement highly parallel computations

that execute on those resources [101].

According to many surveys, such as [102], from the scheduling perspec-
tive, there are more common features among the discussed platforms then
specific ones. Moreover, it is increasingly common to consider hybrid infras-
tructures, in which in-house resources are complemented with resources from

cloud or grid platforms.
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Scheduler architectures

Figure [1| illustrates various types of job scheduling architectures [I]. Gray
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Figure 1: Architectures of job schedulers [I].

boxes represent resources, circles represent jobs and .S; denotes schedulers.

The architectures can be divided into five groups:

Centralized (Monolithic). A single scheduler makes placement deci-
sions for all jobs and resources.

Two-level (Hierarchical). The scheduling over the entire system is
achieved through communication in a hierarchy of schedulers (typi-
cally two levels of hierarchy). Two cases are important. First, in big
data paradigm, multiple computing engines (e.g. Hadoop, Spark) have
their own application-level schedulers integrated. Those schedulers are
orchestrated by a central component (see Figure which resolves
conflicts and controls fair sharing of resources. The second case is hier-
archical scheduling in grid. There, each site (cluster) can have a local
scheduler (e.g. Condor [80]) which communicates with a central sched-
uler (e.g. Condor-G [103]). The jobs are submitted either directly to
local schedulers, or to the central scheduler which redirects the jobs
to the local ones. In this case the resources are statically partitioned
between local schedulers, and the central scheduler enables inter-site
job submission. In both cases, the central scheduler plays an active

role — allocates jobs based on its policy.

Shared-state (Decentralized). Multiple schedulers are plugged into
the central component. But this time the central component enables
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operation of schedulers but does not make placement decisions on its
own. For example, it can be a distributed database storing the state of
available resources. Multiple schedulers act concurrently, each having
a smaller scope of the problem: a specific type of jobs or a subset of re-
sources. The examples are Omega [104], Apollo [105] and Nomad [106].

Distributed (Fully-distributed). There is no central component in a
fully-distributed system. Each computing node has its own scheduler,
which can schedule incoming jobs at the node or forward it to another
one. The absence of a single bottleneck is an advantage. The downside
is that each scheduler has a limited knowledge of the jobs/resources
in the system, therefore the global optimality can be compromised.
Sparrow [107] is an example of such distributed scheduler.

Hybrid. The load is split between a centralized and distributed com-
ponents.The central component can utilize sophisticated algorithms for
scheduling of critical jobs, but use simple distributed heuristics for low
priority jobs. Hybrid scheduling is implemented in Tarcil [108], Mer-
cury [109] and Hawk [110] schedulers.

3.2.1 Examples

There is a variety of batch scheduling systems designed for MPI workloads at
a centrally managed cluster. Such systems feature centralized architecture of
a scheduler. The most common examples are: LoadLeveler [111], LSF [112],
Maui [113], NQE [114], PBS [I15], Torque [79], Condor [80] and Moab [116].
Most of them were designed in 90-s and are still in use at modern scien-
tific computing centers, their development continues to stay up-to-date with
requirements of today’s applications.

A grid scheduler can be seen as a higher level on top of local schedulers.
The examples of grid resource managers are Condor-G [103], Globus [117]
and Legion [118]. The core effort of Condor-G’s and
was dedicated to matchmaking, i.e., finding appropriate resources and set-
ting the corresponding environment, security and data access for computa-
tional jobs at distributed systems. The matchmaking is performed based
on job requirements being analyzed towards properties and policies of re-

sources (participating clusters). Condor-G also provides functionality for job
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migration across computing clusters, error recovery, backups in progress of

computations, and scheduling of complex workflows described by DAGs.

Google’s Borg [119] is an example of a centralized cluster management
system. Each job runs in one cell (cluster). A cell consists of a set of ma-
chines, a centralized controller called Borgmaster, and an agent process called
Borglet that runs on each of the machines. The Borgmaster consists of two
processes: the main process and a separate scheduler. The main process
handles client RPC (Remote Procedure Calls) and manages the state of all
of the objects in the system (machines, jobs). The scheduler asynchronously
scans the jobs in the queue, checks their feasibility to find machines on which
the job could run and scores the machines to find the best placement for a
job. The scoring takes into account user-specified preferences but is mostly
driven by the built-in scheduling criteria. The Borglet starts/stops/restarts
jobs, manages local resources by manipulating OS kernel settings, manages
debug logs, and reports the state of the machine to the Borgmaster. The
Borgmaster process is replicated several times, each replica maintains an in-
memory copy of the system state. In case of failure of the active master,
one of the replicas is selected using election mechanism to replace it fast.
While the Borg is a proprietary software, its concepts and exploitation ex-
perience were utilized in the development of the next generation of cluster
management systems Kubernetes [120] and Firmament [12I] which became

open-source.

Mesos [93] is an example of a two-level cluster management system. Au-
thors define it as a platform for sharing commodity clusters between multiple
diverse cluster computing frameworks, such as Hadoop and MPI. It intro-
duces a two-level scheduling mechanism called resource offers. There is a
master process that manages slave daemons running on each cluster node,
and frameworks that run jobs on these nodes. Each framework registers its
own scheduler with the Mesos master. The master, knowing the state of all
nodes, decides how many resources offer to each framework (e.g. to achieve
fair share). The framework’s scheduler decides which resources to accept and
which jobs to run on them (e.g. to achieve a better data locality).

Apache YARN [92] (Yet Another Resource Negotiator) has a similar ar-
chitecture consisting of a centralized Resource Manager (RM), multiple Ap-
plication Managers (one per each application/framework) and a Node Man-
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ager (NM) running at each node. Both AMs and NMs communicate to RM
through heartbeat messages in order to reduce communication load. The
main difference is that YARN is a request-based (in contrast to offer-based
Mesos) resource manager: RM allocates resources to AMs upon request spec-
ifying amount /properties of the demanded resources. This makes the system
more centralized (in some sources categorized as monolithic), since a single
component makes job placement decisions. Also, while Mesos has a fixed
pool of framework schedulers, YARN allocates AMs dynamically — one for
each running job.

Omega [104] is an example of a shared-state scheduler with the main
focus on scalability. Multiple independent schedulers are granted access to
the entire cluster and compete for resources in a free-for-all manner using a
shared-state. A resilient master copy of the resource allocations is maintained
using optimistic concurrency control. Once a scheduler makes a placement
decision, it updates the shared copy of the cluster state in an atomic commit.
At most one such commit will succeed in the case of conflict. The schedulers
can choose to use incremental transaction (which will accept all but the con-
flicting changes) or all-or-nothing transactions (either all jobs are scheduled
together or none are). In case of refused transactions, the scheduler does an-
other iteration on remaining jobs and updated cluster state. Therefore, the
two-level scheme’s centralized component is simplified to a persistent data
store with a validation code that enforces common rules. While the architec-
ture is highly scalable, a heavy load may lead to a large number of conflicts

which would force scheduler to re-run often.

3.3 Scheduling models

Given the scale of computations and amount of utilized resources in big data
applications, even a small improvement in efficiency of resource utilization
can have a large value. Increasing data processing efficiency allows enterprises
to save investments in hardware and electric power, as well as accomplish
computations in shorter time.

Most resource management systems have a modular design where sepa-
rate components take care of particular functions: communication, setting
runtime environment, monitoring, scheduling and etc. This allows to imple-

ment various logic in the scheduling component without changing the rest
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of the system. However, the design of the resource management system in-
fluences the design of the scheduling algorithm as it defines what inputs are

available and what outputs are expected.

A general formulation of the resource allocation problem can be found
in [12) 122 123]. Expected Time to Compute (ETC) [123] and Total Total
Processor Cycle Consumption (TPCC) [123] models are often used to formu-
late job scheduling problems (especially in more early works). Such models
can be seen idealistic as they assume exact knowledge of the performance of
each job on each resource in advance. Moreover, important details of various
modern systems are not included into classical ETC and TPCC formulations
(multicore jobs; usage of various types of resources, e.g. CPU, memory and
network; monetary cost; fairness; data locality). Later practical works tend
to utilize customized models and consider interaction with monitoring ser-
vices which provide up-to-date information on the changing state of jobs and
resources. However, since the job scheduling problem is there is no
general formulation /solution which would remain computationally accept-
able and match all modern large-scale distributed systems. Each particular
research addresses a certain combination of resource platform (single ma-
chine, cluster, grid, cloud, dedicated supercomputer or their combination),
workflow (type of jobs) and solution (allowed operations, solving method
and optimization criteria). Given the variety of such combinations, parallel
job scheduling in distributed systems has been a fertile research ground for
some decades. Thus, the number of papers with solutions and surveys re-
lated to the area is enormous. Those factors led to segregation into many
research groups with focus on particular problem instances. Such situation
significantly complicates the navigation in the existing knowledge base as
well as collaboration between the researchers. Moreover, the terminology
and taxonomies often vary between research communities. As a result, it is
difficult to trace and generalize (mathematical) similarities between consid-
ered problems and proposed solutions. Such problem is explicitly discussed
in [102] where the authors propose a universal taxonomy for parallel job
scheduling in distributed systems, based on previously proposed taxonomies
and an extensive analysis of publications in the field. For the mentioned
reasons we will not focus on any particular formal model in this section,

but rather discuss important elements and goals for development of such
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a model. More different taxonomies and surveys targeting specific cate-
gories of platforms (yet sometimes overlapping) exist, as for example: grid
resource allocation [122], data grids [12} [124], workflow management sys-
tems in grid [125], scientific workflows in IaaS clouds [126], general resource
scheduling in clouds [127, 12§]. It is also worth to mention, that according
to [129], despite a wide selection of advanced scheduling algorithms, many
smaller infrastructures, which do not explore optimization, rely on well es-

tablished but yet simplistic approaches.

3.3.1 Terminology

Since terminology varies in publications from a wide range of related areas,
here we define the terms used in this thesis. In particular, the terms “job”
and “task” are ambiguous and their precise definition depends on the domain
(e.g, scheduling or computing) and the considered platform (cloud, grid,
cluster, operating system, etc.). For the purpose of scheduling, it is important
to distinguish which term corresponds to the atomic unit of work to be
considered.

As our research studies distributed data production in HENP, where grid
computing terminology is more common, we use the term (computational)
to refer an atomic unit of computational work for scheduling. An important
implied example is a computing program which is executed on a single com-
putational node, occupies a fixed amount of resources, processes/produces a
definite portion of data and can be scheduled separately from its peers (in-
dependently of other jobs). A computational consists of multiple
jobs, which may have specific dependencies between each other. We use the
term in a more general meaning, which does not necessarily refer to a
computational job executed at a machine, but includes other types of atomic
work, e.g. a transfer of a file over a network link.

It is important to mention, that many studies on scheduling in big data
and parallel computing use the term “task” to define the smallest unit of
schedulable work (similar to our usage of “job”). In such terminology, a “job”
consists of multiple tasks and is similar to our usage of the term “workflow”.
For example, a MapReduce [47] job consists of multiple “map” and “reduce”
tasks. Also, a multicore job is often considered as a group of tasks each ex-
ecuted on a separate core. While different terms reflect important specifics
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of platforms, the scheduling principles often remain similar regardless of ter-
minology. In this thesis, we use the terminology defined in the previous
paragraph for consistency, but provide additional notes, where necessary, in
order to avoid confusion.

Next, let us define less ambiguous terms used in this thesis. is
an entity which executes, processes or supports the task (e.g. CPU for a com-
putational job, network link for data transfer, storage for data placement).
Submission time is the time when the scheduler has received the job to be
scheduled (e.g. from the user). Start time is the time when the job starts
its execution in the resource. Waiting time is the time interval between sub-
mission and start of the job. Completion time is the time when the job has
completed its execution and releases the resource to other jobs. Duration of
a job is defined as the time interval between its start and completion times.
Strictly spiking, it can only be measured after the job is completed. However,
an estimation is implied when referring a duration of a not yet completed job
(e.g. a job being scheduled). In literature, duration is also often referred as
execution time or processing time. Slowdown is the ratio of the time spent by
the job in the system (from its submission to completion, including waiting

time) to its duration.

The choice of a scheduling approach greatly depends on the properties of
expected workload and target platform. There is always a trade-off between
the generality of anticipated workloads/platforms, algorithm complexity and
efficiency for the primary case. Next in this section, we discuss properties
of jobs, resources and desired optimizations which are important to define a
scheduling model. Let us start with the properties of computational jobs.

3.3.2 Jobs

Scheduling granularity. There are distinct types of workflows with re-
spect to how their jobs are allocated. The first type, multicore (MPI) work-
ﬂovstl7 requires intensive communication and synchronization among jobs
during the execution. Therefore, all the jobs of a workflow should be allo-
cated simultaneously (gang-scheduling). If there are not enough resources to

lsee Section for discussion of terminology
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schedule such workflow immediately, the scheduler has to wait for more re-
sources to become free. These may imply putting a lock on already acquired
resources and preventing other workflows from using them (e.g. [130]). The
second type is more flexible, but dependencies between jobs still exist which
can be specified with a Directed Acyclic Graph (DAG). The workflow may
consist of sequential, parallel and synchronization stages, which implies or-
dering of some of the jobs and data exchange (e.g. Dryad [75]). The third
type of workflows is not constrained by communication or dependencies. Any
number of jobs can be executed at a time. The scheduler can start dispatch-
ing jobs of a workflow as soon as any number of appropriate resources become
available. For example, the map jobs of the MapReduce workflow do not re-
quire to communicate with each other. The only requirement is that the
reduce jobs should be able to access the map output, therefore they could be
scheduled simultaneously or after the map jobs. Another example is so-called
“bag-of-tasks” workloads, where jobs have no dependencies among each other
and can be executed out of submission order. Such model provides more flex-
ibility in scheduling and allows for better packing of jobs on resources over

time.

Job flexibility. A computational job may require a strictly defined amount
of resources for its execution (rigid) or can change its requirements according
to scheduler decision at startup (moldable) or during the runtime (malleable).
In case of evolving jobs, an application-level scheduler decides how much
resources should be acquired by the job.

Hierarchy of jobs. The jobs within a mixed workload may vary in their
priority. For example, user-facing services, interactive jobs or crucial produc-
tion services are more important than batch data processing jobs. Schedulers
implementing jobs hierarchy aim to provide shorter queuing time, better

placement choices or fault tolerance to jobs with higher priority.

Timing constraints. In some cases users, may want to specify deadlines
for their jobs. The deadlines can be implemented either as hard or soft
constraints. Real time and interactive jobs are the most sensitive to tim-

ing which requires the scheduler to support performance guarantees (Service
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Level Agreement aware schedulers). The jobs with no crucial time require-

ments are referred as best-effort jobs.

3.3.3 Resources

Let us discuss representation of resources in scheduling models.

Heterogeneity. All the resources in the considered problem may be equiv-
alent (e.g. a uniform computer cluster, or cores of the same CPU), or re-
sources may vary in their properties (e.g. grid). In the latter case, the
jobs may explicitly specify the requirements on resources (e.g. platform,
CPU frequency, memory size, operating system, installed software, access
permissions). It is a duty of a scheduler to check the consistency of such
requirements and identify a set of resources matching each job.

Slot-based vs. elastic resource representation. The pool of resources
can be divided into slots (e.g. a fixed number of cores and amount of memory)
which can place a single job. If the job does not consume exactly the amount
of resources in the allocated slot the resource trashing occurs. Alternatively,
resources can be dynamically shared between multiple jobs allocated to the
same resource (e.g. virtual machine). According to many studies, elastic
scheduling leads to a better resource utilization [85]. However, concurrency of
jobs allocated to the same resource may lead to interference and performance
degradation. Therefore, an isolation of concurrent processes is an important
aspect of resource management. In order to mitigate the interference, it is
preferable to mix jobs of distinct types (CPU-intensive, memory-intensive

and network-intensive) at a machine.

