Measurement of azimuthal anisotropy of light nuclei produced in heavy-ion collisions at RHC

Rihan Haque (for the STAR Collaboration) NISER, Bhubaneswar, India

<u>Outline</u>

- Introduction & motivation
- **STAR experiment at RHIC**
- Results
- Summary

ICPAQGP-2015 VECC, India February 1-6, 2015

Azimuthal anisotropy

Θ_z ψ_R v

Azimuthal distribution of produced particles can be described as a Fourier series. The second order coefficient,

$$v_2 = \left\langle \cos(2(\phi - \psi_R)) \right\rangle = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$$

Sensitive to early times in the evolution of the system

An estimate of ψ_R , namely Event Plane (ψ_2), is calculated using produced particles in mid-rapidity.

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

Motivation

- ✓ hadron v₂ show constituent quark (NCQ) scaling.
- Nuclei are expected to form at a later stage due to their low binding energy
- → Can we expect mass number scaling of nuclei v₂?
 → How does nuclei and anti-nuclei v₂ compare?
 → Is there any centrality dependence of nuclei v₂?

J. I. Kapusta, Phys. Rev. C 21, 1301 (1980)

- R. Scheibl, U. Heinz, Phys. Rev. C 59, 1585 (1999)
- D. Molnár, S. A. Voloshin, Phys. Rev. Lett. 91, 92301 (2003)

Figure ref: Phys. Rev. C 75, 054906 (2007), Phys. Rev. Lett. 99, 112301 (2007), Phys. Rev. Lett. 98, 162301 (2007)

The STAR experiment

The Solenoidal Tracker At RHIC (STAR)

Light nuclei identification using TPC = d, dbar, triton: $p_T \sim 1.0$ GeV/c, and ³He up to 4.5 GeV/c.

Light nuclei identification using ToF d, dbar, triton: $p_T \sim 4.0$ GeV/c.

 Time Projection Chamber (TPC) pseudo-rapidity window: -1.0 < η < 1.0 full azimuthal coverage.

M Anderson et al., NIM, A 499, 624 (2003)

 2. Time of Flight (ToF) pseudo-rapidity window: -0.9 < η < 0.9 full azimuthal coverage.

W. J. Llope *et al.*, NIM, B 241, 306 (2005)

Using TPC and ToF π , *K*, *p* can be identified up to $p_T \sim 3.0$ GeV/c.

Phys. Rev. C 88, 014902 (2013)

Theoretical dE/dx values: H. Bichsel, NIM, A 562, 154 (2006)

Rihan Haque, NISER, India

Measurement of nuclei v₂

- ✓ Elliptic flow of *d*, \overline{d} , *t*, ³*He*, ³ \overline{He} measured at mid-rapidity.
- \checkmark η sub-event plane method was used with η-gap = 0.1
- some particles not plotted at lower beam energies due to statistical limitations

Mass ordering of v_2

 \rightarrow Nuclei v₂ shows mass ordering at low p_T similar to hadrons

hadron v₂ from Phys. Rev. C 88, 014902 (2013)

v_2 of triton (t) and ³He

 \rightarrow v₂ of t and ³He are of similar magnitude (within uncertainty)

v₂ of particles and anti-particles

- \rightarrow Nuclei and anti-nuclei shows similar magnitude of difference in v₂
- → The v_2 difference between particle and anti-particle become larger as collision energy decreases, though errors are large at low energies.
- → Statistics for anti-nuclei at beam energies below 19.6 GeV is too low to check this consistency.

Centrality dependence of nuclei v₂

→ Nuclei v₂ shows centrality dependence for all energies
 → antiparticles not shown where statistically limited

Mass number scaling of v₂

Nuclei v_2 show mass number scaling for $p_T/A \sim 1.5$ GeV/c for all beam energies \rightarrow Support the general idea that nuclei are formed by coalescence of nucleons

(anti-) proton v₂ from Phys. Rev. C 88, 014902 (2013)

Coalescence model results

\rightarrow Another indication of coalescence of nucleons to form nuclei

- ✓ Probability for producing a nucleus is given by the overlap of nucleon phase-space distribution with the Wigner phase-space function of nucleons inside the nuclei.
- ✓ Nucleon phase space information used from a transport (AMPT) model.

R. Mattiello et al. Phys. Rev. Lett. 74, 2180 (1995), L. W. Chen et al. Phys. Rev. C 68, 017601 (2003) AMPT model: Zi-Wei Lin et al. Phys. Rev. C 72, 064901 (2005)

Summary

(A) New Measurement presented:

✓ Energy ($\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV) and centrality dependence of nuclei v₂ presented.

(B) Observation and Physics conclusion:

- 1. Nuclei v_2 versus p_T shows a clear centrality dependence and mass ordering when compared with identified hadrons at all beam energies studied
- → Mass ordering of v_2 occurs naturally according to hydrodynamic theory of heavyion collisions.
- 2. Nuclei v_2 versus p_T shows mass number scaling up to $p_T/A = 1.5$ GeV/c
- → Supports the physics picture of coalescence of nucleons as the dominant mechanism for light nuclei production.
- → Results from AMPT+Coalescence calculation are consistent with data.

Thanks..

Acknowledgements: STAR Collaboration, NERSC Grid (LBNL), RCAS Grid (BNL), VECC TIER2 Grid (VECC), KONARK Grid (NISER).

Rihan Haque is supported by DAE-BRNS project grant No. 2010/21/15-BRNS/2026.

a)

 v_2/n_q

particle

0.5

0

1.5

Back up: $(m_T - m_0)/n_q$ scaling

Phys. Rev. C 88, 014902 (2013)

11.5 GeV 19.6 GeV 0.1 7.7 GeV **o**p ★π⁺ Au+Au, 0-80% $\land \land \circ \mathsf{K}^{\mathsf{T}}$ $\Delta \Xi^{\dagger} \Phi K_{s}^{0}$ n-sub EP **□**Ω[¯]**▼**φ 0.05 0.1-27 GeV 39 GeV 62.4 GeV 0.05 0

20

0.5

 $(m_{T}^{-}m_{0}^{-})/n_{a}^{-}$ (GeV/c²)

1.5

20

0.5

1

1.5

2

anti-particle

Phys. Rev. C 88, 014902 (2013)

anti-particle

Phys. Rev. C 88, 014902 (2013)

