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For over a decade studies of the strong interaction in extremely dense

nuclear environments have been done at the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Laboratory. It is hypothesized that colliding

two beams of Au nuclei at relativistic speeds creates an environment of hot

dense nuclear matter where the quarks and gluons inside the nucleus, which are

normally confined within the protons and neutrons, become deconfined into

a soup called the quark-gluon plasma. Since direct observation of this short-

lived phase is impossible, many sophisticated analysis techniques attempt to

study the early interactions via the final state particles. What has emerged

from analyses of the data are two, contradictory paradigms for understanding

the results. On the one hand the colliding quarks and gluons are thought to

strongly interact and reach thermal equilibrium. The other view is that pri-

mary parton-parton scattering leads directly to jet fragmentation with little

effect from re-scattering. It is in principle possible to distinguish and perhaps
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falsify one or both of these models of relativistic heavy ion collisions via the

analysis of two-particle correlations among all charged particles produced in

√
sNN = 200 GeV Au+Au collisions at the STAR experiment at RHIC. This

dissertation presents studies of two-particle correlations, whose derivation can

be traced back to Pearsons correlation coefficient, in transverse momentum

and angular space. In momentum space a broad peak is observed extend-

ing from 0.5-4.0 GeV/c which, as a function of nuclear overlap, remains at a

fixed position while monotonically increasing in amplitude. Comparisons to

theoretical models suggests this peak is from jet fragmentation. In a comple-

mentary study the momentum distribution of correlations in (η, φ) space is

investigated. The momentum distribution of correlated pairs that contribute

to the peak near the origin, commonly associated with jet fragmentation, is

peaked around 1.5 GeV/c and does not soften with increased centrality. These

measurements present important aspects of the available six dimensional cor-

relation space and provide definitive tests for theoretical models. Preliminary

findings do not appear to support the hypothesis of a strongly interacting QGP

where back-to-back jets are expected to be significantly suppressed.
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Chapter 1

Introduction

Colliding two heavy ions at relativistic speeds is interesting to physicists

because of the possibility of creating a unique phase of matter called the Quark

Gluon Plasma (QGP). In a QGP the quarks and gluons, which are normally

confined within the protons and neutrons by the strong force, are free to move

over distances larger than the size of a hadron. Furthermore, a QGP created

in the lab might be similar to the universe a few microseconds after the Big

Bang or present day systems in the center of neutron stars.

1.1 The Strong Force and QCD

The strong force is one of four elementary forces of nature and it is

responsible for binding quarks and gluons together to form particles such as

the proton and neutron. Gluons, the carriers of the strong force, act on objects

that carry a quantum number called color charge. Gluons are unique in the

fact that they also carry a color charge unlike the analogous mediator for the

electromagnetic force; the photon, which carries no electric charge. This adds

many complications to Quantum Chromodynamics (QCD), the theory which

describes strong interactions.
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Figure 1.1: A diagram containing the properties of particles in the standard
model (Figure Credit: Wikipedia “Standard Model”)

Of the fundamental particles which comprise the standard model, quarks

and gluons are the only ones which carry color charge. The standard model

was a significant development in the late 20th century and provides a complete

description of all the fundamental particles as seen in Fig. 1.1.

The color charge states are referred to as either “red”, “blue”, “green”

or the corresponding “anti-color”. A stable particle is color neutral meaning

it contains either two valence quarks that are of a “color” and “anti-color”

or three valence quarks which contain each of the three colors (analogous to

“white”).
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An important feature of the strong force is confinement. Confinement

describes the increasing force of the strong interaction with increasing distance,

contrary to the relationship in the electromagnetic force. Therefore, when

a colored object is pulled from a color neutral particle the force increases

between that object and the other colored objects until it becomes energetically

favorable to produce a new quark-antiquark pair. The new quark or antiquark

recombines with the escaping object to form another color neutral particle.

Due to this process it is impossible to observe a single quark.

The strong force does not act over large distances because colored ob-

jects only exist within the boundaries of a color neutral particle. However, a

small amount of strong force does act amongst color neutral objects, called the

residual strong force, and is responsible for holding the protons and neutrons

together in a nucleus.

Another important characteristic of the strong force was discovered

in the early 1970s by physicists David Politzer, Frank Wilczek, and David

Gross [14, 15]. They hypothesized that as the distance between the interact-

ing quarks and gluons decreases the strong force will become asymptotically

weaker and approach zero. This property is called asymptotic freedom and

Politzer, Wilczek, and Gross received a Nobel Prize for this work in 2004.

The Relativistic Heavy Ion Collider was built to test the hypothesis

that high energy densities and high temperatures would be produced in heavy

ion collisions which, due to asymptotic freedom, may create a deconfined soup

of quarks and gluons called a quark gluon plasma. This dissertation contains
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analyses of Au+Au collision data with a center of mass energy of 200 GeV

detected by the Solenoidal Tracker at RHIC (STAR) experiment.

1.2 Analysis Technique

Most consider the primary physics objective of RHIC is the search

for signatures of a QGP in heavy ion collision data. This is an especially

challenging task since direct observation of this short-lived phase is impossible.

Sophisticated analysis techniques are required to study the early interactions

via the final state particles.

The analysis method used in this dissertation is a two-particle corre-

lation measure, whose derivation can be traced back to Pearson’s correlation

coefficient. This measure is formed from all pairs of particles in a collision

averaged over millions of collisions and enhances otherwise small signals in

the data. These signals are from physical processes that create a particular

distribution in momentum and/or angular space.

Heavy ion collisions are classified by the amount of nuclear overlap of

the colliding nucleons. There is likely no QGP formed in collisions with a small

nuclear overlap due to the small amount of interacting nuclear material. These

“peripheral” collisions should be similar to proton-proton collisions which have

been studied for decades at other high energy colliders and provide a good

point of reference. As the nuclear overlap of the ions increases so does the

energy and density of the interacting medium. Therefore signatures of a QGP

are expected in collisions with a large amount of nuclear overlap.
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This dissertation presents new correlation measurements of particles

in transverse momentum (pt) space, or the momentum perpendicular to the

beam axis, as a function of nuclear overlap. The findings are that, in peripheral

collisions, it is most likely to observe pairs of particles both with a momentum

around 1.5 GeV/c. This correlation signal is manifested as a broad peak

in the 2D (pt, pt) space. As events are selected with increasing amounts of

nuclear overlap this peak increases in amplitude but remains at the same

approximate location. Comparisons to theoretical models suggests the main

source of correlations is from jet fragmentation.

Jets are defined experimentally as back-to-back sprays of collimated

particles. They are a well-studied phenomena in electron-positron and proton-

proton collisions and are accurately described by perturbative QCD [16]. Ob-

serving the properties of individual jets in collisions with a large amount of

nuclear overlap is more challenging compared to single nucleon-nucleon col-

lisions because of larger backgrounds. Nonetheless, it is an important and

active analysis topic. Some analyses attempt to reconstruct single jets by

selecting particles with a relatively high pt, known as the trigger particle,

and then clustering particles around this track to form a group of collimated

particles (see for example [17]). Other analyses attempt to statistically recon-

struct jets by forming correlations of the high pt trigger particle with lower

pt “associated” particles. The reconstructed jets are found to be highly mod-

ified in collisions with a large nuclear overlap as compared to proton-proton

collisions [18]. While this modification, referred to as “jet quenching”, only
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indicates partonic energy loss, it is also proposed to be a signal of the ther-

malization of jet fragments in a color dense medium [19].

In heavy ion collisions, the total momentum of reconstructed jets are

typically on the order of 10s of GeV. However, jet processes, as described

by hard transverse scattering in QCD, continue down to parton transverse

momentum amplitudes of a few GeV/c with hadron fragments much less than

1 GeV/c. This complete “minimum bias” jet spectrum can be accentuated

via correlations with no pt limits or clustering algorithms. Surprisingly, the

minimum bias jets are still highly correlated in events with a large nuclear

overlap. This does not support a QGP hypothesis in which particles should

be thermalized and any initial structure should be erased.

The rich source of information contained in two-particle correlations

makes it an active analysis topic with many publications. The interpretation

of some of the observed correlation structures is actively debated [11, 20]. Two

theories are that the system reaches thermal equilibrium and develops strong

collective flow or the system is dominated by primary parton-parton scattering

leading directly to fragmentation with little subsequent re-scattering.

This dissertation presents complete descriptions of the available cor-

relation space in which theoretical models can be tested. For example, the

momentum distribution of pairs correlated in the angular structure associated

with jets is observed to peak around an intermediate pt of 1.5 GeV/c. This

momentum distribution does not soften with an increase in nuclear overlap

and therefore does not support the idea of an opaque, QGP-like system.
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1.3 Outline

The seven chapters contained in this dissertation encompass the au-

thor’s analysis of
√
sNN = 200 GeV Au+Au collisions at RHIC with the

STAR detector. Following this introduction Chapter 2 reviews the history

of Brookhaven National Laboratory and experimental details of the RHIC

accelerator complex and the STAR detector.

Chapter 3 motivates and derives the two-particle correlation measure

after defining the relevant kinematic variables. The selection criteria on the

event and track level are also documented and explained. Chapter 5 reviews

previous two-particle correlation analyses and its origin in fluctuation measure-

ments. Results from proton-proton collisions are examined before introducing

more recent results in heavy-ion collision systems.