Over submission. A scheduling system may have multiple job queues for
different subsets of the machines. In such case, the same job can be inserted
into multiple queues. The job waits until it is scheduled for the first time
and then it is removed from the rest of the queues. Such approach is used
to implement certain policy features and improve job placement, however, it

sophisticates the operation.
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Resource leasing. In Infrastructure as a Service (IaaS) cloud computing,
the user defines how many resources (e.g. virtual machines) to lease. De-
pending on the pricing model, the price for resource lease may also vary in
time. Also, multiple types of VMs can be available for deployment with dif-
ferent price and combination of parameters (e.g. CPU speed, memory size).
When scheduling a workload on a cloud from behalf of a user, it becomes a
part of a problem to define how many (and what type of) VMs should be
requested at a given time, depending on the workload properties.

Speculative execution. If a workflow consists of multiple parallel jobs it
has to wait until every one of them is completed. Under a heavy load or
constrained resources, some of the jobs can get sub-optimal placement. The
progress of a job can be delayed by slower machines, data access overhead,
interference with other jobs, resource congestion or failures. Such jobs are
often called stragglers. Therefore, critical jobs can be executed in several
concurrent instances at different machines. Also, when the most of the jobs
in a workflow are completed and the stragglers become easy to detect, some
scheduling systems (as Spark [83] and several implementations of MapRe-
duce [47])F can resubmit the unfinished jobs for speculative execution. The
output is taken from whichever instance of the job completes first and the
remaining instance is terminated. Such approach allows to improve the re-
sponse times but leads to excessive computational work.

Preemption. A scheduler may consider not only the new jobs from the
queue but also reconsider already scheduled and running jobs. It may be-
come advantageous to terminate some of the active jobs to provide a better
allocation to high-priority jobs. It is often used as a mechanism to enforce
fairness and better resource matching. Preempted jobs are restarted later
when more resources become available, or, in some systems, they may be
migrated to other resources. However, killing jobs in the middle of their
progress leads to a waste of computational work. To mitigate the losses,
active jobs are often assigned costs of preemption proportional to CPU time
already spent, i.e. their priority increases with time (hysteresis).

2The corresponding publications use different definitions of jobs and tasks. See discus-

sion in Section m
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3.3.4 Optimization

Advanced scheduling algorithms consider multiple solutions to the schedul-
ing problem and select the best one according to the scheduling goal. It is
typically done with the help of an objective function which scores a solution
based on its properties. Similar functions can be utilized as metrics for com-
parison of different algorithms against each other or for monitoring purposes.
Let us discuss the most commonly used optimization criteria. Data access,
being an important topic for this thesis, is extensively discussed in Section
while the rest of the criteria are summarized below.

Makespan is the time interval between start and completion time for a set
of jobs. According to survey [102] 60 % of 100 most cited research papers on
job scheduling consider makespan minimization (sometimes along with other

metrics).

Flowtime is the sum of completion times of all the jobs (see [I31]). The
smaller flowtime indicates faster completion of some jobs. It can be achieved
by scheduling shorter jobs ahead of longer ones. Flowtime is often used
as a secondary metrics to quantify the Quality of Service (QoS) in earlier
works. More recent works tend to utilize custom metrics for this purpose, or
explicitly incorporate compliance with the Service Level Agreement (SLA)

into their approaches.

Total weighted completion time is similar to the flowtime, but the
summed completion times of jobs are weighted according to their priority
(see [131]). Minimization of this metrics promotes faster completion of more

important jobs.

Response time of a job is the time interval between its submission and
completion. Average weighted response time is calculated as a weighted sum
of response times of all the jobs divided by the sum of the weights (see [131]).
This metric is applied in scheduling of interactive applications.

Waiting time of a job is the time interval between its submission and the
execution start. The average weighted waiting time is defined as a weighted
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sum of waiting times of all the jobs divided by the sum of the weights. Aside
from the quality of a schedule, in real systems, this metric allows to study
latencies introduced by the scheduling process itself.

Resource utilization can be defined as a ratio of effectively used resources
(e.g. CPUs processing data) to the total resource capacity (e.g. total num-
ber of CPUs, including ones currently idle). Such metric is important for
heavily loaded systems where it is highly desirable to utilize resources to full
capacity. Of cause, the capacity should not be exceeded to avoid performance
degradation.

Matching proximity compares a current job allocation to a “perfect”
allocation where each job is executed at a resource providing the shortest
execution time. Matching proximity is computed as a ratio of sums of job
execution times under the current and the “perfect” allocations (see [I31] on
page 614). This metric is rarely used in recent works.

Fairness. When resources are shared between multiple users (virtual or-
ganizations/frameworks/jobs) it is important to maintain fair usage. One of
the common examples is that a large job should not monopolize an entire
cluster, delaying the progress of other (small) jobs. There is a vast spectrum
of approaches addressing this issue. A user can be limited in the number of
resources it is allowed to utilize simultaneously. Or the share of allocated
resources can be proportional to the fraction of user’s tasks over the total
number of active tasks. It can also be normalized with respect to a hierar-
chy of priorities between users. More sophisticated algorithms consider the
history of previous allocations and multiple types of resources (CPU time,
memory, network) [85 132]. Users may be allocated “budgets” which are
spent when using resources. One of the common approaches is to specify
an objective function for optimization which expresses fairness. The policy
towards fairness can be soft (not dispatch additional tasks from the user
who currently exceeds its fair-share) or hard (preempt active tasks to main-
tain fairness). A policy may allow to execute tasks above calculated quota
when there are free resources (no concurrency), but at risk of those being

preempted later by new incoming tasks from different users.
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Monetary cost. An infrastructure may consist of resources with different
ownership and pricing models, including external commercial clouds. Those
resources can have distinct costs of execution of user’s jobs. A scheduler can
consider placement of jobs with respect to the cost of computation. Typically,
the goal is to either minimize the overall cost of scheduled computations or to
find the best trade-off between processing time and expenses. For example,
a user can specify a budget constraint for the submitted computations. It
is important to distinguish scheduling approaches which consider an actual
monetary cost of computations and those which use the term “cost” in gen-
eral meaning: in order to consider several optimization goals within a single

objective function.

Energy efficiency. Since electricity bills make a significant fraction of op-
erational costs of clusters and data centers the research on energy consump-
tion reduction is trending. This topic is addressed by research on both energy
efficient hardware and scheduling. When a computational cluster is not uti-
lized to the full capacity it is advantageous to aggregate active jobs on a
subset of machines and power-off the idle ones as well as related equipment
(e.g. mnetwork switches). It is important to maintain a stable level of op-
eration and not be miss-directed by short-term load fluctuations, because
excessive shutdowns/start-ups increase energy consumption and reduce life-
time of the equipment. It is also important to notice, that concentration
of jobs over fewer machines increases the probability of a correlated failure.
An alternative approach is Dynamic Voltage and Frequency Scaling (DVFS)
which allows different power modes in hardware. With DVFS the energy
consumption and performance are adjusted according to the resource load.

Network traffic. One can measure the amount of data transferred over
the network during processing. Smaller traffic indicates better job placement
decisions with respect to data locality, which allows to reduce network load
and decrease /O waiting time. This metrics is typically used as a secondary
criterion.

Correlated failures. In large-scale clusters of commodity hardware, fail-

ures are rather a norm than an emergency. In opportunistic computing,
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resources can join and leave at any moment of time. For this reason, critical
services are often duplicated. For instance, a critical job can run in multiple
instances, one of which is selected to be active (master) and the rest are
backup. The redundancy can also be used to distribute the load between
service instances and reduce response time (e.g. the backup instances serve
read-only requests). In order to improve fault-tolerance, such instances are
allocated to minimize the probability of correlated failures. To achieve this,
the jobs are placed on distinct physical machines, located at distinct racks,
powered by independent sources, connected to different network routers or,
even to distinct geographical locations. A similar approach is often applied
to data replicas in distributed storage systems [6§].

In addition, custom functions may quantify other goals of optimization,
e.g. violation of deadlines, number of migrated or preempted jobs, job pri-
ority compliance. Multicriteria optimization can consider a combination of
several metrics. Also, in order to compare different scheduling algorithms
the time required to make a scheduling decision is measured.

3.4 Scheduling methods

The problem of job scheduling in large-scale distributed systems is challeng-
ing. The search space of such problems is huge as it includes all possible
assignments of jobs to resources and the order of jobs. It also features com-
plex constraints and optimization criteria. Some of the common optimization
criteria are in mutual conflict, e.g., makespan and fairness, or energy effi-
ciency and tolerance against correlated failures. Moreover, the parameters
of resources and jobs are subject to changes and wrong estimations. As the
result, it is not just computationally problematic to find an optimal solution,
but sometimes even impossible to strictly define it in practical cases. For this
reason, heuristics and meta-heuristics are widely applied in practice. Such
methods allow to find efficient solution within a reasonable time without the
necessity to perform complete search. In this section, we summarize the most
widely applied solving methods to job scheduling problems in distributed
systems, which include: immediate mode heuristics, batch mode heuristics,
backfilling, local search, population-based meta-heuristics and several other.
Detailed surveys and taxonomies of solving methods applied to job schedul-
ing problem can be found in [12, 102, 123], 129]. More compact overviews of
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the of the most popular methods are provided in [133] [134].

3.4.1 Immediate mode heuristics

Immediate mode heuristics [135] schedule one job at a time. The job waits
in a of unscheduled jobs until it is processed by the scheduler. The
job priorities can be implemented as queue ordering. Some schedulers op-
erate on multiple queues arranged by types of jobs or subsets of resources.
The queue-based approach is well suited for parallel processing by multiple
schedulers in hierarchical architectures. However, the schedulers do early
placement decisions which restrict choices for further waiting jobs. This cat-

egory includes:

e Opportunistic Load Balancing (OLB). Assigns each job to the earliest
idle resource. When multiple resources are available at the same time
OLB selects an arbitrary one. Such method provides uniform
[balancingl however, does not consider any additional optimization.

o Minimum Completion Time (MCT). The job is assigned to a resource
which provides the earliest completion time. MCT considers the time
when the resource completes previously assigned jobs (ready time) and
the execution of the job at the resource. However, MCT does not aim

to provide the best fit with respect to execution time of each job.

o Minimum Execution Time (MET). The job is assigned to the resource
with the smallest execution time for this job. MET does not take the
availability of resources into account. Therefore, neither load balance

nor makespan are optimized.

o Switching Algorithm (SA). Tries to combine strong sides from MCT
(load balancing) and MET (minimal execution times). It divides the
minimum ready time by the maximum ready time among the resources
in order to estimate current load balance. If the ratio is low MCT is
applied. When the ratio becomes close to 1, the algorithm switches
to MET. Two thresholds, a low and a high, are set to control the
switching.

o k-Percent best(kPB). For each job a subset of k % of resources with the
minimum execution time is selected. Then, MCT is applied within the
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subset. As well as SA this method can be seen as a combination of
MET and MCT. While SA is switching between the two, kPB tries to
find a trade-off for each decision.

3.4.2 Batch mode heuristics

Batch mode heuristics [I36] produce a schedule for a set of jobs (batch) in one
scheduler run. Processing multiple jobs in a batch (possibly all the waiting
jobs) allows the scheduler to consider more scheduling options. Under such
approach, the jobs scheduled before can be also considered for preemption.
The downside of such approach is a greater computational complexity and,
therefore, a potentially larger scheduling overhead. However, if the use case
allows to set large enough intervals between scheduler runs, such increase in
solving time is acceptable. The most common batch mode heuristics are:

e Min-Min. First, the method calculates the completion time for each job
at every resource. Then the job with the earliest possible completion
time among all the jobs is scheduled to the corresponding resource. The
process is repeated with the remaining jobs and updated ready times
of the resources until all the jobs are scheduled. Min-Min allows to
minimize flowtime. That drawback of this approach is that the longer
jobs get delayed by the shorter ones.

e Max-Min. The method is similar to Min-Min. The scheduler compares
the jobs by their earliest possible completion times. The job with the
latest one is allocated to the corresponding resource. Effectively, this

method gives a higher priority to longer jobs.

e Sufferage. Allocates the resource to the job which would be disadvan-
taged the most if allocated to another resource. The sufferage value is
calculated as the difference between the second earliest and the earliest
completion time of a job. If two jobs compete for the same resource,
the job with the greater suffrage receives the allocation. The other job

is reconsidered after all pending jobs are analyzed.

e Relative cost (RC). Considers both load balancing and minimization
of execution times of jobs at resources. Those are conflicting criteria,
since for a good load balance the jobs cannot always be assigned to
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the fastest resources. In order to find a trade-off, RC uses advanced
calculations (see [136]). It computes a static relative cost and a dynamic
relative cost for each pair of a job and a resource. The static relative
cost is an execution time of a job at a resource divided by the average
execution time of that job over all of the resources. It is calculated once
at the beginning of scheduling. The dynamic relative cost is calculated
at each iteration and takes ready times of the resources (completion of
already scheduled jobs) into account. It is defined as a job’s completion
time at a resource divided by the average completion time of that job
over all of the resources. At each iteration RC analyses every pair of
an unscheduled job and a resource. The pair with the smallest product
of the static and the dynamic costs is scheduled.

e Longest Job to Fuastest Resource — Shortest Job to Fuastest Resource
(LJFR-SJFR). This method is designed as a trade-off between makespan
and flowtime minimization. The number of instructions to be executed
by each job is assumed to be known in advance. Each resource pro-
cesses a known constant number of instructions per unit of time. At the
beginning of scheduling the resources are idle and the jobs are sorted by
number of instructions. Then the principle “longest job to the fastest
resource” is applied in such a way that each resource receives one job.
After that, the next resource that completes its job is assigned either
the shortest (SJFR) or the longest (LJFR) job from the rest of the
batch alternately (in rotation).

The immediate and batch mode heuristics for job scheduling are evaluated
in simulations in works [I35] [I36]. The authors conclude that the choice of
a scheduling approach depends on the properties of the workload, resources
and selected optimization criteria.

3.4.3 Backfilling

There are also methods specifically designed for scheduling of multicore
(MPI) jobs. Scheduling of such jobs of varying size potentially leads to re-
source under-utilization. For instance, the most simple but widely used [129]
algorithm is First Come First Served (FCFS) [137]. It schedules the first job
in the queue each time. If there are not enough resources (cores) to schedule

66



3 Job scheduling in distributed computing

the first job, the algorithm waits until they become available (resource drain-
ing) and so do all the other jobs in the queue. During this waiting, a part
of the resources remains idle. In order to utilize CPU time more efficiently,
backfilling allows jobs to jump the queue provided they do not delay the first
job.

EASY backfilling [138] algorithm calculates the earliest possible start time
for the first job in the queue and makes a reservation. Then, it scans the rest
of the queue and immediately schedules every job which has enough resources
to run and does not interfere with the reservation. Since only the first job
gets a reservation in EASY backfilling, the waiting time of other jobs can be
significantly prolonged.

The number of reservations can be increased to improve fairness to other
jobs. In case of slack-based [139] and selective backfilling [134] the number
of jobs with a reservation is related to their current wait time and slowdown
(the ratio of time spent by the job in the system to its execution time)
respectively.

Conservative backfilling [134] makes a reservation for every queued job
which cannot be executed immediately. It means that backfilling is performed
only when it does not delay any previously submitted jobs.

