Recent STAR results of pion-proton femtoscopy

Marcin Zawisza for the STAR Collaboration

V Workshop on Particle Correlations and Femtoscopy

Outline

- Physics motivation
 - size and asymmetry measurement
- Data analysis
 - data selection
 - purity correction
 - fit procedure
- Experimental results
 - correlation functions
 - fit results
- Model results
- Conclusions

FSI as an origin of asymmetry

integrated over space

 $CF = A_{C}(k^{*})[1 + 2\langle r^{*}(1 + \cos\theta^{*})\rangle/a_{C} + ...]$

Gamov factor

Source of the asymmetry

Bohr radius for $\pi -pa_{2}=\pm 222$ fm

In pion-proton system only coulomb interaction plays significant role.

*k**- momentum of the first particle in PRF *r** - separation between emission points $r^*=x_1-x_2$

 θ^* - angle between k^* and r^* vectors

Correlation is stronger when $cos\theta *<0 - k^*$ and r^* are anti-aligned and weaker when $cos\theta *>0 - k^*$ and r^* are aligned.

Observed asymmetry

 $\sigma_{\pi p}$ two particle width

 $\sqrt{\sigma_{\pi}^2 + \sigma_p^2}$ single particle widths

Observed separation in PRF comes from

- space asymmetry (flow) and from
 - emission time difference

 $< r^* > = < \gamma_{T} (\Delta r - \beta_{T} \Delta t) >$

WPCF, CERN 14-17 October 2009

Phys.Lett.B373 (1996) 30 4

Decomposition and interpretation of the correlation function in spherical harmonics

distribution of correlated pairs

distribution of uncorrelated pairs

$$T(\vec{k}^*) = C(\vec{k}^*) \cdot M(\vec{k}^*)$$

correlation function

 $C(\vec{k}^*) = \sqrt{4\pi} \sum_{l,m} C_{lm}(\vec{k}^*) \cdot Y_{lm}(\theta, \phi)$

 C⁰₀ functions give information about overall size and the real

Re C¹₁ component gives information about asymmetry.

Symmetry:

- Calculated function is integrated over reaction plane angle thus all imaginary elements vanish.
- Symmetric mid-rapidity region → odd (*I*+*m*) real components of the function vanish

WPCF, CERN 14-17 October 2009

side

out

Data selection

Au+Au √s_{NN}=200GeV

Events:

- central (0-10%)
- semi-central (10-30%)
- mid-central (30-50%)
- z-vertex position ±30cm

Single track level cuts (π, p)

- dE/dx
- p_T(π) ∈<0.1,0.6>
- p_⊤(p) ∈<0.4,1.25>
- y ∈<-0.7,0.7>

Pair level cuts: pairs with merged hits of tracks pairs with split tracks electron-positron pairs from gamma conversion (advanced topological

non π -p pairs based on pair probability

cut)

WPCF, CERN 14-17 October 2009

e⁺ DXY e⁻

DCA

Primary vertex

Data analysis

fraction of primary pairs 0.5 0.49 0.48 0.47 0.46 0.45 ∎ π*p 0.44 <u>π</u>`p 0.43 π[⁺]p 0.42 0.41 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 k* [GeV/c] Low relative momentum in PRF corresponds to close relative velocities in CMS. E.g. pion with $p_{T}=0.1$ GeV/c has a close velocity proton with $p_{T}=0.67$ GeV/c. Pion $p_{T}=0.15$ GeV/c corresponds to proton $p_{T}=1$ GeV/c. In these regions pions and protons are crossing the electron line.

$$C_{\text{Real}} = C_{\text{Exp}} \cdot C_{\text{Purity}}^{-1}$$

C_{Purity} – two particle distribution weighted with experimental PID probability and fraction of primary pairs mixed pairs are constructed only from events with similar characteristics:

- z-vertex position 15 bins
- multiplicity 6 bins
- event mean p_T 3 bins Total 270 bins

Fit procedure

spatial Gaussian emission function

- $S(\vec{r}) \approx \exp\left(\frac{-(r_{out} \mu_{out})^2 + r_{side}^2 + r_{long}^2}{2R^2}\right)$ generated emission points + experimental momenta of the pairs
- momentum resolution correction
- Lednicky's weights (squared wave function of a pair)
- χ^2 minimization

Nukleonika 49;Suppl 2:s81-s83

WPCF, CERN 14-17 October 2009

Fit results

STAR preliminary

- functions between centralities gives quite significant difference in extracted size and shift.
- Amplitude of an asymmetry higher than in experiment

WPCF, CERN 14-17 October 2009

-10

Comp. Phys. Comm. 174 (2006) 669

11

10

14 1: ರ_{out} [fm]

Conclusions

- First time presented quantitative results for pion-proton system for Au+Au @ 200GeV
- Space-time asymmetry and size of the π -p source correlated and depend on centrality

 $\mu_{out} = -0.31(\pm 0.10) \cdot \sigma_{out} + 0.4(\pm 0.8)$

 Extrapolation gives zero shift for zero size system