New measurements of two-particle correlations in transverse momen-

tum space are presented in Chapter 5. The data are distinguished by the

charge combination and relative opening angle of the pairs of particles. Fea-

tures of the data are also quantified with a fit model. The analysis of the

momentum dependence of angular correlation features is presented in Chap-

ter 6. Concluding remarks are found in Chapter 7.
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Chapter 2

Experiment Details

The United States has supported cutting edge research in national lab-

oratories since the early 20th century. There are currently 17 national labora-

tories funded by the Department of Energy, 10 of which are under the guidance

of the Office of Science including Brookhaven National Laboratory. This chap-

ter provides relevant information about the experimental facilities needed to

collect the heavy ion collision data for the present analysis.

2.1 Brookhaven

Brookhaven National Laboratory was established in 1947 in Upton,

Long Island, New York with the goal to study atomic physics. The first large

experiment built was the Cosmotron accelerator [21]. The Cosmotron accel-

erated protons up to 3.3 GeV, the energy frontier at the time and provided

the first external beam of accelerated protons for other on-line experiments.

In 1960 the Alternating Gradient Synchrotron (AGS) was constructed and

led to many important achievements in physics including the discovery of the

charmed baryon in 1975. Seven Nobel prizes in total have been awarded to

Brookhaven scientists, not only in physics but also chemistry. In fact, many
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fields of science are studied on the Brookhaven campus including nanotechnol-

ogy, biomedicine, and environmental sciences [21].

Currently the premier facility at Brookhaven is the Relativistic Heavy

Ion Collider (RHIC), the world’s largest accelerator devoted to nuclear physics.

RHIC’s history begins with a failed project in the 1970s named ISABELLE

(Intersecting Storage Accelerator + BELLE). ISABELLE was to have two in-

tersecting proton rings and the latest technology in accelerator physics through

the use of superconducting magnets. In 1978, after the project was funded and

fully supported by US President Carter, the tunnel excavation began. How-

ever, problems soon developed in the fabrication of the superconducting mag-

nets which lead to the eventual abandonment of the ISABELLE project [22].

Subsequent construction projects in the field for the next ten years were

started and abandoned including the Colliding Beam Accelerator (CBA) and

the Superconducting Supercollider (SSC). After the cancellation of the SSC

project, the idea was conceived to use the existing tunnel dug for ISABELLE

to start a new physics program to search for the Quark Gluon Plasma (QGP).

In 1990 the RHIC project was funded and after ten years of construction it

began to operate in 2000.

2.2 RHIC

RHIC is a multipurpose machine capable of accelerating several species

of ions from protons (N=1) to Uranium (N=92). These ions are accelerated in

two separate counter-rotating beams 3.8 km (2.4 miles) in circumference up to
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Figure 2.1: Diagram of the accelerator facilities at Brookhaven National Lab-
oratory which provide Au+Au collisions

energies of 100 GeV/c for heavy ions and 250 GeV/c for protons [23]. RHIC

is also the only accelerator capable of delivering high-energy polarized proton

beams.

The process of creating heavy ion collisions will be described in detail

through the life cycle of a gold (Au) ion accelerated to 100 GeV. Figure 2.1

illustrates the multi-stage process which begins at the ion source. Gold ions are

made with a cesium sputter ion source operated in pulsed beam mode [24]. In

pulse mode the source can produce a 500 µs long pulse with a peak intensity of

290 µA without causing damage to the accelerator. In 2010 the ion source was

upgraded to the Electron Beam Ion Source (EBIS) which can deliver intensity

on the order of mA [25].

After the cesium ion source creates a beam of negatively charged Au
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ions, they are accelerated to +15 MeV from ground in the first section of

the tandem Van de Graaf. The ions then pass through a thin carbon foil (2

µg/cm2) [26] which strips electrons from the ions until they are left in a +12

charge state. The positively charged ions are then accelerated back to ground

potential in the second half of the Van de Graaf and exit with an energy of 1

MeV/nucleon. Upon exiting, the ions pass through another stripping foil and

bending magnets select a beam of ions with a +32 charge state [23].

The ions then enter the Booster Synchrotron which bunches and accel-

erates the ions to 95 MeV/nucleon. More electrons are stripped as the bunches

exit until the ions are charge +77 (helium-like). Next, the Alternating Gradi-

ent Synchrotron (AGS) accelerates the ions to 10.8 GeV/nucleon, the desired

RHIC injection energy.

Finally, the four bunches which were made in the AGS enter the AGS-

to-RHIC Beam Transfer line one at a time and are stripped of all remaining

electrons. Each bunch contains 109 ions and is injected into one of the two

counter-rotating beam lines via a steering magnet switch. This process is re-

peated until both beam lines are full which takes on the order of a minute [26].

The two counter-rotating beam lines are separated 90 cm horizontally

and referred to as blue (clockwise) or yellow (counter-clock-wise). The ring

shape of each beam-line is comprised of six arc segments 356 m long and six

insertion sections 277 m long [23]. The insertion sections contain the crossing

points centered in the RHIC detectors. Each arc has 11 segments that con-

tain two dipoles, two quadrupoles, and two sextupoles. The dipoles provide
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the magnetic force to move the beam particles in a circular path. One of the

quadrupole magnets focuses the beam in the horizontal direction and subse-

quently defocuses it in the vertical direction. Therefore the second quadrupole

magnet is rotated 90 degrees to focus the beam in the vertical direction while

defocusing in the horizontal direction. The focusing power of the quadrupole

magnets is dependent on the energy of the particles. Therefore any spread

in the particle’s energy results in a spread of the position. The focusing ca-

pabilities of the sextupole magnets are used to reduce this energy dependent

spread.

At the time of this dissertation, RHIC has operated 11 physics runs

since 2001 with 14 combinations of ion species and collision energy. The inte-

grated luminosity as a function of time is shown in Fig. 2.2.

2.3 RHIC Detectors

Of the six intersection points located along the RHIC beam line four

large-scale detectors have been constructed. Two of the detectors, PHOBOS

and BRAHMS, have already been decommissioned after their physics goals

were reached. PHOBOS was designed to analyze a large sample of heavy ion

collisions but only detect a small portion of each event. Measurements of

fluctuations in particle production were used to determine the possible tem-

perature, size, and density of the dense heavy ion environment. In contrast,

BRAHMS was designed to measure particles production over a large accep-

tance, a wide range of transverse momentum, and with good particle iden-
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Figure 2.2: Heavy-ion collisions at RHIC recorded by STAR and the integrated
luminosity (blue line) [1].

tification. BRAHMS measurements complemented the data taken by more

precise, smaller acceptance detectors.

The two detectors still active are PHENIX and STAR. PHENIX (the

Pioneering High Energy Nuclear Interaction eXperiment) has a large pseudo-

rapidity coverage but with significant acceptance gaps [27]. It consists of

three magnetic spectrometers, one main central spectrometer and two arms

to the west and east [23]. PHENIX also has two muon arms to the north

and south which help with tracking and identification of leptons. Overall

PHENIX is optimized to study specific process by tracking and identifying
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leptons, hadrons, and photons.

2.4 STAR

The data used in this dissertation were detected by the STAR (Solenoidal

Tracker At RHIC) experiment. STAR is designed to measure basic properties

of most of the produced particles over a relatively large acceptance. Like many

other high energy detectors it is a system made up of many specialized com-

ponents as seen in Fig. 2.3. A section will be devoted specifically to the Time

Projection Chamber (TPC), which many consider to be the heart of STAR.

Other detectors such as the Time Of Flight (ToF) and the Electromagnetic

Calorimeter (EMC) will be briefly described in this section. Detectors used for

triggering (selecting events to be recorded) such as the Central Trigger Barrel

(CTB) and Zero Degree Calorimeter (ZDC) will be described in Sec. 3.2.1.

2.4.1 TPC

Most analyses in STAR rely heavily on the track position and momen-

tum information provided by the Time Projection Chamber (TPC). For a

period, STAR’s TPC was the largest in the world with a 4 m diameter, 4.2 m

length and full azimuthal coverage (2π). Only in 2004 when the TPC in the

ALICE experiment at the Large Hadron Collider was built was it surpassed

in size. STAR’s TPC can record charged particle momenta greater than 100

MeV/c and up to 30 GeV/c [28]. The tracking capabilities of the TPC are

even more impressive in a dense environment where a single ion-ion collision
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Figure 2.3: A cutaway view of the STAR detector to view inner detectors
active in 2004 [2].

routinely contains over a thousand particles.

A charged particle traveling through the TPC leaves signals along its

path via ionization of the TPC gas. The released electrons drift to the nearest

end of the TPC via an electric field which is pointed in opposite directions in

each half of the TPC. The 135 V/cm electric field is generated by the thin

conductive central membrane, an inner and outer field cage and the end caps

as seen in Fig. 2.4 [28]. The electrons then avalanche at the readout system

in the endcaps, amplifying the signal 1000-3000 times.

The amount of time the electrons travel to the end caps and the drift

velocity (5.45 cm/µs) provide a measurement of the particle position along

the z-axis (beam direction). The position along the radial and azimuthal
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Figure 2.4: A diagram of the STAR TPC detector.

directions are determined by the highly segmented Multi-Wire Proportional

Chambers (MWPC) readout system in the end caps. The MWPC measures a

temporary image charge induced from positive ions that are produced in the

electron avalanche. The MWPC at each end is divided into 12 sectors with

5692 pads each. The best tracking efficiency is for high momentum particles

perpendicular to the beam line at 96% [28]. The inefficiency is due to the

sector boundaries. Embedding analyses estimate the systematic error on the

tracking efficiency to be 6% [28]. The momentum resolution for pions is about

2%.

16



The TPC is filled with a mixture of 10% methane and 90% argon gas at

2 mb above atmospheric pressure. This gas mixture has a fast drift velocity at

a low electric field which reduces the sensitivity to fluctuations in temperature

and pressure [28].