More backfilling algorithms can be found in [I40]. However, the main
drawback of backfilling algorithms, as other algorithms using reservations,
is the assumption of precise knowledge about the job duration and resource
performance. In practice, the estimation of job duration, especially provided
by users, are far from being precise [141]. Moreover, such estimations may

not be available in some systems

3.4.4 Meta-heuristics

Local Search (LS) meta-heuristics [140, [142]. LS explores the search
space by applying local changes to the current state (point in the search
space) at each iteration until a (sub-)optimal solution is found. A time limit
for the search can be explicitly set. LS methods are applied to a broad
spectrum of computationally hard optimization problems. In job scheduling,
the following methods are often used [123]:

e Hill Climbing (HC). Starts at a randomly generated state and moves to
the best state in the neighborhood of the current state in each iteration.

67



3.4 Scheduling methods

If the problem is non-convex, HC may stuck in a local optimum and fail
to find the global optimum. This issue can be addressed with multiple
restarts of the search. However, the global optimum is not always
required in scheduling problems. In practice, it is often preferable to
find a “good enough” solution within the given time limit.

e Simulated Annealing [143]. In the search process, simulated annealing
accepts a worse state with a certain decreasing probability. This allows
to escape local optima in the search space.

e Tabu Search (TS) [144]. Similar to simulated annealing, TS allows
worsening moves, e.g. if no improving moves are available. As a key
feature, T'S maintains a list of previously visited states in order to avoid
cycling.

Population-based meta-heuristics [131]. Population-based approaches
maintain and improve multiple candidate solutions using population charac-
teristics to guide the search. The initial population of solutions can be gen-

erated either randomly or using the methods described above in this section.

o Genetic Algorithms (GA) [145]. In a genetic algorithm (inspired by
natural selection) a population of candidate solutions is evolved towards
better solutions. At each iteration, the properties of best solutions
(according to fitness function) are recombined (with possible random
variations) to create a population for the next iteration.

e Memetic Algorithms (MA) [146]. Combine the concepts of population-
based search and local search. In addition to evolution (similar to GA),
a subset of candidate solutions undergoes an individual improvement
procedure (similar to LS) at each iteration.

e Ant Colony Optimization (ACO) [147]. A probabilistic technique for
solving computational problems which can be reduced to finding paths
through graphs. The method is inspired by the behavior of ants seeking
a path between their colony and a source of food.

e Particle Swarm Optimization (PSO) [148]. PSO explores the search
space by simulating the movement of a population of candidate solu-
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tions (particles) using analogies of position and velocity. Each parti-
cle’s movement is influenced by its local best known position, but is
also guided towards the best known positions in the search-space. An
example of job scheduling based on PSO can be found in [149].

There are also schedulers which utilize machine learning. The examples

are Paragon [150], Quasar [151], and the approach proposed in [152].

3.4.5 Network flows

There are several schedulers using network flow maximization (or min-cost
max-flow) [I53] as an underlying solving algorithm. Here we would like to
discuss the known examples in more detail, since the scheduling approach
proposed in this thesis also uses network flows.

A flow network is a directed weighted graph with sinks and sources of
flow, where each edge is assigned a cost (per unit of flow) and a capacity
(maximum possible flow). The min-cost max-flow problem is to find a max-
imal flow from source(s) to sink(s) associated with a minimum cost. There
is a wide choice of polynomial algorithms solving network flow maximization
problem. Formulation of a scheduling problem in form of min-cost max-flow
requires several simplification assumptions, and is approached differently by
researchers.

According to the authors, Quincy [154] is the first scheduler of computa-
tional jobs using min-cost max-flow approach. Both jobs and resources are
presented as vertexes in the network. In addition, aggregative vertexes model
special scheduling cases when a job remains unscheduled or is ignorant of the
choice between a set of resources. The edges of the network represent schedul-
ing options. An edge from a job to a resource means it can be executed there.
The capacity of the edges represents the capacity of the resources: each job
vertex is a source of a unit flow, and each resource is a sink for as many units
of flow as the number of jobs it can accommodate. The cost of the edges ex-
presses scheduling preferences: data locality, cost of preemption, priority of
jobs, etc. When the min-cost max-flow problem is solved, the resulting flow
presents the scheduling decisions: a unit flow passing through a job shows
to which resource it is scheduled. The complexity of such problem depends
on both the number of jobs and the number of resources. Also, Quincy uses
a complex algorithm for network construction at each scheduling iteration,
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which involves communication with every resource in the system. In case of
modern large-scale and heavily loaded systems the scheduling overhead may
significantly increase and become a bottleneck. Experiments show that it can
reach tens of seconds for the cluster of size of 10,000 machines. Quincy was
developed by Microsoft and is used in practice as a scheduler for Dryad [75]
framework.

The Firmament [121] scheduler uses very similar problem formulation
but addresses the issue of scheduling overhead. It uses several solvers with
distinct (adjusted for the problem) min-cost max-flow algorithms running in
parallel. The solution is taken from the scheduler that finishes first. Such ap-
proach allowed to significantly improve worst-case performance. The equiva-
lence classes are used to reduce the number of edges in the scheduling network
and thus decrease the problem complexity. Also, the Firmament uses incre-
mental updates to the network state. The evaluation was performed using
simulations and in a testbed cluster of 40 machines. The authors claim that
the scheduling latency is reduced by the factor of 20 compared to Quincy.
Firmament is an open-source software complemented with its own cluster
management system. There is an ongoing project for integration of the Fir-
mament scheduler into one of the most popular cluster management systems
Kubernetes [155].
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4 Optimization of data access

In the previous section we have already discussed various optimization goals
of job scheduling. Here we focus on a specific one—data access. Efficient
data access for data-intensive distributed computations has become an im-
portant optimization problem with the establishment of big data paradigm.
In modern systems such optimization goes beyond job scheduling alone.
From an eagle’s eye view it can be seen as a union of multiple aspects:
workload mapping to resources, CPU scheduling, data transfer and prestag-
ing, data stream routing, network scheduling, storage management and data
replication. In fact, each of these aspects represents a distinct sub-domain.
Each of the named aspects is a complex optimization problem on its own,
e.g. CPU scheduling and optimal data placement are NP-complete prob-
lems [156]. Therefore, each practical solution considers one or a combination
of those aspects. The end-to-end optimization can be seen as a composi-
tion of multiple applied solutions each responsible for its part of a global
problem. Large-scale computing systems (e.g. scientific grids) deploy a cus-
tomized stack of components to enable distributed computing. The division
of duties between components can vary and overlap in particular implemen-
tations. In a very general case, aside from (a) job scheduling / workflow
management data access is optimized by components that provide (b) data
placement / prestaging, (c) data replication and (d) network load balancing.
Below we would like to summarize their general optimization efforts with
respect to data-intensive distributed computing.

4.1 Data aware job scheduling

Workload Management (and job scheduling) System among other
functionalities performs mapping of jobs to resources. We already presented
various examples of jobs schedulers and WMS in Section [3.2l WMS may also
create dedicated data transfer jobs which are either treated as “normal” jobs
(scheduled along with computational jobs) or submitted to a dedicated data
placement service. In both cases, a data transfer job specifies the data to be
transferred and the destination. It may also specify current data hosts, the
deadline or the precedence relation with the corresponding computational
job.
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Data awareness gets addressed increasingly often in more recent works
(21% of most cited papers over decade [102]). The general methods for
scheduling parallel jobs with communication delays are extensively described
in [I57] and [158]. Data access overheads can be added to estimated job exe-
cution time to provide better placement decisions by the scheduling methods
described in Section and their derivatives such as XSufferage [141] and
Storage Affinity [I59]. Many scheduling algorithms applied in practice ex-
ploit spatial data locality, when jobs are scheduled to the nodes holding the
data or as close as possible in a network sense. This can be implemented ei-
ther as a hard or a soft constraint. For example, there are algorithms which
utilize cost function for multi-criteria optimization and assign a higher cost
to job placement decisions which imply remote data access [121], [154]. To
exploit temporal data locality, the jobs sharing the data are placed to the
same resource, so that the number of data transfers can be minimized. Job
scheduling approaches applied in practice delegate data transfer scheduling
and data placement optimization to external components. The job allocation
decisions taken by the scheduler limit the options for future transfer routing
and scheduling. Since the job scheduling is disjoint from transfer scheduling
on the network topology, concurrent data transfers for newly allocated jobs
may lead to network congestion in the case when bottlenecks exist.

4.1.1 Examples

The Adaptive Regression Method (AdRM) [160)] is focused on predicting the
performance of data transfer operations in network-bound distributed data-
intensive applications in a multiuser grid environment. As stated by the
authors, those predictions can be used for comparison of candidate sched-
ules of computational jobs, however, an exact scheduling algorithm is not
presented in that work.

DENS (data center energy-efficient network-aware scheduling) [161] is
particularly relevant in data centers running data-intensive jobs with low
computational load, but produce heavy data streams directed to the end-
users (such as video streaming and geographic information systems). The
design and specification are tight to the underlying data center architecture:
in presented work it assumes three-tier fat tree architectures (most common

for data centers), but is extensible to other cases. The observed load of con-
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sidered systems is close to 30 % on the average. The main idea of optimization
is to aggregate the load on a subset of machines while not compromising net-
work performance. This allows to shutdown the rest of resources (machines
and network switches) in order to reduce energy consumption.

In [162] authors considered a problem of co-scheduling of job allocation
and data replication. The considered infrastructure resembles a computa-
tional cluster connected to grid. It consists of heterogeneous computing
nodes with local stores connected over LAN. The input data are placed at
external stores connected over WAN, where a bottleneck bandwidth to each
store is known. The scheduler based on genetic algorithm defines job order,
job assignment to nodes and data assignment to local stores in order to en-
able backfilling, data prestaging and temporal locality. An exact duration of
jobs is assumed to be known in advance. Also, neither storage nor network
sharing is considered.

An explicit model distributing jobs over a hierarchical grid with respect
to the network bandwidth was proposed in [I63]. The network structure of
the grid was modeled as a tree and all the files were assumed to be of the
same size and processing duration. With the constantly growing number of
participating sites the hierarchical structure of the grids (e.g. WLCG) is not
strongly held. Moreover, the limitations of a hierarchical topology for data

dissemination were demonstrated in works [124], [164], [165].

4.2 Data transfer and placement

Data Placement Service or Distributed Data Management Sys-
tem (e.g. Don Quijote 2 [166], Kangaroo [167], Kepler [168], Pegasus [169],
PhEDEx [170], Rucio [I71], Stork [2]) executes data transfer requests sub-
mitted by WMS, computing jobs or users. A general example of workflow
decomposed into computational and data placement jobs, given in [2], is pic-
tured in Figure 2] If transfer requests are submitted in advance it allows

to perform |data prestaging] prior to computations. Also, output data can

be staged out for transfer from processing nodes to its destination. Staging
data in and out allows to overlap data transfer with computation in order to
improve overall processing throughput.

Bharathi and Chervenak [10] have studied data staging strategies in data
grids and their impact on the execution of scientific workloads. They clas-
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Figure 2: Computational workflow decomposed into computational and data
placement jobs [2].

sified staging strategies performed by DPS into decoupled, loosely coupled
and tightly coupled based on interaction with job scheduling system. In the
decoupled data staging mode, data placement operations are carried with
minimal interaction with WMS. DPS is supplied with a list of data items
and a deadline by which they need to be staged into different computer re-
sources (sites). This is typically the case when users provision or reserve
compute and storage resources at sites.

In the loosely-coupled staging mode the workflow manager submits trans-
fer jobs to the DPS. To take the advantage of parallelism in the workflow
each computational job should be preceded by a transfer job that stages-in
the data required by that job. However, this comes at a cost, as each transfer
job may be processed by all or most of the workflow execution components,
leading to significant overheads in the execution of a data-intensive work-
flow. Further, data movement services may be subjected to high loads if the

workflow manager releases many transfer jobs concurrently.

In (prospective) tightly coupled staging mode the workflow manager is
integrated with data placement service. The authors envision such integra-
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tion as a single logical entity that releases both computational jobs and data
transfer jobs in a coordinated manner. The resulting scheduler could alter
the order of release of computational jobs based on data availability and con-
straints on storage resources and data management services. Such scheduler
would be able to identify independent paths of execution in the workflow
and release computational jobs in a manner that distributes data transfer
load across the entire system. The authors also emphasize the importance of
appropriate data staging in and out of storage-constrained resources, since
data-intensive workloads consuming and generating large amounts of data
may affect other jobs utilizing the same shared file system. Finding a valid
schedule that allows execution of a workflow with storage constraints is an
NP-complete problem. The authors have performed simulations of these
data staging strategies using traces of different scientific workflows (such as
LIGO, CyberShake and Montage). The results showed that the best choice
of staging mode depends on the workflow properties. In short, the strategy
which provides the smallest interference of data transfer with job execution
is preferred. The workflows which stage-in large amounts of data at initial
stages would benefit from decoupled transfers. The loosely-coupled scheme is
beneficial when fewer transfer jobs are created and there is a greater overlap
in data transfer and execution of computational jobs. The tightly-coupled
strategy was tested to optimize for a constrained storage. The resulting

optimization appeared efficient for certain types of workloads only.

DPS addresses transfer failures and provides multiple optimizations for
data transfer performance. It selects an appropriate transfer protocol and
tunes transfer parameters (e.g. number of streams, block size) based on
performance monitoring [172] 173]. Advance storage reservation, when sup-
ported, allows to avoid transfer failures due to insufficient space. DPS typi-
cally implements concurrency control by limiting the number of active trans-
fers between any pair of hosts or in the entire system. To our knowledge,
the underlying network topology and per link bandwidth scheduling are not
typically considered by DPS. Replica selection strategy is applied when the
requested data are present at multiple locations. It allows to balance network
and server load. In various implementations the replica selection is performed
either by WMS or DPS. Simple policies are the most commonly applied: ran-
dom, explicitly specified list of preferences [169], network hierarchy (closest
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parent/child of the destination node), best connectivity to the destination
(e.g. by latency, bandwidth, TP address driven) or least loaded host. More
advanced replica selection policies which utilize logs of previous performance,
transfer probing and multi-criteria optimization are surveyed in [164]. It is
important to note that the DPS has a limited number of options for the net-
work load optimization, since the transfer destinations and the deadlines (or
order) are determined by the allocation of computational jobs by WMS. It
is a natural choice to prioritize CPU scheduling over network and storage in
CPU bounded systems. However, such an approach may cause problems in
network-bounded cases, e.g. when data-intensive applications are executed
outside of a dedicated high-end network infrastructure.

Staging out the output data of data-intensive jobs is considered in [167]
and [I74]. In both approaches the output is handled by a dedicated service
asynchronously to computations. In [167] the data is buffered at interme-
diate nodes along the transfer path in order to mitigate network failures or

congestion.

4.3 Network usage optimization

Several network technologies have a high potential for optimization of data
access for distributed data-intensive applications [9]. Dynamic Circuit Provi-
sioning (DCP) allows to set up circuits on demand for high priority transfers
and provide bandwidth guarantees, bypassing a possibly busy default routing
path [I75]. Software Defined Networking (SDN) [L76, [I77] enables central-
ized control over the routing of data streams. It can be utilized for multipath
load balancing (e.g.[I78,[179]) and scheduling of concurrent network flows us-
ing a detailed network representation. For example, the problem of network
scheduling is addressed in studies [180, [I81], 182]. The research is ongoing
for closer integration of DCP and SDN technologies with WMS, DPS and
monitoring systems used in practice, such as AliEn [183], MonALISA [184],
PanDA [I85] and PhEDEx [I70]. In general, multipath load balancing and
scheduling are applied to active data streams or to transfer requests submit-
ted after the computational jobs had been scheduled. It would be practical,
if detection of bottlenecks at the transfer scheduling phase would allow to
reconsider (or influence) job allocation.

