Measurements of the Y meson production in Au+Au collisions by the STAR experiment

Oliver Matonoha

for the STAR collaboration

Czech Technical University in Prague oliver.matonoha@gmail.com

Hot Quarks 2018
Texel, The Netherlands
13 September 2018

STAR

Outline

- 1 Heavy quarkonia in heavy-ion collisions
- 2 The STAR experiment
- Measurements of the Υ production at STAR
- 4 Comparison with LHC results and model calculations
- 5 Summary

Heavy quarkonia in QGP

- J/ψ, Y etc. are good candidates to probe QGP
 - $m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2 \rightarrow \text{early production}$
 - Typically: $t_{\text{creation}}^{Q\bar{Q}} < t_{\text{creation}}^{QGP} < t_{\text{lifetime}}^{QGP} \ll t_{\text{lifetime}}^{HQ}$

T. Matsui, H. Satz, PLB 178 (1986) 416

- Suppression of production by colour screening
 - Quarkonium expected to *dissociate* if its radius is greater than the Debye radius:

$$r_{\mathrm{Debye}} \propto 1/T$$

Sequential melting

A. Mocsy, EPJ C61 (2009) 705

- Dissociation depends on the quarkonium binding energy
- Different states expected to melt at different temperatures
- QGP "thermometer"

$$R_{AA} \sim \frac{\# HQ \ in \ AA}{\# HQ \ in \ pp \times \# \ binary \ coll.} = ?$$

- Other phenomena complicate interpretation of the measured quarkonium suppression
- Recombination

Coalescence of deconfined quarks

ALICE, PLB 766 (2017) 212 PHENIX, PRC 84 (2011) 054912

J/ψ in A+A at LHC vs RHIC

- Other phenomena complicate interpretation of the measured quarkonium suppression
- Recombination
 - Coalescence of deconfined quarks
- Cold nuclear matter (CNM) effects
 - Initial state: nuclear shadowing, energy loss

- Other phenomena complicate interpretation of the measured quarkonium suppression
- Recombination
 - Coalescence of deconfined quarks
- Cold nuclear matter (CNM) effects
 - Initial state: nuclear shadowing, energy loss
 - Final state: inelastic interactions with hadrons
 - → nuclear break-up
 - → co-mover absorption

- Other phenomena complicate interpretation of the measured quarkonium suppression
- Recombination
 - Coalescence of deconfined quarks
- Cold nuclear matter (CNM) effects
 - Initial state: nuclear shadowing, energy loss
 - Final state: inelastic interactions with hadrons
 - → nuclear break-up
 - → co-mover absorption

• Feed-down

$\Upsilon(1S) \ p_{\rm T} > 8 \ {\rm GeV}/c \ \ {\rm at} \ \sqrt{s} = 1.8 \ {\rm Te}$	V CDF, PRL 84 (2000) 2094
Prompt Υ(1s)	$\sim 51\%$
$\Upsilon(1s)$ from $\chi_b(1P)$ decays	$\sim 27\%$
$\Upsilon(1s)$ from $\chi_b(2P)$ decays	$\sim 10\%$
$\Upsilon(1s)$ from $\Upsilon(2S)$ decays	$\sim 11\%$
$\Upsilon(1s)$ from $\Upsilon(3S)$ decays	$\sim 1\%$

https://indico.cern.ch/event/355454/contributions/838966

Why measure Y at STAR?

Very small production by recombination

A. Emerick, X. Zhao, R. Rapp, EPJ A48 (2012) 72

	RHIC 200 GeV	LHC 2.76 TeV
$\#c\bar{c}$ / event	13	115
$\#b\bar{b}$ / event	0.1	3

Precursor $b\bar{b}$ pair is more probable to survive propagation through a nuclear medium than $c\bar{c}$ since:

$$\sigma_{
m eff}^{
m Y} \sim \left(rac{m_c}{m_b}
ight)^2 \sigma_{
m eff}^{J/\psi} \simeq 0.1 \ \sigma_{
m eff}^{J/\psi}$$
 E. Ferreiro, et al., PoS 157 (2012) 159

• For co-movers (pions): $\sigma^{co-\Upsilon(1S)} \ll \sigma^{co-J/\psi}$ \rightarrow break-up by co-movers insignificant

Z. Lin. C. Ko. PLB 503 (2001) 104

$$ightarrow \Upsilon's$$
 at RHIC $\sqrt{s_{NN}}=200$ GeV are a cleaner probe of the screening effect!