The TPC operates inside a 0.5 T magnetic field oriented along the

length of the cylinder. The magnetic field is generated by a cylindrical solenoidal

magnet that has a radius of approximately 230 cm, a length of 5.6 m and weighs

more than 1100 tons [29]. The force generated by the magnetic field curves the

trajectory of charged particles in the transverse plane via the Lorentz force and

the amount of curvature gives a measure of the particle’s momentum through

the relation (~p = q ~Br). The magnetic field needs to be strong enough to bend

the trajectories of high momentum particles but weak enough to allow the

tight spiral of low momentum particles to reach the detector volume, which is

located 50 cm from the beam pipe. The homogeneity of the magnetic field also

effects the uncertainty in the reconstructed track positions. The distortion of

the magnetic field in STAR is estimated to be ± 0.0040 T.

Particle identification is also possible because the amount of energy

loss by a particle in the TPC via ionization (dE/dx) is related to its velocity

through the Bethe (also known as Bethe-Bloch) equation [30]. Fig. 2.5 shows

the relationship between dE/dx and transverse momentum. The red curves

represent predictions from Bethe-Bloch for various mass assumptions. Fits

to these distributions can be used to identify particles with varying levels of

accuracy that depend on the amount of overlap.
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Figure 2.5: Ionization energy loss (dE/dx) as a function of transverse mo-
mentum (pt) for 200 GeV Au+Au collisions. Figure provided by Masayuki
Wada.

The acceptance of the TPC was also extended with a Forward TPC

(FTPC) detector system located on each side close to the beam pipe.

2.4.2 Other Detector Subsystems

STAR has the capability to measure deposited energy in the electro-

magnetic calorimeter (EMC) comprised of a full-barrel calorimeter (BEMC)

and an endcap (EEMC) with a full azimuth acceptance. The EMC samples the

deposited energy of photons and electrons created from the collision directly,

as well as electromagnetically decaying hadrons [2]. The energy is measured

via layers of lead and plastic scintillators. The size and cost constrained the

specifications of the detector which has a total depth of about twenty radiation
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lengths at the center [31].

In 2010 STAR was upgraded with a new particle identification detector

system called the Time-Of-Flight (TOF). Since TOF was intended to replace

the Central Trigger Barrel (described in Sec. 3.2.1) the physical specifications

were designed to match exactly. The total system consists of 120 trays located

just outside the TPC as seen in Fig. 2.3. The 60 detectors in each half cover 2π

in azimuth and span approximately 5 m in total length (two trays end-to-end).

The TOF system improves particle identification with a precise mea-

surement of the velocity β, which combined with momentum information ob-

tained with the TPC are directly related to the particle’s mass. A complete

description of the TOF system and variables can be obtained from Ref. [32].

The velocity and mass relation is found in Eq. 2.1.

1

β
= c

tstop − tstart
∆d

m =
p

γβc
=
p
√

1− β2

βc
=
p

c

√
1

β
− 1

(2.1)

The velocity requires two time measurements. The time of the initial

collision tstart is measured with two new vertex position detectors known as

upVPDs. The time at which the particle reaches the TOF trays is the final

“stop” time tstop. With a precise measurement of the distance to the TOF

trays ∆d, a measurement of the velocity is possible.

The essential components in each TOF tray are 32 Multi-gap Resistive

Plate Chambers (MRPCs). An MRPC consists of five glass layers with uniform
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Figure 2.6: A scatter plot of track information, 1/β vs momentum (p) for 200
GeV Au+Au collisions. Figure provided by Masayuki Wada

gaps in which a mixture of 95% Freon and 5% iso-butane flow. As particles

stream through the MRPC many small electron avalanches are created in each

gap, which improves the timing resolution compared to one large avalanche.

The electrons drift toward the top of the MRPC due to a strong electric field.

The sum of the avalanches are read out by electronics connected to six channels

per MRPC. The measured timing resolution of the TOF detector is 90 ps.

The fully installed TOF system has been very successful. The sepa-

ration power of particle species is extended to higher momentum as seen in

Fig. 2.6. Future work in this analysis will include correlations of identified

particles which is made possible with the results from TOF.
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Chapter 3

Analysis Details

The two-particle correlation results presented in this dissertation rely

on a high level of data quality and precise measurement techniques. After

introducing the kinematic variables relevant to the data, the event and track

cuts used to reduce experimental artifacts or detector inefficiencies are de-

scribed. Lastly the process to form a meaningful statistical measurement of

correlations in heavy ion collisions is outlined.

3.1 Variables

Most analyses at STAR are based on information gathered by STAR’s

TPC, which detects the path of particles streaming through ionizing gas in

a magnetic field. Since the TPC is cylindrically shaped, an obvious choice

to describe the trajectory is cylindrical coordinates. Cylindrical coordinates

contain a height z (beam direction), azimuthal angle φ, and radial distance

r. However, the position along the cylinder (z) is dependent on the arbitrary

interaction point and holds no physics meaning. A coordinate system with a

well defined center makes more sense. Spherical coordinates satisfy this con-

dition and are usually described with an azimuthal angle φ, a radial distance
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Figure 3.1: Coordinate system drawn over an outline of the TPC volume

r, and a polar angle θ.

Figure 3.1 presents these variables within the TPC acceptance. The

radius is the component of the momentum vector in the x and y plane (per-

pendicular to the beam) and is known as transverse momentum pt. The polar

angle θ measures the angle of the momentum vector with respect to the beam

axis. However, the properties of the relativistic variable pseudo-rapidity η,

which is a function of the polar angle θ, are more advantageous. This is pri-

marily because particle production is constant on the variable pseudo-rapidity,

unlike θ.

Pseudo-rapidity is derived from the variable rapidity y in the high-

energy limit. Rapidity can be thought of as a measure of relativistic velocity.

The benefit is that, unlike relativistic velocities, rapidity is additive, “the

rapidity of the particle in one frame of reference is related to the rapidity in

another Lorentz frame of reference by an additive constant” [33]. Therefore

the difference in η values is independent of the Lorentz boost along the beam
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axis. Rapidity is dimensionless and defined as,

y =
1

2
ln

(
p0 + pz
p0 − pz

)
, (3.1)

where p0 is the energy of the particle and pz is the z-axis component of the

momentum vector ~p = (px, py, pz).

Measuring the energy of a particle requires knowledge of the mass which

is not easily obtained in most experiments. However, when the energy is much

greater than the mass we can assume p0 → |~p|. With some algebra, rapidity

y in the high energy limit becomes pseudo-rapidity η, and is defined in the

second line of Eq. 3.2.

y −−−−→
E>>m

=
1

2
ln

(
|~p|+ |~p|cosθ

|~p| − |~p|cosθ

)
= ln

(
1 + cosθ

1− cosθ

)1/2

η = −ln[tan(θ/2)] (3.2)

In this dissertation the two-particle correlation data on transverse mo-

mentum (pt =
√
p2
x + p2

y) will be presented instead as a function of transverse

rapidity yt because it improves visual access. This is because the transverse

component of rapidity, yt, is essentially the logarithmic measure of pt. Trans-

verse rapidity is defined as

yt =
1

2
ln

(
p0 + pt
p0 − pt

)
→ yt = ln

(
mt + pt
m0

)
, (3.3)

where mt =
√
p2
t +m2

0 is the transverse mass. Transverse rapidity has a well

defined zero due to the mt offset, unlike a purely ln(pt) measure. Since the

present analysis is of unidentified particles, the mass m0 is arbitrary. The pion
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mass is the default choice for m0 because the majority of particles are pions

and the value is below the measured pt range, thus yt closely approximates

ln(pt).

3.2 Event Selection

Events are a collection of information recorded in a specific time win-

dow by the suite of detectors in response to a selection criteria. Event se-

lection aims to identify information which corresponds to a genuine and de-

sired physics event (e.g. a nucleon-nucleon collision). Event selection occurs

throughout the data acquisition and analysis process from the earliest stages

by the data acquisition system (DAQ) to the later stages by researchers with

specific analysis goals.

3.2.1 Trigger

A trigger is a set of criteria used to accept or reject an event during

data collection. They are an important part of the STAR experiment since

the beam-beam interaction rate in 2004, for example, was 10 MHz while slow

detectors such as the TPC can only process information at rates of 100 Hz [34].

Triggering allows the events with the most potential for meaningful physics to

be flagged and recorded. The triggers are separated into levels based primarily

on the speed of execution. The lowest level (L0) is executed with the fastest

detectors and is able to reduce the event sample by many orders of magnitude.

The next levels of triggers take more time to process so the data recording
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Figure 3.2: Fast trigger detectors in STAR.

begins immediately but the process is aborted if the event is rejected. The

storage rate of events that pass all trigger levels is approximately 5 Hz [34].

The L0 trigger in 2004 used information recorded by the Central Trigger

Barrel (CTB) and the Zero-Degree Calorimeters (ZDC) detectors [34]. The

CTB was the next layer of detectors outside the TPC and consisted of 240

scintillator slats which covered a pseudo-rapidity range of |η| < 1 and 2π in

azimuth. The CTB’s main objective was to record the number of charged

particles over a large solid angle. The CTB was fully decommissioned and

replaced in 2010 by the Time-Of-Flight system.