An emerging concept of Information Centric Networking [186, [187] en-

76



4  Optimization of data access

ables efficient sharing of bandwidth and storage by multiple users (or jobs).
To a certain extent, it can be seen as an integration of data replication into
networking. However, ICN does not meet the use cases with low data re-
usage between parallel computations.

In previous collaboration between BNL and NPI CAS, the problem of ef-
ficient data transfer in a grid environment was addressed [11]. Data transfers
between n computational sites and m data locations were considered but job
scheduling was not covered by that work.

4.4 Data replication

Big data computing strongly relies on data replication strategies for data
dissemination, optimization of access, fault tolerance and safety against loss.
Having more replicas of the same data across the systems gives more job
scheduling options to WMS exploiting data locality. The replication strate-
gies also exploit temporal and local correlations in data requests. Such ap-
proaches were efficiently applied to many workflows and systems and were
adjusted to their specifics. Data replication is used in various distributed con-
texts: data grids, clouds, distributed databases, content distribution systems,
mobile systems, storage technologies and etc. Here we imply the context of
large-scale distributed computing systems for scientific applications such as
grid, however, the general observations can be related to other contexts.

The idealistic solution would be to replicate all data to all possible loca-
tions (e.g. every site in grid), so that every instance could access data locally.
Obviously, such solution is not realistic since the storage space at sites and
network bandwidth between them are limited. Therefore, a data replication
strategy has to answer the following questions:

e When to create/delete replicas?

Which data should be replicated?

Which replicas should be deleted?

Replica placement: where to place the replica?

Replica selection: where to access the data when multiple replicas exist?
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4.4.1 Replica placement

Optimal replica placement is an NP-complete problem [I88]. A great vari-
ety of replication strategies exist. Each implementation targets a particular
combination of infrastructure and workflow (data access pattern). In general,
the replication strategies can be classified using the following criteria:

Static vs. Dynamic. In static replication all decisions are made be-
fore the system is operational and not changed. It is a viable choice for
a well-defined non-changing environment and data access pattern. Dy-
namic replication adapts to the observed access pattern, performance
of the system components and their load. Such flexibility is necessary
for modern large-scale systems.

System topology. Each replication strategy is designed with some
target system topology in mind (e.g. grid topologies summarized in
Section . Simulations of replication strategies in various grid archi-
tectures [165] have shown that architectures with less restrictive com-
munication and having multiple network routes between sites provide
more data access optimizations. In such architectures the response
time is decreased, regardless of the applied replication strategy. Many
authors regard arbitrary graphs as the most realistic and interesting
representation of data grids for replication problems.

Centralized vs. decentralized. Centralized replication strategies
rely on a central authority to control all aspects of data replication. A
centralized system has one master replica for each data instance which
is updated and the updates are propagated to other replicas. In a
decentralized approach, multiple entities (such as grid sites or users)
can make decisions about replication. Additional synchronization is
needed to maintain data consistency in case of updates. In many big
data applications, including scientific computing, read-only data access
is used in data processing. Therefore, most of the common replication

strategies do not consider consistency on updates.

Replica granularity. Corresponds to the unit of data that can be
copied independently. It may be individual files, fragments of files (ob-
jects, blocks) or sets of files (datasets)[I89]. Most of the replication
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strategies for scientific applications in grids consider file level of repli-
cation.

Storage integration. Tightly-coupled replication mechanisms are tied
to storage architecture on which they are implemented including file
system and I/O mechanism. Since replication is implemented at a low
level, it is often invisible to high-level applications and users. Loosely-
coupled replication is superimposed over the existing file systems and
storage systems. Such mechanisms interact with the storage systems
through standard file transfer protocols and at a high level. Replication
can be initiated and managed by applications and users. Intermediate
systems exert control over the replication mechanism but not over stor-

age resources [124].

Push vs. pull. A replication event can be triggered differently. A
file can be replicated to a node upon request from that node (PULL).
Client-side caching is also regarded as pull replication. In push-based
approach a replication is triggered externally from the destination node,
e.g. by central service or initial replica host. Push-based replication is
utilized in proactive approaches which try to optimize for future data
requests. Pull-based replication can be regarded as a reactive approach

which adapts to current access pattern [165].

Periodicity. The replication can be adjusted continuously, where ac-
tions are taken in response to every file request or other events. Alter-
natively, replication can be performed periodically, e.g. triggered after

every fixed time interval [190].

Degree of replication. The number of replicas can be fixed for every
item, or dynamically adjusted based on its importance and popularity.

Considered parameters. The parameters considered by replication
strategies can be divided into two types: data associated and system
associated. Data associated parameters most commonly measure “pop-
ularity” of a given file, e.g. number of requests per file or time elapsed
since the last request. Such parameters also may include file size, type,
grouping of files (clustering) and etc. A similarity of parameters used
by replication strategies and caching policies demonstrates the close
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relation of those fields. System associated parameters may include
available storage at sites, server load, network bandwidth and cluster-
ing. There are replication strategies which utilize information about
previous requests and system performance (e.g. logs and monitoring
data) to predict future behavior [190].

Objective. Since data replication is often approached as an optimiza-
tion problem various objective functions are used. Similar functions
can be utilized as metrics to compare distinct strategies. The objec-
tives typically reduce: job execution time, response time on file request,
bandwidth consumption, access latency, local miss ratio, utilized stor-
age. Custom metrics are used to evaluate data locality, quality of
replica distribution, optimality of replication degree. In addition, when
usage of resources is charged (e.g. commercial clouds) the involved cost
(for storage and network usage) can also be considered by replication

strategy.

4.4.2 Replica selection

Replica selection is one of the crucial aspects of data management in big data
applications. When a requested file is replicated to multiple hosts the replica
selection policy determines which one should be selected. In hierarchical
replication strategies, such choice is driven by the topology: the closest parent
(or child) node is selected. More general algorithms typically rely on one of

the following parameters, or their combination [164]:
e Best bandwidth between the host and destination.
e Round trip time (RTT).
e Network distance, e.g. number of hops.

e Response time. History of previous transfers between hosts can be used

to estimate response time for future transfers.
e Load of the host, e.g. number of active requests.
e Access cost.
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In addition, custom metrics can rank hosts by security and fault tolerance.
Before transferring large volumes of data an algorithm may probe the hosts
by fetching a small chunk of data. Advanced techniques are applied in order
to optimize for multiple parameters, including clustering analysis, ant colony
optimization, auction protocols and neural networks [164].

To our observation, common replica selection algorithms apply a greedy
approach, i.e., the best replica host is selected for each request but their
interference is not considered. While the current network and server load is
used in decision making, the influence of newly placed request falls out of
the picture. Therefore, the concurrency control, if supported, is delegated to
a data placement service or transfer tools. Alternatively, Zerola et. al. [T1]
proposed a transfer approach which optimizes for parallel transfers between
n sources and m destinations. The approach allows to route and schedule
the transfers over the network in order to avoid congestion and minimize
response time. The requests for the same file from distinct users are grouped
together and served in such a way that the combined number of hops over
the network is minimized. The file is transferred just once over the shared
links on the paths to multiple destinations (transfer overlap). It allows to
reduce bandwidth consumption at the shared network links.

A general picture of the interaction between data replication, data trans-
fer and job scheduling in data grids is described in [124]. The impact of
the system topology on efficiency of common replication strategies is stud-
ied in [165]. The roles and objective functions of replication strategies in
data grids are surveyed in [I89]. The survey [164] provides an insight into
replica selection strategies. The replication strategies which utilize data min-
ing techniques, i.e., analyze data on previous usage and performance in order
to optimize for future, are compared in [190]. Optimization of data-intensive
applications in grid was studied in [I91]. In that work, an optimization was
achieved by replication of highly used files to more sites while the jobs were
executed where their input data is located. Similarly, the Storage Affin-
ity [159] approach exploits data re-utilization to improve the performance of
an application in grid. Both approaches are classical examples of techniques
improving data locality, and have found a wide application in practice.

To summarize, modern big data computing strongly relies on data repli-
cation strategies for data dissemination and optimization of access. Those
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replication strategies exploit temporal and local correlations in data requests.
Such approaches were efficiently applied to most workflows and systems and
were adjusted to their specifics. However, there are workflows, such as data
production (discussed in Section [5) where each file is accessed just once. In
such cases the common replication strategies cannot be efficiently applied.
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5 Computing in High Energy and Nuclear
Physics

Data processing in modern High Energy and Nuclear Physics is a
prominent example of big data applications. This scientific field was among
the pioneers who encountered challenges of big data even before the concept
became established and spread to other scientific fields and industries. In
2017 the amount of permanently archived data of all the experiments at
Large Hadron Collider (LHC]) at[CERN] has reached 200 petabytes [192]. The
same year the scientific data and computing center at Brookhaven National
Laboratory hosting the experiment reached 100 petabytes of
recorded data [193].

In HENP experiments a beam of particles (e.g. electrons, protons, anti-

protons or heavy ions) is accelerated close to the speed of light. The beam
collides into another one accelerated in the opposite direction or into a fixed
target. The collision takes place inside a detector which measures the out-
come of particle interactions. The further sophisticated analysis of the col-
lected data allows to discover new particles, such as a Higgs boson, and study
fundamental properties of matter and physical interactions.

5.1 Computing activities

Modern particle accelerators operate at enormously high energy and luminos-
ity in order to provide sufficient event rates in the detectors. Such event rates
are necessary to accumulate enough statistics for scientific analysis within a
reasonable time period. For instance, the STAR experiment at detects
events at a rate equivalent to 70 GB/s. The full detector rate of[ATLAS|and
experiments at LHC approaches 1 PB/s [7]. The raw data from the de-
tector are filtered by a trigger system and reconstructed into physical events
which are further analyzed by scientists. In addition to that, computer sim-
ulations of the experiment are performed in order to compare theoretical
predictions against the real data. In general, four major types of computing

activities can be distinguished in HENP:

Data acquisition. Since the goal of a HENP experiment is to discover
new physical phenomena, not every registered event is of scientific inter-
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est. In fact, most of the events correspond to well studied phenomena
and are not recorded. A trigger system of a detector filters events based
on fast analysis of the signal. It may consist of multiple levels: the
higher the level — the more detailed analysis and the smaller the data
flow. Typically the level 1 trigger runs on highly specialized hardware
installed at the detector. It operates at frequency tied to beam crossing
rate (~ 10 MHz) and each filtering decision is performed within tens of
nanoseconds. Triggers of higher level may operate on general comput-
ing hardware asynchronously to data readings. The data rate after the
trigger system depends on the specifics of an experiment. For example,
it is up to 400 MB/s for STAR at RHIC, 200 MB/s for around
1 GB/s for ATLAS and CMS and 4-5 GB/s for[ALICE|at LHC [7]. The
data that survived all the trigger levels are recorded to a permanent
storage in form of files. Each file contains event records taken under
the same experiment setup. A complete set of files recorded under the

same experiment conditions is called a dataset.

[Data production. Raw data from the detector describe its state at

each recorded event. It consists of readings of currents and voltages
at many elements of the detector (around 150 million of electronic
channels). Before the data can be analyzed by scientists, it is necessary
to calibrate the measurements and reconstruct tracks and properties of
the particles. This process is called data production. It is also often
referred as reconstruction or, in a more general big data terminology,
preprocessing. The data production is performed by campaigns where a
recently taken dataset is processed. Each file is processed exactly once
within one campaign. Such campaign typically lasts for several months
and processes hundreds of terabytes of data. Sometimes, a campaign is
repeated (after a significant time) when it allows to improve the quality
of the reconstructed data. The reconstructed data can be effectively
utilized only after an entire campaign is finished. For this reason, it is
highly desirable to execute data production with the shortest possible
makespan on given resources. The data production is typically centrally
submitted and managed by computing administrators.

Simulation. Monte Carlo simulations [4] are used to recreate the

84



5 Computing in High Energy and Nuclear Physics

physical events and the response of the detector. The simulations are
based on theoretical models and the results are compared to experi-
mental data at later analysis stages. The simulations are CPU-bound
applications which do not require significant amount of input data but
produce large amounts of output. Overall, the simulations often con-
sume a major fraction of CPU resources of a HENP experiment. This

type of computations is also centrally managed.

User analysis. The users (scientists and scientific groups) perform
analysis of reconstructed data from the detector and simulations for
new scientific discoveries. Data access patterns of such computations
are less predictable: the users are interested in various (overlapping)
subsets of data and perform analysis independently. Each particular
file can be processed many times by distinct users. Users may download
the required data to a particular facility available to them and perform
the analysis locally. More commonly, they may submit their compu-
tational jobs to the central scheduling system, specify the dataset to
be processed and the destination for the output. The central schedul-
ing system allocates the jobs according to its policy, user preferences
and spatial/temporal data locality. In general, the same optimization
techniques are applied as for scheduling of other common big data ap-
plications.

Data level parallelism is typical for HENP workload. This means that the
computations are divided into independent jobs, each job processes/produces
its portion of data (a file or a set of files). Except for the user analysis, those
portions of data do not typically overlap. All types of computations are I/O
and CPU intensive, while the simulations are CPU bound.

Petabytes of data being collected and processed by HENP experiments
annually require vast amounts of computing, storage and network resources.
Therefore, these large-scale experiments rely on distributed computing and
utilize computing facilities at many geographical locations. Aggregation of
such facilities to address a common computing problem is called a grid. There
exist multiple grid projects, often tied to specific scientific collaborations.
Worldwide LHC Computing Grid [3, 4] is a global collaboration
responsible for building and maintaining a data-oriented infrastructure re-
quired by the experiments at the LHC. The WLCG cooperates with several

85



5.2 Tiers

grid projects such as the European Grid Infrastructure (EGI) [96] and Open
Science Grid (OSG) [95].

5.2 Tiers

One important property of HENP computations is that the data originated
from a single source (the detector) is being propagated (replicated) to many
remote computing facilities. This property guides the design and operation
of the corresponding computing models. At glance, the initial idea was to
follow a hierarchical (tree) structure: the detector facility is a root of a tree,
regional centers are the next level and so on. Each site was assumed to access
(and sometimes store) a subset of the data from its parent. However, such
model was proven to be overly restrictive. As a result, the current concept of
Tiers in WLCG provides more flexibility for site roles and communication.
It defines four types (Tiers) of sites (see Figure [§):

[Tier-0} A logically unique Tier-0 function is performed by two phys-
ical sites: one is the CERN Data Center in Geneva (Switzerland) and
the other is located at the Wigner Research Center for Physics in Bu-
dapest (Hungary). These sites are connected with two 100 GB/s data
links with a latency of 30-35ms for fast synchronization. Tier-0 is
responsible for data acquisition, reconstruction, archiving to a tape
storage, and for the distribution to Tier-1 sites. All the data generated
by the experiment (raw, reconstructed, analyzed and simulated) is per-
manently stored at the tape archive of Tier-0 and in two more copies
at distinct Tier-1s.

Tier-1 There are 13 LHC Tier-1 sites, which can be seen as re-
gional centers. They are exploited for large-scale, centrally-organized
activities and can exchange data between them and any of the Tier-2
sites. They are responsible for storing raw and reconstructed data, data
production, simulation and safe-keeping of important analysis output.
Also, they may provide capacity for user analysis jobs. Having a high-
speed network connection to Tier-0 is essential for such site. Also, a
Tier-1 must have a tape archive for a permanent storage of experimen-
tal data.
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Tier-2 sites
(about 160)

Tier-1 sites

10 Gbfs links

Figure 3: Tier structure of WLCG [3].