• Challenge: smaller production cross-section compared to the LHC

Results from p+p and p+Au collisions

STAR, PLB 735 (2014) 127 PHENIX, PRC 87 (2013) 044909

Signal in Au+Au collisions

- Background sources:
 - \rightarrow combinatorial background (estimated as $N_{l^+l^+} + N_{l^-l^-}$)
 - \rightarrow Drell-Yan process, $B\bar{B}$ semi-leptonic decays

Results from Au+Au collisions

- Nuclear modification factor $R_{\rm AA} = \frac{\sigma_{\rm inel}^{\rm pp}}{\langle N_{\rm coll} \rangle} \frac{{\rm d}^2 N_{\rm AA}/dp_{\rm T} dy}{{\rm d}^2 \sigma_{\rm pp}/dp_{\rm T} dy} \quad \text{as a function of}$ mean number of participants $N_{\rm part}$
- $\sigma_{\rm pp}$ baseline taken from the Y measurements in p+p collisions at STAR
- **Di-muon** and **di-electron** results consistent with each other within the uncertainties
 - \rightarrow results combined for increased statistical precision

R_{AA} vs. N_{part} at RHIC

• $\Upsilon(2S+3S)$ more suppressed than $\Upsilon(1S)$ in central collisions

R_{AA} vs. N_{part} at RHIC + comparison with the LHC

- Comparison with the LHC: CMS, PLB 770 (2017) 357
 - \rightarrow comparable suppression for inclusive $\Upsilon(1S)$
 - \rightarrow hint of **less suppression** for $\Upsilon(2S+3S)$ at RHIC than at LHC

Suppression vs. $p_{\rm T}$

RHIC vs. LHC

CMS, PLB 770 (2017) 357

- Comparable suppression for inclusive $\Upsilon(1S)$
- Signs of **less suppression** at high- p_T for $\Upsilon(2S+3S)$ at RHIC

Comparison with models

• Krouppa, Rothkopf, Strickland:

PRD 97 (2018) 016017

- No CNM effects, no regeneration
- Uses a lattice QCD vetted complex potential embedded in a hydrodynamically evolving medium
- Ou, He, Rapp:

PRC 96 (2017) 054901

- Incorporates regeneration as well as CNM effects
- Uses in-medium binding energies predicted by thermodynamic T-matrix calculations with internal-energy potentials

- \rightarrow Both models show agreement with the $\Upsilon(1S)$ data from STAR
- \rightarrow Rothkopf model seems to underestimate the Y(2S+3S) R_{AA} in the 30-60% centrality

<u>Summary</u>

- Physics of heavy quarkonia
 - Quarkonia can be used to constrain the QGP temperature thanks to the colour screening effect
 - Y's at RHIC are a cleaner probe than e.g. the J/ψ , due to lesser influence of CNM effects and regeneration
- Y measurements at STAR
 - Y's are reconstructed in the di-electron channel and di-muon channel in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Y's are also measured in p+p and p+Au collisions to provide a baseline and a quantification of the CNM effects
 - Inclusive Υ(1S) at RHIC are strongly suppressed in semi-central and central collisions
 - Excited states $\Upsilon(2S+3S)$ at RHIC are more suppressed than $\Upsilon(1S)$ in central collisions (sequential melting)
 - R_{AA} for Y(1S) at RHIC is similar to the LHC, but Y(2S+3S) seems to be less suppressed
- These results can be used to test models of different quarkonium behaviour in QGP and to help infer the medium temperature

Thanks for your attention!

Back-up slides

Models at the LHC

Excited-to-ground ratio

world-wide measured ratio in p+p:

$$\Upsilon(2S+3S)/\Upsilon(1S) = 0.423 \pm 0.009$$

PRC 88 (2013) 067901