The ZDC consists of two detectors on either end of the STAR detector

close to the beam pipe as seen in Fig. 3.2. It detects neutrons though layers of
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lead and scintillators with a timing resolution of about 100 ps. The detected

“spectator” neutrons were freed during the heavy ion collisions and continued

traveling down the beam pipe. The path of positively charged spectator pro-

tons are bent by the steering magnets while the neutrons continue unaffected

towards the ZDC. The maximum number of freed neutrons are detected in

collisions that partially overlap because the interactions are large enough to

dislodge neutrons from the nucleus but not be completely destroyed. Con-

versely, the minimum number of neutrons are detected in collisions with a

minimal or maximal nuclear overlap. In any case, a coincidence in signals

from both of the ZDC detectors is used to identify an event. Furthermore, the

small difference in timing of the signals detected in the two ZDCs provides a

way to measure the location of the collision vertex.

The STAR collaboration labels triggers with a word briefly describing

the motivation behind the selection criteria. Some of the most common trigger

words are “minimum bias”, “central”, “UPC”, and “high tower”. A minimum

bias trigger flags events that pass the least restrictive cuts in an effort to collect

a comprehensive sample of heavy ion collisions. The data in this dissertation

were labeled as minimum bias meaning the CTB sum was greater than 75

(in arbitrary units proportional to the number of charged particles) and the

ZDC signal was greater than some threshold, typically about 40% of the single

neutron peak in both the east and west detectors. The distribution of events

with respect to these two quantities is shown in Fig. 3.3.

A central trigger is used to record collisions with a large nuclear overlap
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Figure 3.3: The distribution of events with respect to summed signal ampli-
tudes from the CTB and ZDC [3].

(high multiplicity). This trigger includes the minimum bias requirements plus

a higher threshold of multiplicity in the CTB and a lower number of specta-

tor neutrons in the ZDC. The ultra peripheral collision (UPC) trigger selects

collisions with a small nuclear overlap. The high tower trigger selects events

with a large amount of energy deposited in the calorimeter and is most often

used in jet physics analyses.

Other detectors used for triggering, but not for the minimum bias trig-

ger in 2004, include the Beam-Beam Counter (BBC), the electromagnetic

calorimeter (EMC), and the Forward Pion Detector (FPD). The BBC pro-

vides a measurement of the position of the interaction along the beam pipe

using precise timing information from two detectors located on either side of
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the TPC. The EMC can identify events with large amounts of energy deposited

in its lead-scintillator sections. The FPD, which detects neutral pions, is used

mostly during polarized proton running.

3.2.2 Vertex Cut

The two counter-rotating beams at RHIC are steered to intersect as

close to the center of the STAR detector as possible. Collisions at the center

of the detector are ideal because the solid angle covered by the detectors is

maximized. Realistically, the beam-beam intersection volume can vary on the

order of tens of centimeters from the geometric center of the detector. Events

are selected with intersection points in specific ranges along the beam axis to

control the amount of variation of the detector coverage. A reasonable z-vertex

range for minimum bias analysis studies in 2004 data was chosen to be |z| < 25

cm.

3.2.3 Pileup

For each triggered event the TPC records data for approximately 40 µs

to allow the ionized electrons enough time to reach the electronics on either

end of the TPC. All tracks reconstructed during this time window are known as

global tracks. The global tracks are then processed further to determine those

associated with the primary collision vertex, known as “primary” tracks. The

mistaken association of tracks from other collisions with the primary collision

vertex is called pileup. In high luminosity conditions, where the density of ions
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in a bunch is high, pileup is most often caused by multiple interactions within

a single bunch crossing. However, in the experimental conditions for this

data (average luminosity of 5 × 1026 cm−2s−1), the probability of having two

or more interactions per beam crossing is very small. The term “pileup” will

instead, due to the relatively slow readout time of the TPC, be used to describe

the situation in which tracks from collisions that occurred before or after the

triggered event, in a separate beam crossing, are mistakenly associated with

the primary collision.

This type of pileup is a probable occurrence in STAR data because the

TPC electronics take 40 µs to record a triggered event while a bunch crossing

occurs every 120 ns [2]. Therefore there is a distinct possibility that a particle’s

track from another collision will be measured at the same time as a triggered

event in the TPC. Most often these pileup tracks can be eliminated in the first

level of event reconstruction because pileup tracks generally do not point to

a reconstructed vertex or begin at a distance far away from the reconstructed

vertex. However, cases in which pileup tracks are incorrectly grouped with the

primary collision result in significant unwanted structure in correlation data.

It was estimated that 2004 Au+Au data contained approximately 0.5%

pileup [11]. Even this small amount of pileup contamination has a noticeable

effect on minimum bias correlation data, mostly due to a smaller η range of

pileup tracks versus real tracks that have an η range of approximately 2 units.

This mismatch in the η range of pileup events causes a characteristic “w”

shape in angular correlations. This has necessitated the use of an additional
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pileup filter over what is used in other analyses in order to eliminate the effects.

Duncan Prindle at the University of Washington developed a pileup filter that

eliminates almost all indications of pileup contamination in the two-particle

correlation data [4]. It utilizes unique signatures of track distributions created

from pre- and post-pileup events.

The ionized electrons produced from particles in a collision that oc-

curred before the triggered event (pre-pileup) will travel through the TPC for

a period of time before the readout clock begins. This mismatched timing cre-

ates a distinct signature from the particles that cross the central membrane,

which produce ionized electrons that drift to both ends of the TPC. The tracks

from particles that crossed the central membrane before the readout clock be-

gan will appear as if they began a distance d from the central membrane on

both ends of the TPC as seen in Fig. 3.4. The distance the tracks are shifted

from the central membrane is the product of the drift velocity in the TPC and

the time between the pileup collision and the primary collision.

The tracks in the right panel of Fig. 3.4 that were split at the central

membrane will have the same starting value on the z-axis (zfirst) in the TPC

half not containing the pileup vertex and the same ending values (zlast) in the

TPC half containing the pileup vertex. The pileup filter utilizes this signature

of a peak in the zfirst and zlast positions roughly the same distance apart

from the central membrane. An example of this signal is shown in Fig. 3.5.

In addition, this pileup collision will have two reconstructed vertices that are

separated the same distance between zfirst and zlast (2d).
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Figure 3.4: Cartoon of pre-pileup in two frames of observation. The event is
triggered from the pileup collision (left panel). The collision occurs some time
before the triggered event (right panel). The tracks from particles that cross
the central membrane are split in the right panel into two different colors (blue
and yellow) that correspond to one track in the left panel.

A collision that occurs some time after the triggered collision is also

a source of pileup. In this scenario the TPC readout clock stops before all

the ionized electrons from post-pileup particles reach the ends of the TPC.

Therefore, the reconstructed paths of all the pileup particles abruptly stop

some distance, d, from the ends of the TPC as seen in Fig. 3.6.

The signature of these events is a peak in the zlast values on both sides

of the TPC. The peak position will correspond to the product of the drift

velocity in the TPC and the time between the triggered and pileup collision.

This peak will also be symmetric on both ends of the TPC as seen in Fig. 3.7.

The risk of pileup contamination in our primary event sample will oc-

cur when reconstructed pileup vertices are very close to the primary vertex

from the event. There are four sources of information used to identify pileup

vertices: the histograms of zfirst and zlast as described above; and the dis-

31



Figure 3.5: Histograms of the first and last position of global tracks in an
event that contains pre-pileup [4].

tribution of all tracks in each side of the TPC. For triggered events, a vertex

that is reconstructed from only tracks in one side of the TPC should match

the vertex reconstructed from tracks in the other side, while for events with

pre-pileup the two vertices should not match [35]. Comparing the pairs of

vertices from both methods is also a good way to identify pileup events.

The filter developed by Duncan Prindle uses the pileup vertices deter-

mined from the histograms of zfirst and zlast, which are directly related to the

separation distance of the reconstructed pileup vertices (2d), and compares

it to the good primary vertex stored with the event. If the distance is too

small then the reconstructed primary vertex probably contains tracks from

the pileup collision. If it is large then it probably did not contaminate the pri-
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Figure 3.6: Cartoon of a collision in three scenarios. The event is triggered
from the collision (top left). The collision occurs some time after a triggered
event (top right). The reconstructed positions of tracks (bottom).

mary collision. For the present analysis, events were cut that had a separation

distance less than 20 cm.

The efficiency of this pileup removal procedure f is estimated to be

75 ± 10% [11]. Most of the inefficiency is caused by tracks that do not cross

the central membrane which is an important feature in identifying pre-pileup.

The correlation measure can be extrapolated to a fully pileup removed sample

by solving the two equations in Eq. 3.4. The quantity ∆ρ/
√
ρ is the correlation

measure and will be described in more detail in this chapter.
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Figure 3.7: Histograms of the first and last position of global tracks in an
event that contains pileup tracks from after the triggered collision [4]

∆ρ
√
ρref

(no filter) =
∆ρ
√
ρref

(no pileup) +
∆ρ
√
ρref

(pileup)

∆ρ
√
ρref

(with filter) =
∆ρ
√
ρref

(no pileup) + (1− f)
∆ρ
√
ρref

(pileup) (3.4)

This extrapolation procedure required the complete data set to be an-

alyzed twice, with and without the pileup filter.

3.2.4 Centrality

STAR was designed to study properties of nuclear matter at high ener-

gies and densities. The energy density of the colliding system is dependent on

the volume of nuclear material interacting during the ion-ion collision. This

volume, related to the amount of nuclear overlap, can not be predetermined
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by the experiment nor observed directly. However, with model calculations it

can be related to the number of charged particles produced Nch, also known

as the multiplicity. This classification of events with respect to multiplicity as

a proxy for nuclear overlap is called centrality.

The centrality of events are indicated by percentages ranging from 0 to

100%. The percentage reflects the fraction of events in a Nch range, where 0%

indicates the most overlap or most central and 100% indicates the least overlap

or most peripheral. In other words, the 0− 5% centrality fraction consists of

5% of the total number of events with the the highest Nch.