[Tier-2| There are about 160 Tier-2 sites in WLCG placed around the
world. Typically, those sites are large computing facilities of scientific
institutes and universities. Despite a smaller size, the aggregated CPU
and storage capacity of Tier-2s exceed those of other tiers. The pri-
mary purpose of those sites is running user analysis jobs. Tier-2s do
not have tape archiving and do not provide long-term custodial stor-
age. However, data production and simulation can also be performed

there upon available capacity. Setting-up and running a Tier-2 site for
WLCG in Prague is described in [15].

[Tier-3| It is the most flexible Tier level as there is no formal agreement
between WLCG and Tier-3s on their respective roles. It can be, for
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example, a computer server of a scientific group, faculty or department.
Such flexibility allows facilities to temporally pledge available capacities

or to perform specific tasks.

In addition to the established primary infrastructure, HENP experiments
tend to utilize external volatile/elastic resources [194]. Examples of such
resources are: scientific and commercial clouds, volunteering computing, un-
used capacities of other experiments/collaborations.

Each HENP experiment maintains a separate software/middleware stack
to enable the computations. However, the research community tends to
join the effort, when possible, to develop versatile and solid solutions. For
example, such software as root [195], GEANT [196], PanDA [I85], DPM [197]
are used across many experiments. Also, general concepts and approaches are
often shared, e.g. virtualization, pilot jobs, data trains. When it meets the
criteria, the experiments utilize common grid middleware (e.g. Condor [80],
GridFTP [198]) and contribute to the development.
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6 Study of distributed job and data transfer

scheduling using constraint programming

In previous collaborative work between BNL and NPI CAS, a new data trans-
fer tool was developed [11]. The tool allows to optimize data transfer across
a distributed system with the help of centralized planning based on Con-
straint Programming . As the research has shown, the global planning
of data transfers across a data grid can outperform widely used heuristics
such as Peer-to-Peer [199] and Fastest link [190]. Typically, data transfer
and distribution is not a stand-alone problem and should be viewed in a
broader context of data processing. However, the approach was focused on
planning of data transfers over network, but did not consider CPU and stor-
age allocation to processing jobs. Since any of the resources (CPU, storage
and network) may become a bottleneck and decrease resulting processing
throughput it is desirable to include all of them into the scheduling problem.
For this reason, in this study we reformulate the constraint programming
model from that research to provide joint scheduling for CPU allocation,
data transfer and file placement at storage. The optimization is achieved by
ensuring that none of the resources is overloaded at any moment of time and
either (a) input data transfer for each job is performed in advance before its
start or (b) the jobs are scheduled where the data are already present.

Problems of scheduling, planning and optimization are being commonly
solved with the help of Constraint Programming [200]. It is a form
of declarative programming which is widely used in scheduling, logistics,
network planning, vehicle routing, production optimization, etc. Here we
introduce our constraint satisfaction problem formulation for distributed data
processing and test it in simulations.

A Constraint Satisfaction Problem consists of domain variables,
domains (a set of possible values of a variable) and constraints in form of
mathematical expressions over variables. A solution to CSP is a complete
assignment of values to variables which satisfies all the constraints. An op-
timal solution is the one with the minimal/maximal value of an objective

function of variables.

Our main goal here is to study if the scheduling of multiple resources can
be efficiently addressed as a Constraint Satisfaction Problem (CSP) in case
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of distributed computing; and if such scheduling can provide an advantage
compared to traditional techniques of the field (independent management of
the resources). To answer those questions, in this chapter we present our
constraint based scheduling approach and simulations of distributed data
production. In the simulations we consider a simplified use case derived from
remote data production of the STAR experiment and compare performance

of our approach to other common scheduling policies.

6.1 Model and solution overview
The following input parameters are necessary to define our CSP:

" TLOCAL
~'HPSS 5

R
; ’ / \\

=Y . N
CPUS.. ~REMOTE 2.
losc
. CPUs
_~REMOTEN- /"
CPUs

—— |nput data flow
== Qutput data flow
---------- Links between remote sites

Figure 4: Resources considered in CSP based approach.

Computational grid (see Figure {4) is represented by a directed
where nodes are computational sites ¢; with a given number of
CPUs NCPU; and storage space Disk;; edges are network links [ with
weight o;, called slowdown, which is the time required to transfer a
unit of data (o, = bll, where b; is the bandwidth of the link). A set
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of incoming links of a site is denoted L!°, a set of its outgoing links is

L™ A dedicated storage-only facility can also be modeled as a site

with NCPU; = 0.

Set of jobs. Each job j has a duration p;, it processes one input file f]’f” and
produces one output file fj‘-’“t. The input file is initially placed at each
of source sites Sources; and output file must be transferred to one of
destination sites Dest;. Size of a file f is denoted sizey.

Our goal is to create a schedule of jobs at computational sites, transfers over
links and placement of files at storages for a given computational grid and a
set of jobs. In order to solve this problem the variables of our model define

the resource selection and timing of each task:

Resource selection variables define a site where the job j will be exe-
cuted and a transfer path for each file f (either input or output of a
job). A set of boolean variables Yj; defines if a job j is executed at
a site ¢; (either 1 if true or 0 if false). Similarly, the transfer path is
described by a set of boolean variables Xy where 1 means that a file f
will be transferred over a link [ and 0 means the opposite.

Time variables are: S/ is a start time of a job j, S}, is a start time of a
transfer of a file f over a link [, Sﬁ- is a start time of placement of a

file f at a site ¢; and pi- is its duration.

6.1.1 Model assumptions

Two important assumptions which are reused in the current model were
proven in a work on planning of data transfer in grid [11].

The first assumption states that the entire set of jobs (queue) can be incre-
mentally scheduled by subsets (chunks) without significant loss of optimality.
Such an approach helps to reduce the search space and thus improve solv-
ing performance. Moreover, planning for shorter periods and more frequent
generation of plans (or re-planning) provides a better level of adaptability to
the changing environment.

The second assumption states that a network link can be modeled as an

lunary resource| without loss of generality. In other words, in our model we

consider that only one file can be transferred over a link at a time. The
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measurements in [I1] have shown, that a sequential transfer of a set of files
(using multiple threads for each transfer) does not require more time than a

parallel transfer of the same set of files over the same link.

6.1.2 Solution overview

Computational time is an important factor for online scheduling. In case
of scheduling of a large number of jobs by portions, fast performance of a
scheduler is required to produce an entire schedule within reasonable time.
Also, if a schedule has to be reconsidered due to system reconfiguration or
execution failure a new schedule should be generated fast. An incomplete
search with an explicitly set timeout is used in our approach in order to
reduce solving time. It allows to find a suboptimal solution of required
quality within a given time limit. Also, in order to reduce an overall problem
complexity, the problem is divided into two subproblems and the search is

performed in two stages:

1. Planning stage: instantiate the resource selection variables in order to
assign resources (computational sites and links) for each task (compu-
tational jobs and file transfers). This stage includes:

e Constraints on file transfer paths and job allocation.
e Estimation of the makespan T, for a given resource assignment.
e Search for an assignment of Xy, and Y}; which minimizes estimated

makespan.

2. Scheduling stage: instantiate time variables in order to define a start
time for each task. This stage includes:
o [ixed values of Xy; and Yj;.
e Constraints on the order and duration of tasks.
e Cumulative constraints on resources.

e Search for an assignment of Sj‘.] , S}}, St and p?i with a minimal
makespan.
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6.1.3 Constraints at the planning stage

At the planning stage the problem is to assign tasks (computational jobs
and file transfers) to resources (computational sites and links) in such a
way that the set of tasks could be completed within the minimal time. In
other words, at this stage we instantiate resource selection variables X and
Y;; minimizing estimated makespan T.. It considers estimated completion
time among all resources which is the time required to process the tasks
assigned to them. The optimization function at this stage is not expected to
provide correct makespan estimation, but rather to balance the load among
the resources. It is defined as a sum of the maximal estimated completion
time among the sites TCPY and among the links 7}™*:

_ CPU link
Tes = max (T;777) + max (T;™) (1)

To find the estimated completion time for each site TCTY we divide the
total duration of assigned jobs by the number of CPUs and compare it to

the duration of the longest assigned job. The largest value is selected as an

> Yii-p;

j€Jobs
—vorr, e n) @

The estimated completion time of link [ is defined as follows:

Tk = Z Xy - sizey - o (3)

feFiles

estimation:

TEPY = max (

Figure [5| illustrates a transfer path assigned to a single job j at the plan-
ning stage. The sites which are input sources for this job are colored red, the
output destinations are colored blue, the site selected for the job execution is
colored green, the white sites are either intermediate or not used. Red arrows
are the links selected for input transfer, blue arrows are the links selected
for output transfer, unused links are gray dotted lines. Numbers inside the
sites indicate their id. The small red and blue numbers near links are the
values of Xy, for the input and the output file, respectively. The small green
numbers near sites are the values of Y};. The gray circles and letters refer to
the constraints described in the following text.

For each job we have to assign a transfer path for an input and an output
file which can be defined by the following constraints:
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© nput source

o Output dest.

@ Intermediate site
© Processing site

== |[Nput transfer

= Qutput transfer

Figure 5: Example of a transfer path for one job.

e An input file has to be transferred from one of its sources over exactly
one link (see A in Figure [5)). The file should not be transferred to a
site which already contains it.

Vi f = £
d Xp=1, A= |J I
leA; c;€Sources; (4)
d Xp=0, A= |J L~
leAs c;€Sources;

here A; and A are the sets of links leading from/to all the source nodes

of file f.

e An output file has to be transferred to one of its destinations over
exactly one link (see B in Figure |5)). The file should not be transferred
out of its destination.

Vi =
ZXﬂZL Az = U Ly
leA3 CiGDeStj (5)
Z Xfl =0, A= U L{mm§
lcAy CiGDeStj

here A3 and Ay are the sets of links leading from/to all the destination
nodes of file f.

e If an intermediate site ¢; (neither source, destination nor selected for
the job execution) has an incoming transfer of a file f it also has an
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outgoing transfer of the same file (see C in Figure [5)):

Y Xp= > Xp (6)

IGLEO leL{rom

e There must exist exactly one incoming transfer of an input file f;” and
exactly one outgoing transfer of an output file f]"“t at the site which
was selected for the job execution (Yj; = 1) (see D in Figure [3)).

leLte e (7)
D Xppu =05 ) Xy = L
lELzo ZEL{TOM

e A file f can be transferred from/to each site ¢; at most once.

Vf,ii ZXflgl; Z Xflél. (8)

lELiO leL{'r'om

e Each job j is executed at exactly one site ¢; (site 8 in Figure [5)):

Vii ) V=1 9)

i€Sites

In addition, we use constraints for loop elimination, similarly, as it is de-
scribed in [201]. The main principle of such constraints is that for each
subset of r nodes C, the number of transfers on internal links should be less
than r. Excessive constraints can slow down the search procedure. In our
case using such rule for r = 2 only has shown the best performance. Larger
cycles can be eliminated after the schedule is created.

6.1.4 Constraints at the scheduling stage

At the scheduling stage the problem is to assign a start time for each task
and a duration for file placement (Sj‘] , S}Tl, SJIJ; and p}};) Here we assume
the values of Xy and Y); are fixed after the previous stage. At this stage we
apply constraints on the duration and order of tasks as well as cumulative
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constraints on the resources. The optimization criterion is the makespan,
which is the latest completion time of all tasks. Since we already know
that the latest task would be a transfer of an output file, we can define the
makespan as follows:

C = max ST + sizer -0 10
max l,j,f:f;ut|Xfl:1< fl f l) ( )

Figure [f] illustrates a schedule corresponding to the transfer path pre-

Resource id

Transfers input link 2->5
link 5->8 :
output  jink  8->7
link  7->3
Jobs CPU 8
Files input disk 5
disk 8
output  disk 8
disk 7

%
»

time

Figure 6: Example of a schedule for one job including related data transfers

and placements.

sented in Figure f] Each rectangle represents an active task at a resource.
Red and blue colors indicate the input and the output files, respectively.
Green color indicates job execution. Small black arrows and capital letters
demonstrate examples related to the constraints described further. Please,
note, that only a single example per constraint is referred, in order to keep the
illustration tractable. In fact, the constraints consider many combinations
of tasks, therefore, more examples can be spotted at the figure. Also, the
input file placement at the source site 2 and the output file placement at the
destination site 3 are not considered as a part of the problem, because those
are permanent copies which are managed independently from our approach.

The following constraints on the order and duration of tasks are
used at the scheduling stage:

e An outgoing transfer of a file from a site can start only after an incoming
transfer to that site is finished (example A in Figure @ The first
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transfer of an input file from its source and the first transfer of an

output file from the processing site are exceptions from this constraint.

vf7,l’7 lfrom e szrom7 lta E L§O|Xflfr0m = 1’ Xflto = 1 :

S]jc;from Z Sﬁta + Sizef ’ Olto

(11)
A job can start only after the input file is transferred to the selected
processing site (example B in Figure @:

Vi l, f = f]m : S]‘»] > S}; + sizeg - 0. (12)

An output file can be transferred only after the job is finished (example
C in Figure [6)):

Vil f = [ S) 4 <55 (13)

In order to guarantee enough storage space to complete each transfer,
we assume that a file appears at a site at the moment when its incoming
transfer starts (example D in Figure @:

Vfile L, Xp=1: S} =5 (14)

A file can be deleted from the start node of a link after the transfer is

finished (example E in Figure @:

Vfile L™ Xpy=1: SF+pf; = S}, + sizeg - o, (15)

In order to guarantee enough storage space for each new output file,
we assume that an output file appears at a site at the moment when
its job starts (example F in Figure [f]):

Vi f =Y =1: Sfi = 5;’. (16)

An input file can be deleted from the processing site after the job is
finished (example G in Figure [6):

Vi f=[f"Yy=1: S{+pf=25+p (17)
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6.1 Model and solution overview

Cumulative constraints are widely used in CP to model resource usage
by tasks. Each cumulative constraint requires that a set of tasks given by
start times, durations and resource usage do not exceed a resource limit
at any moment of time [200]. In our case we use three sets of cumulative
constraints: for CPUs, storages and links. These constraints are summarized
in Table 2

Table 2: Summary of cumulative constrains on resources used in CP model.

Task Resource Start Duration Usage Limit
Job j CPUs at ¢; Sj‘»] Dj 1 NCPU;
Transfer of file f Link [ S;Fl sizeg-o; 1 1
Placement of file f Storage at ¢; S7;  pf; sizey  Disk;

In order to define the cumulative constraints formally, let us consider arbi-
trary moment of time ¢ € [0, AT], where AT is the duration of a scheduling
time interval. We define the three sets of cumulative constraints for our

problem in the following way:

e CPU usage at each site ¢;:

J1Y5i=1,87 <t<S]+p;
We sum over all the jobs (each uses one CPU) assigned to ¢; (Y;; = 1)

which are starting before ¢ and finishing after.

e Usage of each network link [ (one transfer at a time can be active):

v L 2 1< (19)
fIX pi=1,8F,<t<S7 +sizes-o

We sum over all the file transfers assigned to the link [ (X = 1) which
are starting before ¢ and finishing after.

e Storage usage at each site ¢;:

Vt,i: Z sizey < Disk; (20)

F F F
f|Sfi<t§Sfi+pfi
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Here we sum over all the files which are placed at the storage at ¢;
before ¢t and removed after. If the file is never transferred to the site,
both its start time and duration equal zero (S%; = 0 and p?i =0) and
it is not included in the sum. We do not consider initial sources and
final destinations of the files, since their storage is managed separately

from our scheduling.

