

Probing the QCD Critical Point By Higher Moments of Net-Charge Distribution

Nihar Ranjan Sahoo (For the STAR Collaboration) Variable Energy Cyclotron Center (VECC) ICPAQGP-2010, Goa 6-10 Dec,2010

Contents

- ♣QCD Critical Point (CP)
- Signature for CP : Theoretical background
- Introduction to higher moments
- Experimental method
- Recent results on net-proton fluctuation
- AuAu 39 GeV net-charge fluctuation results
- Summary and outlook

QCD Critical Point

7.7 (GeV)

2011 27, 18,5 (GeV)

μ_B: 20-550 MeV

A Long Range Plan, Dec 2007

In QCD, Hadrons to QGP Low T and High μ_B : 1st Order High T and μ_B = 0 : Rapid Cross Over

$$T_{c}, \mu_{Bc} = ?$$

Signature of QCD CP: Theoretical Background

As T approaches T_{c} Divergence of correlation length (ξ) \diamond \diamond Divergence of susceptibility Non-Gaussian fluctuation of conserved quantity \diamond **Correlation length : QCD Model** At CP (for large $\mu_{\rm B}$) $<(\delta N)^2 > \xi^2, <(\delta N)^3 > \xi^{4.5}$ PRL. 102,032301 $<(\delta N)^4 > -3 < (\delta N)^2 >^2 \sim \xi^7$

Susceptibility: Lattice QCD and Hadron Resonance Gas Model S

$$\chi_{2}^{X} = \frac{1}{VT^{3}} < \delta N^{2}_{X} > \qquad X = Q, B,$$

$$\chi_{4}^{X} = \frac{1}{VT^{3}} (<\delta N_{X}^{4} > -3 < \delta N_{X}^{2} >^{2}) \qquad \text{arXi}$$

iV:0811.1006

Near the CP

Introduction to Higher Moments Mean, $M = \langle N \rangle$ St.Deviation $\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}_{f}$ f Skewness, $S = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$ Χ Χ Kurtosis, $K = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$ Negative Skew Positive Skew

Skewness represents Asymmetry of the Distribution

Kurtosis represents peakness of the Distribution.

For Gaussian Distribution, Skewness and Kurtosis are zero

Experimental Methods

Varying beam energy, Phase Diagram (T, μ_B) can be mapped

Aim

✓ Vary the Colliding energy (√S)
✓ Calculate higher moments of conserved quantities
(i.e. net-charge, net-baryon and net-strangeness)

arxiv: 0909.4630(2009)

STAR Detector

PRL 105 (2010) 022302

Higher Moments For Net-charge Distribution STAR Preliminary 16 STAR Preliminary AuAu 39 GeV Events 10⁵ Standard Deviation Mean 60-70% 14 CIT • 50-60% 104 12 **40-50%** 10 10³ 8 6 10² 10 STAR Preliminary _____ OL 100 150 200 250 300 350 400 50 50 350 400 <N_{part}> net-charge <N 20 30 40 -30 _{part}> net-charge 0.05 **STAR Preliminary STAR Preliminary** AuAu 39 GeV AuAu 39 GeV 0.2 Events 10⁴ 0.04 skewness • 30-40% kurtosis • 20-30% 0.15 10-20% 0.03 5-10% **¥ 0-5%** 10³ 0.02 0.1 10² 0.01 0.05 10 | -0.01 1 1 1 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 ⁻⁴⁰net⁻²⁰charge²⁰ -80 -60 40 60 80 <N_{part}> net-charge <N_{part}>

Kurtosis does not agree with central limit theorem (CLT) at higher centrality
Systematic errors, from bin width effect, has been included

Comparison With Models

within error bars, the effect on the skewness is small

Leptonic contribution for net-charge fluctuation

Products Of higher moments For Net-charge Distribution

Summary

 Results on higher moments of net-charge distribution from AuAu 200 and 39 GeV collisions have been presented .
HRG model agrees with data.
Kσ² and Sσ values are comparable for AuAu 200 and 39 GeV.
Products of the higher moments of net-proton and net-charge distribution have similar values at AuAu 200 and 39 GeV .

Outlook

Systematic study
Data analysis for other BES energies (7.7,11.5, 62.4 (GeV))
Run 11 data taking for BES energies (27,18,5(GeV))

THANK YOU

Back Up

ICPAQGP 2010,Goa,6-10 Dec

16

Central Limit Theorem (CLT)