The first step in defining centrality fractions is to plot the frequency of

events versus multiplicity which is shown in the left panel of Fig. 3.8 for 11

million Au+Au 200 GeV events taken in 2004. The multiplicity in this case is

for all accepted tracks used in the analysis (pt > 0.15 GeV/c, |η| < 1, φ < 2π).

Plotting the multiplicity distribution on a log-log scale revealed an ap-

parent “power-law” trend [36] as seen in the third panel of Fig. 3.8. The slope

is approximately n
−3/4
ch (dσ

dn
∝ n−3/4). This observation motivated a trans-

formation of variables that would create a distribution that is approximately

constant as a function of n1/4.

The n3/4 factor can be thought of as a Jacobian in the transformation
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Figure 3.8: Plots of the multiplicity distribution of events from Au+Au 200
GeV 2004 collisions on various scales.

dn→ dn1/4.

dσ

dn
n3/4 ∝ constant

n =
(
n1/4

)4 → dn = 4
(
n1/4

)3
dn1/4 = 4n3/4dn1/4

n3/4 =
1

4

dn

dn1/4

dσ

dn
n3/4 =

1

4

dσ

dn1/4
= constant (3.5)

Therefore plotting dσ
dn1/4 versus n1/4 should result in a distribution that

is roughly square as seen in the lower right panel of Fig. 3.8. This shape

facilitates the process of dividing the event distribution into bins of equal

statistics. However, the left edge at low n1/4 is diminished by trigger and
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vertex finding inefficiencies. A corrected value of the half-maximum location

on the left edge can be calculated via a Monte Carlo Glauber model simula-

tion of nucleus-nucleus collisions convoluted with the multiplicity distribution

of single nucleon-nucleon (p+p) collisions [37]. Data from p+p collisions are

more reliable because it suffers from less trigger inefficiencies and background

contamination. A Monte Carlo Glauber simulation samples some parent dis-

tribution for a value of the impact parameter and the nucleons that overlap

according to a Wood-Saxon distribution are allowed to interact. The result of

the convolution is a value of the left edge half-maximum location on the x-axis

of approximately one-half the mean Nch for p+p collisions [36]. The distribu-

tion in the lower right panel is then shifted according to this value. The upper

end point of the multiplicity distribution, located where the impact parameter

is effectively zero, is also effected by trigger inefficiencies and is corrected via a

parametrization of the shape of the distribution. More details on the process

of correcting the centrality definitions can be found in Ref. [37].

The Glauber model along with the power-law procedure provided effi-

ciency corrected centrality definitions. The final centrality definitions used in

this analysis are presented in Table 3.1.

3.3 Track Selection

A reconstruction code creates particle “tracks” by connecting signals,

or “hits”, in the TPC that are made when charged particles ionize the gas.

Properties of the reconstructed tracks can be used to judge the probability
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Raw Corrected Multiplicity ν
Centrality (%) Centrality (%) Nch

90 - 100 84 - 93 2 - 14 1.40
80 - 90 74 - 84 15 - 34 1.68
70 - 80 64 - 74 35 - 67 2.00
60 - 70 55 - 64 68 - 116 2.38
50 - 60 46 - 55 117 - 151 2.84

152 - 186
40 - 50 38 - 46 187 - 233 3.33

234 - 280
30 - 40 28 - 38 281 - 340 3.87

341 - 401
20 - 30 18 - 28 401 - 450 4.46

451 - 500
501 - 550

10 - 20 9 - 18 551 - 613 5.08
614 - 675
676 - 738

5 - 10 5 - 9 739 - 795 5.54
796 - 851

0.25 - 5 0 - 5 852 - 901 5.95
902 - 951

952 - 1001

Table 3.1: Centrality definitions as a function of Nch for 2004 200 GeV Au+Au
collisions with pt > 0.15 GeV/c, |η| < 1, and φ < 2π. The centrality measure
ν is defined in Sec. 3.4.2

of it originating from the primary vertex or describing the particle’s features

accurately. The following section will outline the quality assurance cuts applied

to reconstructed tracks in this analysis.

The curved path of charged particles in a magnetic field, to first order,

is accurately described by a helical fit model [28]. The fit has an associated

χ2 per degree of freedom and this analysis required it to be less than 3. A
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track could also be artificially split into two or more fragments during the

reconstruction process. This typically occurs when the number of TPC hits

used for a fit is less than 15. Therefore, the number of TPC hits used to fit

a track was required to be between 15 and 50. Furthermore, the percentage

of the number of fit points to the estimated maximum number of fit points

must be greater than 52% and less than 110%. The estimate is made based on

the position of the track in the TPC and also helps eliminate track fragments

created during reconstruction.

A good event should only have tracks that originated very close to the

primary vertex. In fact, the reconstructed vertex is found by extrapolating

all the tracks in an event back to the origin and taking the average [28].

This distance of each track to the primary vertex is known as the distance of

closest approach (DCA). Tracks from pileup, weak decays, and interactions

of particles with detector material should generally have a large DCA. This

contamination was reduced by requiring the DCA to be less than 3 cm. A

tighter cut on this parameter was investigated in previous studies and judged

to be unnecessary [3].

The curvature of the particle trajectory through the 0.5 T magnetic field

is dependent on the charge and momentum. The lowest transverse momentum

a track can have (i.e. the tightest curl) and still reach the TPC volume is

approximately 0.15 GeV/c and thus becomes this analysis’s lower pt limit.

Essentially no upper pt limit is imposed because few tracks exceed our pt

maximum of 15.45 GeV/c. A plot of the momentum distribution of tracks
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Figure 3.9: Distribution of tracks as a function of pt (left) and dE/dx versus
momentum (right) of 2004 200 GeV Au+Au collisions.

that passed all the quality cuts is in the left panel of Fig. 3.9. Tracks were

also required to have a charge of ±e and |η| < 1.

Many electrons detected in STAR did not originate from the original

heavy ion collision but from interactions of photons with material in the de-

tector which produce electron-positron pairs. For this analysis all electrons

can be considered purely a source of background. The TPC’s PID capabilities

from the relationship between energy loss (dE/dx) and momentum can be used

to reduce the number of electrons. The momentum region with the clearest

separation from other particle species in dE/dx is between 0.2 < p < 0.45

GeV/c and 0.7 < p < 0.8 GeV/c. A cut was made on all particles that fall

within a 1.5 σ band of the expected electron energy loss in these two momen-

tum regions as evident in Fig. 3.9. This reduces the number of electrons to a

level that can be handled easily in our correlation data.
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3.3.1 Pair Cuts

The track reconstruction process is more difficult when the trajectories

of two tracks are very close together or cross. It can result in unwanted merging

or splitting of tracks. More information about the characteristics of track

merging, splitting, and pairs cuts are found in Ref. [3].

Merging occurs when the separation distance is so small that two tracks

are reconstructed as one. This is a consequence of the TPC’s finite two hit

resolution which is approximately 1 cm in the padrow direction and 3 cm

in the drift direction [28]. Track merging reduces the total track count by

one. This effect is important to address because the correlation measure that

will be described in the next section involves forming a reference distribution

with tracks from different events. Two tracks from different events will not

risk merging together so the track count will not be potentially reduced. In

order to form distributions that are equally biased, pairs of tracks from mixed

events that would be too close together to reconstruct correctly if they had

been produced in the same event are intentionally removed. Specifically, pairs

of tracks that are separated by less that 5 cm at any of three points along

the track in both the transverse (TPC drift direction) and the longitudinal

direction (along the padrow direction) are cut, regardless if they originated

from the same or different events.

When the paths of two tracks cross, the code might reconstruct as

many as 4 different pieces. A similar method to track merging is applied here,

however, the process of identifying potential splitting is more detailed. The
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instances in which tracks might cross depends on the direction of the magnetic

field, the charge of the particles and the relative difference in azimuthal angle.

Any pair, whether from the same event or different events, that satisfies several

conditions of potential track crossing and is separated by less than 5 cm at any

checked point in the longitudinal direction is cut. The conditions for crossing

are described in more detail in Ref. [3].

3.4 Two-particle correlation measure

The sheer number of particles produced in central heavy ion collisions

makes it challenging to measure small physics signals. However, correlations

have the ability to enhance these subtle structures in the dense particle back-

ground with no assumptions.

The correlation measure used in this analysis can be directly derived

from Pearson’s correlation coefficient. Pearson’s correlation coefficient is de-

fined as the covariance of variables x and y divided by the product of the

standard deviations of x and y.

Corr(x,y) =
σxy√
σ2
xσ

2
y

where σ2
x =

1

N

N∑
i

(xi − ȳ)2 and σxy =
1

N

N∑
i

(xi − x̄)(yi − ȳ)

(3.6)

In this form, the correlation amplitude can be any value between -1

(anti-correlated) and +1 (perfectly correlated) with 0 indicating no correlation.
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Figure 3.10: Distributions of particles in a 1D (left) and 2D (middle) space
with bins a and b explicitly marked. The right panel labels the sum (Σ) and
difference (∆) axes [5].

Traditionally, correlations are calculated between two separate distribu-

tions. However, this analysis measures the amount of correlation a distribution

has with itself, known as an autocorrelation. A time-dependent autocorrela-

tion is commonly used in signal processing.