6.2 Simulation, results

The proposed constraint satisfaction problem was implemented using MiniZ-
inc [202] and Gecode [203] was used as a solver. The simulations were running
under Windows 8 64-bit on a computer with Intel i5 (4 cores) 2.50 GHz pro-
cessor and 6 GB memory. The Gecode solver was running in a parallel mode
using 4 threads.

Four scheduling approaches were compared in the simulations:

Local: All the jobs are executed at the local site only. This strategy was

used as a base line for comparison against other strategies.

Equal CPU load: Jobs are distributed between sites with the goal to main-
tain an equal ratio of job duration per CPU. Each job requests an input
file transfer after it is started and waits for the output transfer to be
finished. In many distributed computing models the input data are
divided between computing sites based on static rules (fixed amount
per site, per CPU or certain percentage of dataset). Since the job du-
ration is typically proportional to the input size (within the same type
of jobs), such approach will result in a similar load distribution.

Data transferred by job: Each CPU pulls a job from the queue when it
is idle. Then it has to wait for an input transfer before the job starts
and for an output transfer after the job is finished.

Optimized: This strategy is based on the model proposed in this chapter.

After the testing simulations, the first implementation of the scheduler
was found to be excessively complex. A problem of realistic size featuring
multiple sites and thousands of jobs required many hours to compute an
acceptable schedule. Data production jobs typically last for approximately
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two days. Therefore, the scheduling can be performed rarely allowing for
the long solving time. However, in order to make the approach scalable to
modern large-scale systems (featuring many tens of sites and hundreds of
thousands jobs), a further simplification and optimization of the scheduler
is clearly needed. For this reason, here we present the simplified simulations
for the first implementation of the scheduler and discuss its limitations and

further evolution in the next section.

We have limited our initial simulations to a configuration with three sites
only and omitted constraints on storage. This allowed to set the time limit
to 3 minutes for both planning and scheduling stages. The main purpose
of these simulations was to check the potential of joint scheduling of jobs
and transfers for optimization of data production. It also allowed to gain

experience and ideas for further reconsideration of the scheduling approach.

The simulated environment consists of 3 sites: a central storage (with no
CPUs) which is the single source for input files and the single destination
for output files, a local processing site and a remote processing site. The
slowdown of links between the central storage and the local site was set to 0,
which means that the transfer overhead to/from the local site is negligible
comparing to the remote site.

The slowdown of the links to/from the remote site was increasing in each
simulation proportionally to a slowdown factor. The parameters of jobs were
taken from log system of the STAR experiment. The considered jobs cor-
respond to data production performed at computational site KISTI (South
Korea) [204]. The average job duration was 2,760 minutes (46 hours) and
average time of transfer was 5 and 10 minutes to/from the remote site re-
spectively. We use the original values of the transfer times in the simulations
where the slowdown factor equals one. Then, in further simulations, the
transfer times increase proportionally to the slowdown factor. This allows to
study the influence of network performance on job scheduling. In the simu-
lated infrastructure 80 % of CPUs were available at the local site and 20 %
at the remote site. 2,000 of jobs were scheduled stepwise by subsets (chunks)
of 200.

The plot in Figure|7|shows the makespan improvement by different schedul-
ing approaches compared to the job execution at the local site only. It is
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Figure 7: Makespan improvement of CSP based approach in simulations with
real data.

calculated using the following formula:

Clocal —C®
makespan improvement, = W -100 % (21)

max

The curves shows the dependence of the improvement on the transfer over-
head to the remote site which increases proportionally to the slowdown fac-
tor. When the transfer overhead becomes significant both heuristics (“Equal
CPU load” and “Data transferred by job”) fail to provide an efficient usage
of the remote resources (the makespan improvement goes below zero). Neg-
ative makespan improvement means that, in this case, it would be faster to
process all the data locally than to send its part to a remote site relying on
the heuristic. The proposed global planning approach (Optimized) system-
atically provides a smaller makespan and adapts to the increase of transfer
overheads better than the other simulated heuristics. It is able to provide a
positive gain in makespan by using remote resources even when the transfer

overhead is comparable to a job duration.

6.3 Limitations of the model

A problem of scheduling of distributed data production was formulated in a
form of a constraint satisfaction problem where CPU allocation, storage usage
and data transfer were mutually considered. This model provides a formal
description of the general problem we address in this thesis. The simulations
of simple cases of distributed data production, where our first approach was
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compared against other general policies, have shown that scheduling of CPU
allocation coupled with data transfer has a potential to improve an overall
processing throughput. The advantage of such approach is more significant
in cases when network performance becomes the bottleneck.

The simulations based on data extracted from log systems of the STAR
experiment have shown that the proposed global planning approach system-
atically provides a smaller makespan and adapts to the increase of transfer

overheads better than the other simulated policies.

Despite the demonstrated potential of the described approach, the study
has revealed significant limitations. The first important drawback is the
computational complexity of the underlying CSP. The model has shown a
reasonable solving time in the presented use case, however, its scalability to
real large-scale systems appeared troublesome.

The excessive complexity of this CSP formulation is due to inclusion
of all possible permutations of job order and assignment to resources into
the search space. While such permutations are important for general work-
loads, they are irrelevant for data production and similar processing types.
Therefore, a scheduling approach for distributed data production can greatly
benefit from further simplification. Also, the CP formulation of cumulative
constraints introduces additional complexity. Effectively, it produces a sep-
arate expression for each pair of site and possible time value. It would be
preferable to describe resource usage with a smaller number of expressions.

The second drawback of the model is uncertainty of some of its inputs.
In real applications only the input size of a job is known in advance. The job
duration and size of its output can only be estimated. Possible error of such
estimation would often lead to the violation of the schedule and repetitive
rescheduling.

The third drawback is also related to the precision of the schedule ex-
ecution. In a dynamic large-scale environment where performance of all
resources can fluctuate it would be difficult to fulfill the schedule where the
start/end time of each operation are precisely set. Either a scheduler perfor-
mance should allow to redo the scheduling periodically and efficiently or the
schedule and its execution should account for certain deviations.

Last, but not least, the makespan estimation at the planning stage (Equa-
tions and [3) does not consider overlap of tasks (e.g. jobs with input
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transfers and output transfers) and their time interdependence. Such con-
sideration is needed in order to achieve a predictable load balance. However,
in this initial model, it can only be achieved after the scheduling stage. The
analysis of possibilities to further improve load balance before instantiating
the complete schedule has inspired our next model.

Using the lesson from this study we have developed a new job scheduling
approach which we present and validate in Sections [7] and [§] respectively.
That approach addresses the drawbacks of the first model. It is based on
the network flow maximization problem which provides a better complex-
ity compared to CSP formulation. The approach is dedicated specifically
to data production (and similar applications) and utilizes its properties to
simplify schedule generation and execution. In particular, it does not require
to compute exact start time for each job and transfer, dynamically adapts
to monitoring data and is not vulnerable by deviations during execution.
It distributes the load among the resources in such a way, that maximizes
processing throughput while neither exceeding available capacity nor com-

promising makespan.
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Using our previous experience in data production scheduling and observa-
tions in the case studies we developed a new approach to the problem. In
order to achieve a reasonable complexity of the scheduling problem, we used
specific properties of data production. First, in a single campaign, each por-
tion of data has to be processed exactly once. Second, all the computational
jobs are independent and interchangeable which means that they can be exe-
cuted in arbitrary order. Moreover, since a single data production campaign
consists of a large set of similar files undergoing the same type of processing,
the parameters of upcoming jobs can be predicted using the statistics of pre-
viously finished ones. Despite particular jobs can vary in their parameters,
for a large enough dataset and long enough time interval we can rely on the
average values. Following these assumptions, the main idea of our approach
is to plan resource load in advance for a limited time step (planning time in-
terval) and then distribute data and computational jobs accordingly, rather
than producing a complete schedule. Planning for limited time intervals
(e.g. 12 hours) provides adaptability necessary for dynamic systems. Plan-
ning repeatedly for shorter time intervals allows to deal with uncertainties
by correcting predictions and adjusting to the current state and performance
of the resources.

Figure [§| illustrates the input for our planner: at the beginning of each

Figure 8: Input for the network-flow based planner: distributed data pro-
duction problem represented as a graph.
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planning time interval it considers current data location, state and load of the
resources, structure and bandwidth of the network. The planner defines how
much data (input and output) should be transferred over each link within
given time interval. The plan is produced with the goal to maximize the num-
ber of used CPUs but avoid network congestion or running out of storage
space. There is a local queue of input files maintained at each computational
site which is kept long enough (when possible) to saturate its CPUs with
jobs without the need to access data from external storage. The planner
uses the network flow maximization algorithm [I53] with polynomial time
complexity which is a significant improvement compared to general schedul-
ing algorithms [157) [153].

The plan is executed by dedicated services running at each computational
site called "handlers”. Each handler is responsible for data at the storage
of its site. It submits data for local processing or forwards it to neighboring
sites with respect to planned data flows. The output data are also transferred
by the handlers to its destination in accordance with the plan.

7.1 Elements of the model

The raw data from the detector are being automatically archived to the
at the main computational facility of the experiment ¢, (called
Tier-0 site). The data are kept in the form of separate files (typically of
several gigabytes of size) which can be copied to other destinations for pro-
cessing. We refer those files as input files. The outcome of the processing
is called reconstructed data, and also consists of separate files (also several
gigabytes of size) which we refer as output files. All the output files are being
persistently stored to the central storage as well. Large collaborations, such
as CERN experiments, typically use multiple sites for long term data storage
in addition to the Tier-0 site. Such sites are referred as Tier-1s. Significant
portions of data are replicated from the Tier-0 to Tier-1s in order to improve
data access and safety against loss. The actual distribution of data between
such sites depends on data management model, history of computations and
plans of the collaboration.

In our problem a (computational) ¢; € Cis a set of closely connected
machines (can be also referred as a data center, computer cluster, computing

facility, farm or a server) which has a fast access to a common data storage
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(referred as a local disk of size Disk;) and a shared connection to the outer
network. A computational facility of a scientific institution is an example.
The key principle to identify a set of machines as a computational site is that
they can access a given local disk with a latency which is negligible compared
to their access to other storages (like the central storage) in the distributed
system.

We assume that there is a common job scheduling system (local scheduler)
which allows to submit jobs to all of the machines combined into a site. Our
approach is not intended to replace general purpose CPU schedulers at sites.
From the point of view of a local scheduler, there are many distinct users
concurrently submitting their jobs (and data production can be seen as one
of such users). The local scheduler allocates CPUs to jobs according to its
internal policy. For example, a quota may be set to limit the number of
CPUs reserved for data production specifically. We monitor CPUs (slots)
provided for data production at each site, e.g. using the number of active
pilot jobs [205], job agents [206], virtual machines [207] or containers [4]; and
supply them with data for computation. Their number can change in time
depending on concurrent workload, availability of resources, usage quotas
and other factors. For simplicity, in the rest of the chapter we refer a CPU
number NC'PU; at a site 1, as if each data production job uses a single CPU
and there are no other concurrent jobs in the system. NC'PU; is updated over
time according to monitoring data. Our goal is to maintain a stable queue of
input files prestaged at the local disk of each site so that new computational
jobs do not wait for an external data transfer. The input files from the
local queue can be submitted for processing or transferred to another site if
needed. At the same time, we need to plan transfers of output data to its
destination. The main idea of our optimization is to ensure that during data
production the transfers are performed in such a manner that neither disk
quota nor network capacity are exceeded while the input queues at sites are

kept at a reasonable size.

There are three functions that a site can serve during data production:
input source, computational site and output destination. Those functions
are not exclusive, which means that a particular site can be enabled with all
three, two or just one function. Also, there can be many sites with the same
function in the computational network. Input source is a site which already
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has a portion of input data at its local disk by the time when data production
starts. A processing site is the one which can process jobs (NCPU; > 0).
Output destination is a site selected to store the outcome of data production
on its persistent storage. As soon as an output file is transferred to any of
possible output destinations we assume that its processing is finished. For
each site ¢; we consider the total size of currently available input files k; and
the currently available free space to store new output files k;. Those values
are set to zero if the site is not assigned the corresponding function.

The sites are interconnected with network links [ € L of a given band-
width b; so that they form a grid, which can be represented by a weighted
graph. We consider bandwidth as an approximation of an observed data
transfer rate, which can be estimated as an amount of transferred data per
unit of time. In our approach the graph is not necessarily fully connected.
It should be understood as a high-level (but realistic) representation of a
detailed network structure. For instance, if multiple end-to-end connections
between sites share a part of a network path, such part should be modeled as
a single link rather than independent links for each connection. For a better
detailed modeling, network routers can be represented by nodes with zero
number of CPUs and none local disc size.

There is no requirement on the order of particular jobs. Each computa-

tional job j processes a unique input file of size size}", produces a unique
out
J

is known in advance, before the job is finished. We can estimate two other

output file of size size?"* and has a duration p;. Only the size of the input file
parameters by:
P~ sz’ze;" (22)

and

out

sizel" & (3 - sizell", (23)

where «; is an average processing speed of a single CPU at a site ¢ and [ is
an output-to-input size ratio. These two values are considered to be constant
coefficients. Since all the jobs perform the similar type of processing, we can
use average values of a; and /3 of previously completed jobs. Figure [9] shows
the relation between duration, input and output size of a sample of 60,000
data production jobs of the STAR experiment. Colors represent different
types of jobs. At Figure [9a] one can observe that the job duration depends
linearly on the input size in most of the cases. Similarly, Figure [9b] shows
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production jobs of the STAR experiment.

the linear dependence of output size on input size. Parameter 3 is less than

1 for all the jobs in the analyzed sample. Finally, it is visible in Figure

that values of @ and 3 are close (clustered at limited regions of the plot) for

each type of data production jobs.
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7.2 Planner based on network flows

Let us consider a scheduling time interval AT at an arbitrary moment of
data production. We assume that at the starting moment of AT some of
the CPUs in the grid are already running production jobs, and there can be
some amount of input data already placed at each site. We need to transfer
the next portion of data to each site during AT in order to avoid draining
of the local queues by the end of this interval. We will give two separate
problem formulations: for an input and an output transfer planning based
on network flows.

In order to formulate a network flow maximization problem [I53] for file
transferring we define a capacitated {s,t} network, which is a set of ver-
texes V including a source s and a sink ¢; and a set of edges e € E with
their capacities cap., representing the amount of data which can be trans-
ferred during AT. A solution that assigns a non-negative integer number
flow, to each edge e € E can be found in polynomial time with known al-
gorithms [I53]. Here flow,. is understood as an actual amount of data to
be transferred (or processed) within AT. In the further text, we use the
term edge to denote a general element of a network flow problem (including
dummy edges). In contrast, by link we refer such edge which corresponds to
a real network connection.

We prioritize transfer of output files because it allows to create sufficient
free space for upcoming input files. For this reason, we solve the output
problem first, and then use its solution to calculate the remaining capacities

of the network links.

7.2.1 Output flow planning

In order to transform a given graph of a grid into a capacitated {s, ¢t} network
for the output transfer problem we add two dummy vertexes: a source s and
a sink ¢ and dummy edges. The source s is connected to each processing site
¢; with a dummy edge d; € D. Its capacity w; defines the maximum expected
amount of the output data to be transferred from the site. Its calculation
is explained in Section [7.2.3] Each output destination site ¢; is connected
to the sink ¢ with a dummy edge g; € Q having capacity k; — the currently
available free space to store new output files. In this formulation capacity
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of each edge defines the maximal amount of data that can be transferred
within time interval AT. For each real network link [ € L with bandwidth b,
it is b; - AT. The transformation is illustrated in Figure [I0, where solid lines

............ R
~ Dummy
source
s,

S “
yZo

7

Figure 10: Capacitated {t, s} network for the output planning problem.

are network links L, dotted lines are dummy edges @, dash lines are dummy
edges D. Output destinations are in red cycles, processing sites are in blue
cycles (Site-2 shares both functions).

The following expression summarizes the capacities of edges in the output

problem:
be - AT ifee L
cape = W ife=d; €D (24)
ki ife=7¢€Q

We denote the solution for the output transfer problem as flow?". It specifies
the amount of output data that has to be transferred over each link during
AT.

7.2.2 Input flow planning

For the input problem, we apply a similar transformation to the initial graph
of the computational network as for the output problem. We add dummy
edges d; € D from each processing site to the sink, and dummy edges ¢; € Q)
from the dummy source s to input sources. These dummy edges allow us
to introduce constraints on the storage capacity, CPU throughput and data
availability at sites. For real network links [ € L we also take into account
the capacity reserved for output transfers flow?*. The network for the input
problem is presented in Figure |11, where solid lines are network links L,
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Dummy_,.«-"
source

Figure 11: Capacitated {s,t} network for the input planning problem.

dotted lines are dummy edges (), dash lines are dummy edges D. Input
sources are in red cycles, processing sites are in blue cycles (Site-2 shares
both functions). To summarize, the capacities of edges in the input problem
are defined as follows:

be - AT — flow?™  ifee L
cap. = { w; ife=d; € D (25)
ki ife= q; € Q

where w; is the demand for new input data at processing site ¢;. Its calcula-
tion is explained in the Section We denote the solution for the input
transfer problem as flow™. Tt specifies the amount of input data that should
be transferred over each link [ during AT

7.2.3 Capacities of dummy edges

Here we explain how the capacities of dummy edges w; and w; are calculated
in order to complete the maximum flow problem. These capacities define the
expected net amount of input/output data to be transferred to/from each
site during the planning time interval AT.

Let us start with a simple case. We call it a steady state when during
the entire previous planning cycle the site has kept its peak performance
(all the available CPUs are processing data) and no changes are made to its
configuration. In this case we can assume that the site will process/produce
data at the same rate during the next AT. Therefore, we can set w; to be
equal to the amount of input data processed and w; to the amount of output
data produced at this site during the previous planning cycle.
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In other situations when we cannot rely on previous statistics, we need an
estimation based on the current state of the site. Examples of such situations
are: the very first planning cycle, changes to a site’s configuration or shortage
of free disk space. Also, it is desirable to increase dataflow to a site with
underutilized CPU capacity when possible.

Consider transfer of output files first. Let 19 be the initial size of output
data (of previously finished jobs) which are ready to be transferred from a
local storage. We also need to estimate the amount of new output data of
jobs that will finish during AT. If most of the CPUs at the site are satu-
rated, than this value can be estimated as aﬁ - NCPU; - AT. In the opposite
case, if not all the CPUs are busy, such estimation may become exagger-
ated. Since AT is assumed to be smaller than the average job duration it is
unlikely that a job started within AT will also finish within it. Therefore,
the considered value cannot be greater than the total size of output files of
currently running jobs C**. To find the bottleneck value, we have to select
the smallest estimation. The final formula of the capacity of dummy edges

for output problem is:

w; = ]f“t+min(£-NC’PUi-AT, CP) (26)

A

The amount of input data which can be transferred to the processing site
is limited by two factors: size of the local disk and the CPU throughput.
The incoming data flow should adjust to the processing throughput in order
to keep the input queue at a constant size. If the queue drains some jobs get
delayed. On the other hand, if the queue grows too large, it would be more
efficient to send files to a less loaded site.

Let us denote the available free disk space at the site ¢ as R;. In order
to avoid running out of free space at the local disk, we set an upper limit o
for a planned disk usage. This ensures that there is always enough space
for an output file of a new job or for an incoming file. This is especially
important, since job durations and file sizes can fluctuate from the average
values which are used for the plan generation. In other words, we assume
that Disk; - (1 — ) of disk space is planned to remain free.

If there are free CPUs at the site, each incoming input file will be imme-

diately submitted for processing, creating a reservation for a new output file

out

of size sizef" = f3- size;'-”. For this reason, the constraint on the storage size
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%‘%Diski. On the other hand, in order to saturate unused CPUs,

we need to transfer at least one file for each of them. If an average size of

gives us
an input file is size},, and the total size of input files in local queue is I},
than the required amount of input data is NCPU; - sizel;,, — I"*. We should
select the minimal value between the storage and CPU constraints, in order
to find the bottleneck. The final expression for the capacity of the dummy

edges for the input problem is:

e , NCPU; - sizeq,, — I;") (27)

In the Eqn. 20] and AT and ¢ are parameters of the scheduler. All

the other used values are obtained from monitoring data right before each

w; = min(

planning iteration.

7.2.4 Solving Procedure

We perform planning by scheduling cycles: instantiate a plan for a fixed
time interval AT and repeat until all the data are processed and the output
is transferred to the central storage. Each plan is created at the beginning
of its interval using updated monitoring data. Therefore, each plan relies on
the current system state but not on previously issued plans.

The problems of input and output transfer over the same network can be
solved independently if input and output flows do not compete for bandwidth.
A competition may occur if input and output data are transferred in the
same direction over the same link and there is not enough bandwidth to
accommodate both flows. In a steady state such competition is unlikely,
which can be proven under assumptions: (a) all the real network links are
full-duplex, i.e., transmissions in both directions are independent and have
the same bandwidth (b) in a steady state the size of the output transferred
from each site is proportional to the size of the input transferred to that site
in each scheduling interval, i.e., flowg?t ~ - flowi[;, where 5 < 1.

Let us consider two distinct computational sites ¢; and ¢y connected by
two opposite directed links l; = (¢, ¢2) and ls = (c2, ¢1) with equal capacities
capy, = capy,. If a solution of the input transfer problem assigns flows to this
links such that flowlif > flowli;‘ > 0 then we can substitute such solution

—

flow™ with a new one W where ]%w\m = flow™ — flow™, flow” =0
e [ I I g la
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and flows over the rest of the links are unchanged. The same is true for
output transfer. This proves that in an optimal solution the same type of
files (input or output) are transferred between any two nodes in one direction
only, i.e. over one of directed links only.

If we have a solution for the input flow maximization problem flow™
we can produce a solution for the output problem flow? such that for
any opposite pare of links I; = (c¢1,¢2) and Iy = (c2,¢1) the output flow is

out

Jlow™ = 3 - flowa" and since 8 < 1 the capacity of links is not exceeded

flowy™ = B - flow™ < flow? < cap, = cap;,. Due to symmetry of the

out

2% is also the maximum flow for the output

two problems, this solution flow
transfer problem. Combining this with what was proven in the previous
paragraph, if flowlil" > ( than flowl’? = 0 and thus flowfl“t = (0. This means
that in a steady state input and output files are never transferred over the
same link. And thus, maximum flow problems for input and output transfers
can be solved independently.

In a reality, the system will not always operate in a steady state due
to fluctuations from average parameters and addition / withdrawal of the re-
sources. In order to resolve possible concurrency we plan the output transfer
first, and then use remaining network capacity to plan the input transfer.
We prioritize the output transfer because it allows to free space for upcom-
ing input data. The solving procedure for a single scheduling cycle consists

of the following steps:

1. Calculate the amount of output data w; to be transferred from each
site as defined by Equation |26

2. Construct the network of the output problem as described in Sec-

tion [.2.1]

3. Solve the network flow maximization problem for the output network.
Obtain output data flows over real links flow?* from the solution.

4. Calculate the demand for input data w; at each site as defined by
Equation [27]

5. Construct the network of the input problem as described in Section[7.2.2

6. Solve the network flow maximization problem for the input network.
Obtain input data flows over real links flow™ from the solution.
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7 Planning of distributed data production

The resulting input flow™ and output flow flows over the real network
links present the plan of data transfer and computation for the next time
interval AT. Because the capacities of the dummy edges are adjusted to the
current situation, this approach can be directly used from the start of the
data production to its end.

7.3 Plan execution

After a plan for a time interval AT is created it has to be executed at
sites. We assume that there is a dedicated service running at each site which
is responsible for sending statistics to the planner, receiving the plan and
executing it. We call such a service a handler.

The handler is responsible for transfers over outgoing links of its site. It
keeps counters of how much data of each type (input and output) remains to
be sent from its site to the neighboring sites during the current scheduling
cycle. This implies two counters F; and F; (input and output) for each
outgoing link [ connected to the site. When the handler receives a new plan
it updates the counters to be equal to the flows over the corresponding edges.
If the handler fails to fulfill the plan precisely, the system automatically
recovers from such an error, since each scheduling cycle relies on the current
state of the system and performance statistics, but not on the execution of
previously issued plans.

During the plan execution, each time when a new file arrives at the site,
the handler decides either to keep the file for local processing or to forward it
to another site. In order to make the decision, the handler goes through the
following list of options and executes the first appropriate one, depending on

whether its requirements are satisfied:

1. If the received file is of input type and if there is a free CPU at this
site then the file is submitted for processing (see Figure [12al).

2. Otherwise, if there is a link with a counter which is greater than zero
for the corresponding file type (input or output) then the file is sent
over that link (see Figure [12b)). The counter is decreased by the size of
the file.
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7.4 Balance between multiple data sources

3. Otherwise, the file is kept at the local storage until it can be processed

(when a CPU becomes free or a new plan arrives).

{ F,=0
F;>0

1.
receive

NCPU,__>0

free

2. start processing 4

NODE

CPUs NODE CPUs

(a) Handler submits a received input (b) Handler forwards a received input
file for processing. file to another site.

Figure 12: Plan execution by handlers at sites.

Such an order of options ensures that the file is processed as soon as it arrives
to the site with a free CPU, and all the CPUs are busy as long as there are
unprocessed input files at the local disk. No excessive transfers can occur
in the system because a solution to the maximum flow problem contains no
cycles and an input file is not forwarded unless all the CPUs are busy.

Another important role of the handler is to check the consistency of each
newly received file and confirm it to the sender. Only after the confirmation,
the transferred file can be deleted from the sender site, otherwise, data loss
may occur.

When processing of an input file starts, the handler makes a reservation
for the output file at the local disk, and when the processing is finished the
handler deletes the input file.

7.4 Balance between multiple data sources

The maximum flow problem can have multiple solutions, which means that
in certain networks the maximum total flow can be achieved by several al-
ternative flow assignments to edges. Intuitively, for a large enough network,
when the total flow is limited by the capacity of a subset of the edges (the
bottleneck) the flow over the remaining part of the network can be routed

in many different ways. This fact raises an important issue when it comes
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to planning with multiple input sources. An example is given in Figure
S1 and S2 are input sources, P1—P3 are processing sites. The dash and dot-
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Figure 13: Multiple solutions of the maximum flow problem.

ted lines are dummy edges, labels show their capacity, solid lines are network
links. The gray arrows in the background show two alternative flows through
the input sources. Here the total flow is limited by CPU throughput, while
the network structure allows to select from which input source to transfer the
data. However, classical network flow maximization algorithms do not select
between solutions with the maximal flow on any additional criteria [153].
When an input source gets depleted, the number of possible transfer paths
decreases and it potentially leads to the emergence of additional bottlenecks.
For this reason, a solution taking into account the remaining amounts of data
at the sources is needed to properly balance their usage. A helpful strategy
is to utilize sources with more data as much as possible from the beginning
but try to keep the smaller sources for later and utilize them when it allows
to maximize the overall flow.

With this concern, additional criteria for selection between multiple max-
imum flow solutions should be added to the problem. We have achieved this
by extension from the maximum flow problem to the minimum cost mawi-
mum flow problem in our planner. For such transition, we assign a cost cost,
for each edge e € E in addition to previous problem formulation. The cost
of a flow function flow, for a given graph is defined as ) _p flow. - cost..

A minimum cost mazimum flow (min-cost max-flow)) of a given network is a

maximum flow with a smallest possible cost. Known algorithms such as gen-
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eralized push-relabel algorithm [208] can solve min-cost max-flow problem in
polynomial time.

In order to balance usage of multiple input sources, we assign costs to
dummy edges ¢; depending on the amount of input data remaining at the
sources. At the beginning of each planning cycle our planner does the fol-

lowing;:

1. Sort input sources in descending order by the amount of available input
data.

2. Set costs of the dummy edges ¢; depending on the rank of the source i in
the sorted list. In the current implementation, the cost is set equal to the

rank.

3. Set the cost of the rest of the edges to one in order to take distances into

account.

Since the costs are updated at each planning cycle the priorities of the sources
change as they are getting depleted.

Influence of the particular values of costs can be better understood with
the following simplified example. Let us consider two sources with costs
cost; and costy. If there is a computational site at a distance (length of the
network path given that cost of real links is set to one) d; from the first
source and dy from the second, the cost per unit of flow to that site would be
costy + dy and costy 4 dsy, respectively. The site with a smaller resulting cost
will be selected to transfer the data (if there is enough network capacity).
For example, the first site will be selected if cost; — costy < dy — dy. This
shows that the difference between costs assigned to the sources defines an
additional number of transfers which are performed to establish the balance
between sources. In order to avoid excessive transfers, the range of costs
assigned to the sources should be kept reasonably small.

7.5 Initial data distribution

We can introduce an additional stage into our scheduling approach which
will allow to improve data locality prior to computations. This stage is not
mandatory and is designed to be executed in cases when storage and network
resources are accessible before the CPUs are pledged for the data production.
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For this reason, the time required for the initial data distribution is not
included in the resulting makespan. This initial data distribution can be
performed using our planning approach with several modifications which are
described in the following text. A carefully planned initial data distribution
can help to reduce the subsequent data production makespan. In the real
world, it is usually possible to move data across several available storages
before the computation starts. For example, the STAR collaboration makes
agreements with external institutions to use their computational facilities
for data production during a predefined time period [2I], in this case, the
access to the remote storage is usually granted before the access to CPU
resources. Under such conditions, it would be advantageous to move a part
of data to that remote storage before the actual computations. Another
example comes from the ATLAS experiment [4]. There, the raw data are
persistently stored at 12 geographically separated sites. Those raw data are
(re)processed (typically several times during years) using updated algorithms
and calibration data in order to improve quality of the resulting reconstructed
data. Such processing passes are planned by the experiment’s collaboration
in advance, so that the dataset to be processed and computational resources
to be used are known in advance. This gives an opportunity to adjust the
data distribution in order to decrease the makespan of the upcoming data
processing.

The general idea of the initial planning stage is to consider the entire
data production in one planning cycle where AT equals to an estimated
makespan. The produced plan is not expected to be highly accurate due to
the huge planning time interval, but it allows to find how much data should
be taken from each possible source. After the calculated data distribution is
established the data production can start as described before.

7.5.1 Model description

Let Z be the total size of input data to be processed. Some of the sites can
be used as input sources, the maximal amount of input data, which can be
placed at such site is K; > 0. The task is to find how much data k; should
be placed at each source and how long the data production will take.