The left panel of Fig. 3.10 illustrates an example 1D distribution from

multiple events along the variable x. The second panel expands the distribu-

tion to two-dimensions (x1, x2). The covariance of the contents of two bins

(a,b) in this 2D distribution is defined as the following,

σab =
1

N

N∑
i

(
ni(a)− n(a)

)(
ni(b)− n(b)

)
= (n− n̄)a(n− n̄)b = nanb − n̄an̄b, (3.7)

where N is the total number of events, ni(a) is the number of particles in bin

a in event i, and ni(b) is the number of particles in bin b in event i. This

analysis fills two-particle distributions on (x1, x2) from all possible pairs of
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particles where (x1, x2) is a subset of the six-dimensional coordinate space

(pt1, φ1, η1, pt2, φ2, η2).

The nanb term in Eq. 3.6 is the event-wise average of the number of

particles in 2D bin (a,b). This is equivalent to forming all possible pairs of

particles in the same event, known as sibling pairs. The second term of the

covariance, nanb, is the product of the statistical reference assuming na and

nb are uncorrelated. A good representation of an uncorrelated background is

usually formed by pairing particles from similar but different events, known

as mixed pairs.

The denominator of Pearson’s correlation coefficient is the product of

the variances (σ2
aσ

2
b ). In the present analysis the bin content na and nb are

measures of particle production and can be approximated with a Poisson dis-

tribution. The properties of a Poisson distribution are that each event is

independent, has a known average and the variance (σ2) is equal to the mean.

The correlation can now be written as,

Corr(a,b) =
σab√
σ2
aσ

2
b

→ nanb − n̄an̄b√
n̄an̄b

. (3.8)

The dependence on the size of the bins is removed by forming a density

ρ, which is equal to the number of pairs n divided by the area of the bin εarea.

Equation 3.7 becomes

Corr(a, b) =
ρsib − ρref√

ρref
=

∆ρ
√
ρref

, (3.9)

where ρsib = nanb/εarea is the density of sibling pairs, ρref = n̄an̄b/εarea is the

density of reference pairs and ∆ρ = ρsib − ρref .
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Ideally the distribution of sibling pairs (ρsib) contains only pairs cor-

related from physics. Unfortunately, the distribution also contains structure

due to experimental artifacts such as acceptances and inefficiencies. However,

the reference distribution formed from mixed pairs (ρref ) also contains this

structured background. Therefore it can be removed by forming the ratio

r = ρsib/ρref . To clearly state the intent to cancel experimental artifacts in

the ratio r, the expression in Eq. 3.9 is rewritten as

Corr(a, b) =
√
ρref (r − 1). (3.10)

It is now essential that the “prefactor” (
√
ρref ) be efficiency corrected.

This requirement will be signified by a prime (′) for the remainder of this

dissertation. With this, the symbol which represents the correlation measure

can now be defined as

∆ρ
√
ρref

≡
√
ρ′ref (r − 1) . (3.11)

This is a measure of the number of correlated pairs per particle. The

“per-particle” correlation measure is appropriate for physics that is propor-

tional to the final-state hadron multiplicity such as hadronization. A “per-

pair”, ∆ρ/ρ, measure can be appropriate for other analyses such as quantum

correlations where the number of correlated pairs is proportional to the single-

particle density squared.
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3.4.0.1 Difference Variables

Due to properties of the data, the complete six-dimensional correla-

tion space (pt1, η1, φ1, pt2, η2, φ2) can be reduced to 4 dimensions without any

information loss. This reduction is justified by Fig. 3.11 which contains cor-

relations on (η1, η2) and (φ1, φ2) for 130 GeV central Au+Au collisions. A

two-dimensional distribution, as seen in the right panel of Fig. 3.10, has a sum

(xΣ = x1 + x2) and difference (x∆ = x1 − x2) axis along the diagonals. The

distributions along the sum axes in Fig. 3.11 are observed to be approximately

constant within statistics. This is because in angular space the orientation of

the overlapping nuclei arbitrarily changes each event which in turn changes

the absolute position of tracks in η and φ. This type of distribution, where the

mean and variances does not depend on its absolute location, is referred to as

stationary. When stationarity applies the distribution can be projected onto

the difference axis without any loss of information, and now four dimensions

(η1, η2),(φ1, φ2) can be reduced to two (η∆ = η1−η2, φ∆ = φ1−φ2). In practice

the pairs are binned directly on the difference variables.

The finite η acceptance, however, introduces a structure to the distri-

bution of pairs along η∆ as seen in Fig. 3.12. This “triangular acceptance

effect” cancels in the ratio of sibling to mixed pairs in angular space but not

in momentum space. A correction factor, w∆, is applied to each pair binned

in momentum space. The factor, essentially the inverse of the acceptance

triangle, is

w∆ =
1

1− |η∆| /η∆,max

, (3.12)
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Figure 3.11: Two-particles correlations from 130 GeV central Au+Au collisions
on (η1, η2) (upper) and (φ1, φ2) (bottom) and for like-sign (left) and unlike-sign
(right) pairs [6].

where |η∆| < η∆,max.

3.4.1 Event Classes

Correlations measure relatively small differences in the distributions of

sibling versus mixed pairs. In order to measure differences due to only physics,

the mixed distribution needs to be constructed carefully with characteristics

as similar as possible to the sibling distribution. This is accomplished through

the formation of sub event classes.

The primary vertex position of the event along the z-axis, for example,

changes the effective detector acceptance, primarily on η. An event with a

primary vertex close to the edge of the TPC volume might contain fewer
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Figure 3.12: Projecting data onto the η∆ axis is equivalent to a rotation of the
coordinate system by 45◦ (left panel). The new 1D distribution (right panel)
is triangular due to the finite η acceptance.

tracks with large values of η∆. However, if the vertex of the event used to make

mixed pairs is also near the edge then the effects of the smaller acceptances

will cancel.

Therefore, mixing events with large differences in the z-axis location of

the vertices will have an effect on the correlation data at large values of η∆.

Reference [3] finds this effect is only noticeable in the three most central bins

and can be removed by mixing events with a difference in the vertex positions

that is less than 5 cm in the z-axis.

The difference in multiplicity between two events is also constrained in

this analysis to ensure the sources of correlations are similar in both events.

More importantly, this event ordering reduces the propagation of statistical

errors from the single-particle distribution into the two-particle correlation

space, otherwise significant “plaid” structures would appear [38]. The central-
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ity fractions with a large range in multiplicity are sub-divided into multiplicity

classes with ∆Nch less than approximately 50.

All the event classes are combined using a weighted average. The weight

is the ratio of the number of sibling pairs in the event class integrated over

the full 2π∆η acceptance with respect to the total number of sibling pairs in

all event classes.

∆ρ
√
ρref

=
√
ρ′ref

∑
∆Nch,∆z

Nsib,∆Nch,∆z

Nsib,tot

× ∆ρ

ρref
, (3.13)

The pair density ρref in the denominator of Eq. 3.13 needs to be formed from

mixed pairs to cancel out experimental artifacts.

It is also essential to form ∆ρ
ρ

in each charge combination (++, −−, +−,

−+) separately, due to differences in the angular acceptance of positively and

negatively charged particles corresponding to the magnetic field orientation.

When forming a charge independent analysis all charge combinations are added

together as written in Eq. 3.14. The 1
4

factor is an approximation of the ratio

of the number of pairs in each charge combination to the total number of pairs

and is used to transform the measure from a sum-of-ratios to a ratio-of-sums.

∣∣∣∣ ∆ρ
√
ρref

∣∣∣∣
CI

=
√
ρ′ref,CI ×

1

4

(
∆ρ

ρ ++

+ 2 ∗ ∆ρ

ρ +−
+

∆ρ

ρ −−

)
(3.14)

A like-sign (LS) correlation measure is formed by adding the ++ and

−− charge combinations together as seen in Eq. 3.15. An unlike-sign (US)
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measure is formed from +− pairs. This analysis effectively counts both per-

mutations of a pair so the +− distribution is equivalent to the −+ distribution.

Lastly, the difference in LS and US correlations can be measured in charge-

dependent (CD) correlations.

∣∣∣∣ ∆ρ
√
ρref

∣∣∣∣
LS

=

√
1

2
ρ′ref,CI ×

1

2

(
∆ρ

ρ ++

+
∆ρ

ρ −−

)
∣∣∣∣ ∆ρ
√
ρref

∣∣∣∣
US

=

√
1

2
ρ′ref,CI ×

1

2

(
2

∆ρ

ρ +−
+

∆ρ

ρ −−

)
(3.15)∣∣∣∣ ∆ρ

√
ρref

∣∣∣∣
CD

= LS − US =
√
ρ′ref,CI ×

1

4

(
∆ρ

ρ ++

− 2
∆ρ

ρ +−
+

∆ρ

ρ −−

)

3.4.2 Reference Choice

The reference distribution, ρref , should exclude the physics signal(s) of

interest (e.g. jets, flows). Mixed pairs in an angular space create an accurate

representation of ρref because the physics signals are randomly distributed in

the primary (η, φ) space. Therefore mixed event pairs cannot produce statis-

tically significant structures on (η∆, φ∆) due to those processes.

However, because dynamical processes (e.g. jets) likely produce parti-

cles at similar transverse momentum in different collisions, mixed-event par-

ticle pairs on (pt1, pt2) will have a similar structure as that from sibling pairs.

Using ρmix as ρref would result in a measurement of the fluctuation of the jet

momentum distribution from an ensemble average.