We can again apply the min-cost max-flow approach to the initial data
distribution problem. Similar as before (Sections and , we transform
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the graph of the computational network into capacitated {s,¢} network and
set costs to all its edges. We set the capacity of each real network link
equal to the amount of data which can be transferred over it during the
data production cap. = b, - AT. The dummy source s is connected to each
input source via dummy edges ¢; with capacity K;. Each processing site ¢;
is connected to a dummy sink ¢ via a dummy link d; with capacity cap, =
%I;U" - AT which estimates its data processing throughput. The resulting
network is the same as in Figure [I1] yet the capacities of the edges are set

as follows:
b. - AT ifee L
cap. = NEPUL AT ife=d; €D (28)
Kz' if e = q; € Q

The coefficient «; should be derived from the statistics of previously finished
jobs; its variance can be significant given the heterogeneity of resources and
jobs. For this reason, the accuracy of a; estimation is a limiting factor for
the precision of the resulting initial plan. However, as explained before, the
initial plan does not have to be strictly fulfilled during the upcoming data
production itself.

In the current implementation, the costs of all of the edges are set to
one. This allows to reduce the number of transfers during the computational
stage, but potentially increases the number of required transfers before the
computations. Alternatively, the costs of dummy edges g; to the source sites
which do not contain significant portions of data yet can be set to one, while
the costs of the rest of the edges can be set to zero. As the result, the
planner will try to utilize existing placements of data as much as possible
(and will use additional sources only if this will allow to avoid network bot-
tlenecks), however, the number of transfers during the computational stage
may increase. The choice of alternatives should depend on the particular
use case. The advantage of the proposed approach is certainly its flexibility
which allows to adjust to real life conditions.

7.5.2 Solving procedure

The makespan of data production AT is not known in advance, in order to
find it we start with an estimation and then improve its value iteratively. The
iterations continue until we find a value of AT for which the maximum total
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flow ® equals to the total size of input data Z with a predefined precision ¢.

The overall solving procedure for the initial planning problem is the following:

1. Calculate an optimistic (as if there are no network bottlenecks) esti-

mation for makespan AT = %

g

2. Construct the {s,t} network as described in Section

3. Update capacities of the edges using the current value of AT.
4. Solve the max-flow min-cost problem. If | Z —® |< Z ¢ then go to (0).

5. Set a new value for the estimated makespan
AT = % - ATrevious and go to 1}

6. Resulting flows flow,. over dummy edges ¢; are the amount of data to
be placed at each source (k; = flow,,), AT is the expected makespan.

To summarize, this procedure allows to find a makespan estimation AT for
data production and amount of the input data k; to be initially placed at
each source site 1.

7.6 Data replication

The data flow of a HENP experiment begins at a site where the detector is
located. Typically, the site (tier-0) also provides a persistent storage for all
the data related to the experiment. In addition to the main storage, overlap-
ping subsets of data are copied across multiple Tier-1 sites [4]. The degree
of replication for particular files can vary and change in time depending on
the computation history and collaboration plans. Each file can be assigned a
logical filename uniquely defining it. A single Ifn can point to multiple
physical files identified by physical filenames .

We assume that the data are replicated before the data production starts.
The planner never deletes those initial (persistent) file replicas. It considers
initial data locations and creates temporal file replicas when it allows to
speed the data access up. Therefore the planner distinguishes two types of a
physical file instance:

e Persistent instance is the one that was created before the data produc-
tion started and has to be kept.
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e Temporal instance is created when the file is transferred to a new site

as a result of the plan execution.

Only one temporal instance per [fn can exist at a time. This instance is
deleted after the file is processed. Forwarding a temporal replica from one
site to another implies creation of a new temporal replica at the destination
and deletion of an old one from the source. The temporal replica can be
understood as a "traveling” instance which hops between sites according to
the plan until it gets processed.

There is a central service (called file catalog) which keeps track of all
the Ifn’s of the input files in data production. The handlers at individual
sites can communicate through this service in order to ensure that all Ifns
are processed exactly once and data are never transferred to a site where
another its copy is already present. File catalog provides information on the
number of physical instances for each [fn and their location. It also stores the
status information related to each Ifn. Two statuses are used in the current

implementation:

e Queued status means that the [fn waits to be processed, no temporal
copy was created, neither was the job started.

e Used status means the file is being processed at one of the sites which
has its persistent copies, or a temporal copy was created to be processed

at another site.

Initially, all the file statuses are set to ”queued”. When a file is selected
to be processed at one of its initial locations the corresponding [fn status
is changed to "used”. When a file is transferred from its initial location
the corresponding [fn status is changed to "used” and a temporal replica is
created at the destination. From this moment, only this temporal replica is
allowed to be processed. Through the update of the status the other sites
with a persistent replica of the file are prevented from processing or sending
it out again. Since a max-flow problem solution contains no flow cycles the
temporal instance travels a limited path in the grid until it is processed, for
this reason, no excessive transfers take place.

At the beginning of data production each handler at a source site:

1. Registers persistent replicas at its site to the file catalog and sets their
status to "queued”.
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2. Organizes input files at the site into a queue where the files with fewer
replicas are prioritized. This allows to process the files with fewer

replicas first in order to leave more options for later planning cycles.

During the data production, each handler periodically scans its local
queue and removes files with status "used” from it. Incoming input files
forwarded from other sites (the temporal instances) are stored and placed at
the beginning of the queue. Whenever there is a capacity to process a file
or to send it to another site, the handler takes the next file from the queue.
If it is a temporal instance, the file can be used without check since only a
single temporal replica can exist. Otherwise, if it is a persistent instance, the
handler checks its status.

e If the status is "used” then discard it from the queue and proceed to
the next one.

e [f the status is "queued” then use the file and change its Ifn status to
"used”.

Each new plan depends on the current state of the system but not on
previously issued plans. Therefore, failures during execution of a plan do
not affect future planning cycles. Recovery can be done using standard ap-
proaches. Loss of replicas at a given site would be detected by handlers and
removed from the possible replicated candidates. File corruptions can be
detected using checksums stored in the file catalog. The next cycle of plan-
ning would consider a new file distribution landscape. Timed-out and failed
actions can be re-queued within one planning cycle. A handler can perform
self-recovery at the start of a planning cycle (i.e. when a new plan is issued).
In such case, a handler verifies the content of the local disc and running jobs
and then it can proceed with the current plan. In case of a planner failure, it
restarts and requests current status from all the sites and then continues to
issue plans as normal. More statuses of the file replicas can be introduced in
order to ensure safe transactions. However, failures of the file catalog service
are beyond the scope of this work.
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8.1 Overview of the implementation

In order to validate our new job scheduling approach towards possible use
cases, we perform simulations with a wide scope of experimental problems.
In the simulations, we measure performance improvement gained by the ap-
proach compared to other common scheduling techniques. The simulations
are performed with the ”Grid Simulation Toolkit for Resource Modeling
and Application Scheduling for Parallel and Distributed computing” (Grid-
Sim) [209]. It is a Java library for discrete event simulation which provides
models of computational servers, job scheduling and execution, networking,
data transferring, etc. Previous experience of our colleagues [I33] helped
to improve efficiency of the GridSim simulations. For our study, we have
implemented an additional functionality for plan generation and execution,
storage management and statistics collection on top of GridSim. The plan-
ner is implemented in Java using JGraphT [210] library which provides graph
objects and algorithms. The further described simulations were executed at
the Golias computational facility of the Institute of Physics of the Czech
Academy of Sciences.

8.1.1 Input data for simulations

The parameters of computational jobs used in our simulations were taken
from log records of real data production which was performed for the STAR
experiment (US) at KISTI (South Korea) computing facility [204]. During
that data production campaign 60,000 of files were processed during three
months in 2014 [2I]. The average parameters of the set of jobs are provided
in Table [3

Also, the dependence between job parameters is visualized in Figure [J
presented in Chapter [7.1] We have created larger datasets using a random
selection from the original one in order to use them as input for our simula-
tions. Such an approach allows us to test the stability of the results against
input variation and duration of simulated data production. Also, the larger
datasets are required for simulations of large-scale infrastructures. The size
and parameters of used datasets are explicitly specified for each set of simu-
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Table 3: Parameters of 60,000 data production jobs from the STAR experi-

ment used in simulations.

Parameter ~ Units Average Min Max Total

Duration hours 46 12 64 314 years
Input size MB 4,320 895 4,780 259 TB
Output size MB 3,022 105 3,614 181 TB
« s/MB 38 9 49.2 -

15 - 0.7 0.3 079 -

lations in the rest of this chapter.

In order to setup realistic parameters of simulated computational sites
and networks, online monitoring tools of CERN experiments [184, 21T, 212]
were considered. According to these sources, the number of CPUs available
at sites varies from several units up to several thousands, while utilized net-
work bandwidth typically is 50 Mbps to 2 Gbps but can reach 10s of Gbps
for certain parts of the infrastructure. Since one of the main goals of our
approach is to improve utilization of sites with poor network connectivity, in
our simulations we have used lower values of bandwidth from the observed
spectra. In all the simulations the CPUs are assumed to be of the same
processing speed. The initial distribution of data varies in our experiments,
it is additionally explained in the description for each particular set of sim-

ulations.

Parameters «;, § and ﬁn of the planner were set to the average values
from the Table [3] For the selection of the planning time interval AT it
is important to notice that it should be short enough to provide a better
adaptability to changing states of the resources, but at the same time long
enough so that average values and estimations remain applicable. After a set
of testing simulations AT was set to 12 hours, and the upper limit for the
disk usage ¢ was set to 95 %.
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8.1.2 Network models

Let us briefly describe network models provided by GridSim and used in our
simulations, more details can be found in [213]. When a simulated entity (i.e.
computational site) executes a ”transfer file” command, the file is stored to
the output queue and then it is processed by other network entities. Each
network entity (e.g. router, link) has its own queue. We have used two file

transfer models provided by the GridSim framework:

e Sequential: Files are transferred one by one in the order as they appear
in the queue, only one transfer at a time is performed. This corresponds
to modeling a network link as a unary space-shared resource.

e Parallel: All the files in the queue are being transferred simultaneously,
sharing the bandwidth. In particular, newly started transfers delay
those in progress. In this case a network link is modeled as a time-
shared resource.

The general behavior of real networks, where many streams of data are
transferred concurrently by independent applications, is more realistically
described with the parallel model. However, dedicated data transfer tools
(e.g. FDT [206], GridFTP [214], BBCP [199]) for transfer of large sets of
files can achieve behavior similar to sequential model of GridSim.

Let us illustrate how the difference between the two models can affect
distributed data processing. Consider a situation when a set of files is being
transferred from one site to another simultaneously by different jobs. In
both models, the complete transfer time of the set is the same, but in the
sequential one, files will start to arrive earlier. As the result, the processing
starts and finishes earlier, releasing resources for the next portions of data,
which allows to reduce an overall makespan.

A comparative study of parallel and sequential transfer models in the real
network can be found in [215]. The author has shown that transferring files
sequentially (but using multiple threads) is advantageous for HENP compu-
tations compared to parallel transfer of multiple files. However, the parallel
transfer is a more common model for current distributed data processing in
HENP. It corresponds to many jobs running independently and performing
uncoordinated concurrent access to the remote data over a shared network.
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8.1.3 Simulated scheduling approaches

In order to test our planning approach against others, we have simulated

distributed data production under the scheduling approaches listed below.

e PLANNER: This approach uses the planning proposed in our research
(described in Chapter . The sequential transfer mode is used as the
preferable one.

o PUSHpar: Whenever there is a free CPU at a remote site, the next
input file is sent there from the central storage. When a site receives an
input file, it starts processing, and after it is finished it sends the output
file back to the central storage. When the central storage receives an
output file it sends the next input file to the freed CPU. The process
continues until all the data are processed. The shortest network path
is used for file transfers. The parallel transfer mode is used here. This
scheduling approach corresponds to the distributed data production
setup in many HENP experiments, including the data production at
KISTI for the STAR experiment [2I] in particular.

e PUSHseq: The job scheduling is performed exactly as in the previous
approach, but the sequential transfer mode is used. The main purpose
of these simulations is to study the effects of the sequential file trans-
ferring on the data production and, also, to estimate which part of the
performance improvement in the PLANNER approach is achieved by
the sequential transferring itself.

In addition to that, in experiments with a large number of sites and in-
put sources we have simulated another scheduling policy which we denote as
PULL. This scheduling policy is currently implemented many HENP experi-
ments. While details of the implementations may differ, the general pattern is
very similar: a pilot job [4] is submitted to each available CPU in the system
which is responsible for requesting input data (pulling), starting computa-
tional jobs and transferring output data. When the CPU is ready to process
data, the pilot job requests the distributed data management (DDM) system
for a new input file. The DDM checks the data availability and redirects the
request to one of the sites storing the data. The selection of the site may be
arbitrary or depend on either current load or communication latency to the
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requester. After the source site is selected the pilot job transfers the data to
the local storage and starts to process the job. When the file is processed
the pilot job transfers the output to a predefined destination and requests for
the next input. As one can see, under such model the CPU allocation and
data access are concurrent and uncoordinated. Under the best case scenario
all the jobs are transferring data from the fastest available source. We have
simulated a pull scheduling approach using the following algorithm executed

at each processing site:

e Initialization

1. Ping all available sources, form a queue ordered by connection speed
and set the fastest source as selected for this processing site

e Simulation start

1. Whenever a CPU becomes free request next input file from the active

source
2. When an input file is received submit a job
3. When a job is finished transfer the output to its destination

4. When the current source is depleted, switch to the next one in the

queue

5. Repeat until all the data are processed

Output files can be sent to a single storage, or to multiple ones, using the
same reasoning as for input files. The sequential transfer mode is used in the
simulations with PULL approach in order to make a fair comparison against
PLANNER.

In the case of a single input source and an output destination, both PUSH
and PULL approaches result in a similar scheduling as there is no choice of
options for the PULL approach. Therefore, in such simulations we compare
the PLANNER against PUSHseq/PUSHpar. In other cases, when the input
data are initially stored at multiple sites, we test the PLANNER against
PULL approach, because it corresponds to the current setup of the largest
HENP experiments.

The main metrics used for the performance comparison is the
which is calculated as time passed from the start of the first input file transfer
(or job submission) until the completion time of the last output file transfer.
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To compare two scheduling approaches, a makespan improvement for pro-
cessing the same dataset on the same resources can be calculated as follows:
Ol _ 02

makespan improvement = W (29)

max

8.2 Base model

8.2.1 Single remote site

We start verification of our approach with a relatively simple case where the
infrastructure consists of a central storage and a single remote site. Such a
setup corresponds to data production of the STAR experiment performed at
KISTI computing facility [2I]. In the real setup, the only remote site had
1,000 CPUs and the point-to-point network bandwidth was approximately
2 Gbps. Despite our planner is primarily designed to address more complex
infrastructures (where many options for optimization exist), consideration of
such case is also necessary. First of all, it allows to ensure that the perfor-
mance of the planner is at least as good as other simple approaches even
for a trivial use case. The simulations of the smaller problem allow us to
understand the limitations of distributed data production. In particular, we
consider the following questions: What is the minimum required bandwidth
required to saturate a given number of CPUs at the remote site? How many
CPUs at the remote site can be exploited efficiently with a given network
bandwidth? How does a selection of a scheduling approach influence those
values? The simulations provide answers which can be used when planning
future data production campaigns.

Figure [14] present the results of simulations where the number of CPUs
at the remote site is 1,000, the size of its storage is 15 TB and the network
bandwidth is changing from 50 Mbps to 2 Gbps. The makespan improvement
of the planner against other approaches is shown as a function of bandwidth.
Each point in the plot is an average of simulations with five different datasets
(60,000 jobs in each). The values of the deviations are smaller than 0.07 %
which confirms stability of the results, therefore the error bars are not visible
in the plot. The plot shows that the PLANNER can provide up to 32%
of makespan im