Jet-related processes, the hypothesized signal of interest, is assumed to
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follow binary scaling (linear superposition of nucleon-nucleon collisions). For

momentum correlations, a ρref is selected that is absent of such scaling and

instead proportional to the number of nucleons interacting in the collisions

(Npart). The soft particle spectrum of the Kharzeev-Nardi two-component

multiplicity production model [39] satisfies these conditions and is contained

in the first term of Eq. 3.16. Equation 3.16 gives the differential multiplicity,

where npp is the number of particles produced in a proton-proton collision per

unit η.

dn

dη
= (1− x)npp

〈Npart〉
2

+ xnpp 〈Nbin〉 =
dn

dη soft

+
dn

dη hard

(3.16)

The fraction of the multiplicity due to “hard” processes is x, therefore,

the fraction due to “soft” processes is (1-x ). The hard component is assumed

to scale with the number of nucleon-nucleon collisions or binary collisions

〈Nbin〉 and the soft component is assumed to scale with the number of nucleons

interacting in the collision or participants 〈Npart〉.

The ratio of the number of participants to half the number of binary

collisions, 〈Npart〉〈Nbin〉/2
, is referred to as ν and is also a measure of centrality. For

example, in a single nucleon-nucleon collision 〈Nbin〉=1 and 〈Npart〉=2 while in

a central Au+Au collision the number of binary collisions could exceed much

more than half the number of participant nucleons. The variable ν is essentially

a measure of the path-length of an interacting nucleon as it propagates through

the incident nucleus.
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With the definition of ν, Eq. 3.16 can be rewritten as,

2

〈Npart〉
dn

dη
= npp [(1− x) + xν]

= npp [x(ν − 1) + 1] . (3.17)

The differential multiplicity divided by 〈Npart〉 /2 is now linear as a

function of ν with a slope of x. This provides a method to measure the hard

component fraction x from data. Figure 3.13 shows the linear dependence for

pions and kaons (left panel) and protons (right panel). The relationship of

these two variables for kaons and protons is approximately linear while the

pions deviate from this expectation.

The pt differential two-component model was reported in Ref. [40]. A

generalized expression for this model is below and is similar to the first line of

Eq. 3.17.

d2Nch

2πptdptdη
=

npp
2π∆η

Npart

2
[(1− x)So(ν, pt) + x(ν)νH0(ν, pt)] (3.18)

The shape of the soft component (S0) was determined from fits to p+p spectra

in the yt < 2 region and found to be well described by a centrality independent

Levy distribution [7]. The hard component (H0) is defined as the difference

between the data and the Levy distribution and described with a Gaussian

plus power-law tail on yt.

In order to utilize the results for pions and protons reported in [7] the
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Figure 3.13: The differential multiplicity divided by 〈Npart〉 /2 versus ν for
identified pions, kaons, and total hadrons (left panel) and protons (right panel)
for 200 GeV p+p collisions and 5 Au+Au centralities. The data are represented
by solid points and lines. The dotted line labeled “SNN” indicates the soft
component. The dashed-dotted line labeled “νHNN” extrapolates the N-N
collision value with binary scaling (no enhancement in heavy ion collisions).
The soft component and the hard component (νHAA) sum to the data [7].

two-component model at a given value of ν is given for identified particles

d2Nch

2πptdptdη
(ν) =

npp
2π∆η

Npart

2
{fπ(ν) [(1− xπ,ν=1)Soπ(ν, pt) + xπ(ν)νH0π(ν, pt)]

+ fK(ν) [(1− xK,ν=1)SoK(ν, pt) + xK(ν)νH0K(ν, pt)]

+ fp(ν) [(1− xp,ν=1)Sop(ν, pt) + xp(ν)νH0p(ν, pt)]}, (3.19)

where f(ν) accounts for the relative yield of π, K, and p. The weights are

normalized such that in the limit of ν → 0,
∑
π,K,p

fk(ν) = 1. The soft component

is weighted with the factor (1 − xν=1) to ensure the correct normalization

at centrality ν = 1 and to ensure that the possible increases in x(ν) with

centrality due to jet fragmentation evolution does not affect the soft component
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amplitude.

The parameters for the pion and proton soft components were obtained

from fits to efficiency corrected spectra in Ref. [7]. To form a reference for an

inclusive analysis it was necessary to add the kaon component. The shape

of the soft component S0,K(pt) was obtained from kaon spectra data from

STAR [41] and PHENIX [42]. The particle densities were extrapolated to the

ν=0 limit for each pt value. The extrapolated data were then fit with a Levy

distribution as in Eq. 3.20. The parameters of the Levy distribution were

A=12.32, T=0.1745 GeV, and n=18.4.

Estimating the amplitudes of the kaon soft and hard components is

more complicated due to the observed enhancement of kaon versus pion yields

in heavy ion collisions [43]. The soft component used in the final results

assumes all the enhancement in the kaons, unrelated to jets, is in the soft

component. This requires an assumption that the jet-part of the kaon yield

xK(ν) is equal to the jet-part of the pion yield xπ(ν).

The jet-part of the pion yield was estimated from the centrality de-

pendence of charged pion spectra in 200 GeV Au+Au collisions [44] assum-

ing a constant x and a unit normalized H0. The value was estimated to be

xπ(ν = 1) = xK(ν = 1) = 0.114. For reference, this method differs from what

is used in Ref. [7] where the hard component fraction x is given in the p+p

limit and the ratio of the hard component in heavy ion collisions versus a sin-

gle nucleon-nucleon collision (rAA = HAA/HNN) is responsible for the increase

with ν. Figure 3.13 demonstrates the large increase in the hard component
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above binary scaling in heavy ion collisions. The value of x at ν=1 differs sig-

nificantly from the linear slope of the data over the entire ν range. The f(ν)

factor, which sets the relative fraction of kaons, is estimated from the ratio

of kaon to pion yields and increases beyond Npart scaling due to strangeness

enhancement.

The soft particle spectrum for pions, kaons, and protons used in this

analysis can be concisely represented with a single Levy distribution

d2Nch,soft

dytdη
= 2πptmt,π

Npart

2

[
A

[1 + (mt,π −m0,π/(nT )]n

]
, (3.20)

where A=5.81 c/GeV2, T = 0.169 GeV, and n=13.8.

Mixed pairs are still required in momentum correlations for the can-

cellation of pt dependent experimental acceptances. First, like in Eq. 3.13,

a weighted average of the ratio ∆ρ/ρmix is formed in each sub-event class.

Then the denominator is effectively canceled with the factor ρ′tot, an efficiency

corrected charged particle distribution, and replaced with ρ′soft, the efficiency

corrected soft particle distribution. Lastly, the expression is multiplied by a√
ρ′soft prefactor which results in the final measure of the number of correlated

pairs per soft particle.

∆ρCI√
ρsoft

(yt1, yt2) ≡
√
ρ′soft

ρ′tot
ρ′soft

×
∑

∆Nch,∆z

Nsib,∆Nch,∆z

Nsib,tot

× ∆ρ

ρmix
(3.21)

The total number of reference pairs ρ′tot was estimated from corrected

spectra found in Ref. [41, 45]. First, the spectra was described by a Levy
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distribution in the reported centralities. Then the parameters as a function of

centrality were modeled with a power-law function. This provided a way to

interpolate the values to the centralities used in this analysis.

3.4.3 Normalization

Normalization scales the number of mixed pairs relative to the number

of sibling pairs. This is necessary because two events are, on average, mixed

with each sibling event. There are several normalization choices that have

corresponding advantages and disadvantages. Interestingly, all methods would

yield the same results if the multiplicity bin width was equal to 1.

3.4.3.1 Pair

Scaling the number of mixed pairs Nmix to the number of sibling pairs

Nsib in the full 2π∆η acceptance is known as total pair normalization. This

rescaling is done precisely like in Eq. 3.22.

∆ρ

ρref
=
ρsib − Nsib

Nmix
ρmix

Nsib
Nmix

ρmix
(3.22)

The average of ∆ρ over the acceptance is then zero by construction.

The constant offset in angular space with this normalization has no physical

significance.
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3.4.3.2 Event

Another method of normalization divides the number of mixed pairs by

the total number of mixed events εmix, where a mixed event is each occurrence

that two events are mixed.

∆ρ

ρmix
=

1
εsib
ρsib − 1

2εmix
ρmix

1
2εmix

ρmix
(3.23)

The factor of 2 in Eq. 3.23 is necessary to compensate for the fact that mixed

events produce twice as many unique pairs as sibling events.

One advantage of using event normalization is that the momentum

correlations can be related to measured values of non-statistical mean-pt fluc-

tuations, ∆σ2
pt [46].

∆σ2
pt:n ≡

ε∑
j=1

nj

(
〈pt〉j − p̂t

)2

− σ2
p̂t (3.24)

In Eq. 3.24 nj is the number of particles in event j, 〈pt〉j is the mean

transverse momentum for all accepted particles in event j, p̂t is the inclusive

mean pt for all accepted particles in all events, and σ2
p̂t

is the inclusive pt

variance for all accepted particles in all events.

The fluctuation measure is related to the correlation measure through

an integral in approximately the following way

∆σ2
pt:n
∼=
(
N − 1

)
p̂2
t

〈
∆ρ

ρmix

〉
, (3.25)

where the bracket represents a pt weighed average.
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However, correlation measurements also contain fluctuations due to

the finite size of multiplicity event classes. This prevents making a direct

comparison to mean-pt fluctuations.

3.4.3.3 Event with Bias Correction

The numerator, ∆ρ, is designed to measure the total number of cor-

related pairs. However, with strictly event normalization, ∆ρ may be non-

vanishing even in the absence of correlations. This is due to the fact that for

events in a finite multiplicity bin or for a fixed multiplicity (N) the average

number of sibling pairs
(
N(N − 1)

)
is not equal to the average number of

mixed pairs
(
NN ′

)
. In (yt1, yt2) correlation space this bias has a significant

effect on the correlation structures.

To correct for this effect, a weighting factor α is derived that will en-

sure αρsib(yt1, yt2) = ρmix(yt1, yt2) in the absence of correlations. The event

averaged sibling pair density ρsib is guaranteed to be uncorrelated when it is

equal to N(N − 1)ρ̂1,N(yt1)ρ̂1,N(yt2), where ρ̂1,N(yt1) is the single particle den-

sity, 1
N

d2N
dytdη

. Similarly, the event averaged mixed pair density ρmix is equal to

Nρ̂1,N(yt1)N ′ρ̂1,N ′(yt2).

In the absence of correlations, ρ̂sib(yt1, yt2)= ρ̂mix(yt1, yt2)= ρ̂1(yt1)ρ̂1(yt2)

but ∆ρ 6= 0 because N(N − 1) 6= NN ′. The weighting factor α = ρmix
ρsib

ensures

∆ρ equals zero when there are no correlations and is defined as
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α(yt1, yt2) =
N ˆρ1,N(yt1)N ′ ˆρ1,N ′(yt2)

N(N − 1)ρ̂1,N(yt1)ρ̂1,N(yt2)
, (3.26)

where the overline indicates event averaging. The event average is calculated

via X =
∑

N f(N)X(N)/
∑

N f(N) where N sums over the multiplicity values

in a bin and f(N) is the number of events with multiplicity N.

The bias correction factors α were calculated for each multiplicity bin

and implemented in the following manner,

∆ρ

ρmix
=
α 1
εsib
ρsib − 1

2εmix
ρmix

1
2εmix

ρmix
. (3.27)
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Chapter 4

Review of Correlations

The many diverse applications of correlations attest to its simple yet

meaningful measure. The most common correlation measure, often referred

to as Pearson’s correlation coefficient, is defined in Sec. 3.4. However, a close

review of the publications during the late 19th century reveals that another

scientist, Sir Francis Galton, created the idea of a correlation first [47].

Sir Francis Galton was a British biometrician and cousin of Charles

Darwin, whose academic pursuits were wide-ranging and included the sub-

jects of heredity and forensics [48]. An examination of the relationship be-

tween the length of the thigh bone with the length of other body parts or the

height of the individual spurred the idea of correlation [47]. The first article

he wrote mentioning the word correlation was titled “Co-relations and their

measurements, chiefly from anthropometric data” and published in 1888 [47].

He later wrote a unique essay for the North American Review that detailed

his discovery of this new statistical measure, correlation.

However, after a publication in 1895 by his student, Karl Pearson, the

product-moment correlation would be from then on most commonly associated

with Pearson, not Galton.
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4.1 Fluctuations

Many aspects of the data obtained at RHIC were measured before

focusing on the rich source of information contained in correlations. Critical

fluctuations were one of the first proposed signatures of a phase transition to a

quark gluon plasma [19]. Fluctuations are measured by the variance or width

of a distribution.

A Gaussian is one of the most commonly used and observed distribu-

tions because of its ability, in certain limits, to describe unknown distributions.

The central limit theorem states that the mean of a sample with large statistics

from any random process will be distributed as a Gaussian. In fact, another

one of Sir Francis Galton’s accomplishments include the construction of the

Quincunx computer which is a physical apparatus that illustrated the ideas of

the central limit theorem. The computer was a tilted board with pegs evenly

spaced so when a ball was dropped down the ball would randomly jump be-

tween the pegs and fall into boxes at the bottom. With a significantly large

sample of balls the distribution of balls at the bottom would begin to form a

Gaussian distribution.

The fluctuation measure that is relevant to the search for a new phase of

matter is that which exceeds the expected fluctuations from purely statistical

sources, which can occur even in mixed-event samples. Large variations in

the non-statistical fluctuation measure with collision energy, projectile size, or

centrality would indicate a critical point near the phase transition. The most

recent hypothesized phase diagram of a theoretical quark gluon plasma is seen
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Figure 4.1: The hypothesized Quark Gluon Plasma phase diagram from QCD
predictions [8]. The white solid lines show the phase boundaries and the white
circle indicates the critical points. The nuclear overlap of current Au+Au
collisions are marked with an orange star.

in Fig. 4.1 with the critical point indicated by a white circle.

If heavy ion collisions were fully equilibrated at a constant “tempera-

ture” no excess fluctuation would be expected. Therefore a measure of non-

statistical fluctuation could indicate systems in at least two scenarios: the

collision systems do not reach complete equilibrium or the systems do reach

equilibrium but each event fluctuates in temperature.

In Ref. [46] the non-statistical 〈pt〉 fluctuation measure for Au+Au

collisions at
√
sNN = 130 GeV was reported. An excess fluctuation in charge-
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independent 〈pt〉 data was measured but no evidence of critical fluctuations to

indicate a phase transition was found. This could indicate either the systems

do not reach equilibrium or if in equilibrium, the 〈pt〉 fluctuates from event

to event. In either case the absence of critical fluctuations implies the system

was not observed near a phase transition.

More details about this excess fluctuation can be extracted through a

study of the scale dependence (δx). The scale dependence refers to the bin

size for which fluctuations are calculated. The bin size can range from the

entire TPC acceptance to a very small bin in (η, φ). The scale dependence of

fluctuations in 〈pt〉 for Au+Au 200 GeV collisions is shown in the left panel of

Fig. 4.2. There is an indication of structure to the fluctuation measurements

but it is not readily interpretable. Fortunately, more information is available

through a correlation measure which is related to a fluctuation simply through

an integral.

Fluctuations are related to two-particle correlations by the Fredholm

integral equation [9].

∆σ2 (δη, δφ) ≡ 4
∑
i,j

εηεφKij
∆ρ
√
ρref

(iεη, jεφ) (4.1)

In Eq. 4.1 (δη, δφ) is the length (scale) of the fluctuation and (εη, εφ) is the 2D

bin-size of the measured correlations. Generally εx ≤ δx ≤ ∆x where ∆x is

the detector acceptance. The kernel Kij is necessary for integration over the

correlation bins which have indices i and j.

The level of detail gained in a correlation measure is evident in the
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Figure 4.2: The mean-pt non-statistical fluctuation measure ∆σ2
pt (left) and

two-particle correlations (right) of 0-15% central HIJING events with quench-
ing off [9].

right panel of Fig. 4.2. The usefulness of fluctuations are now surpassed by

the advantages of direct correlation measurements, which is the focus of this

dissertation.

4.2 Proton-proton Correlations

In order to observe new physics, such as the formation of a quark gluon

plasma, the correlation structures need to be carefully studied for differences

with respect to a control system. This control or reference needs to be as

similar as possible to a heavy ion collision but without the possibility of a

quark gluon plasma. Proton-proton collisions are good candidates for this

reference.

The first proton-proton collisions were made at the Intersecting Stor-

age Rings (ISR) at CERN in 1971. Since then, other accelerators such as the
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Figure 4.3: 200 GeV Proton-proton collisions at STAR in momentum [10] and
angular [3] space.

SPS, Tevatron, RHIC, and the LHC have collided two counter-rotating beams

of protons. The many years of published research and development of sophis-

ticated event simulators provide a strong basis to understand and interpret

correlation structures observed in proton-proton collisions.

PYTHIA is one of the most successful models of proton-proton col-

lisions [49]. PYTHIA models the low-momentum (“soft”) processes via the

hadronization of interacting color fields or “strings” [50]. Hard processes are

modeled by pQCD jet fragmentation, which will be described in more detail

in Sec. 4.3.

Two-particle correlations of 200 GeV proton-proton collisions at STAR

are presented in Fig. 4.3. To aid in the description of the many sources of

correlated particles in p+p collisions a naive yt cut will be made to distinguish

“soft” and “hard” pairs. This is naive because two-component (“soft” and

“hard”) studies have shown that there is no simple separation point in mo-

mentum of the two components [7]. However, it suits our purely educational
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Figure 4.4: The left two panels contain soft pairs defined as
(yt < 2) (pt = 0.5 GeV/c) for both particles in a pair. The right two panels
contain hard pairs (yt > 2). The first and third panels are for like-sign pairs
and the second and fourth panels are for unlike-sign pairs [10].

purposes. This yt cut is motivated from the data shown in the left frame of

Fig. 4.3. The broad peak around (yt1, yt2) = (3, 3) is separated with a yt > 2

(pt = 0.5 GeV/c) cut for both particles in a pair and the structure around

the lower momentum corner is separated by requiring the yt of both particles

to be less than 2. Fig. 4.4 contain angular correlation data in four combina-

tions of soft, hard, like-sign, and unlike-sign pairs for 200 GeV proton-proton

collisions.

The left panel in Fig. 4.4 are correlations of like-sign, soft pairs and

the clearest signal from the Hanbury-Brown and Twiss (HBT) effect can be

observed in this panel. HBT describes correlations due to quantum coherence

from an incoherent, finite size source of identical bosons with a small difference

in relative velocity [51]. Since HBT occurs only amongst identical particles we

expect to see a signal in like-sign correlations. Also, the particles correlated

from HBT are close together in angular space so the signal is seen around the

origin, (η∆, φ∆) = (0, 0).
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The unlike-sign, soft pair correlation data in the second panel show

most clearly a broad ridge along the entire range of φ∆ centered at η∆ = 0.

The Lund string fragmentation model, used in PYTHIA, can predict this struc-

ture. The Lund model simulates the interactions between a separating quark

anti-quark pair via a one-dimensional color flux tube known as a “string”.

The potential energy increases as the string is stretched. When it becomes

energetically favorable the string breaks and produces a new quark anti-quark

pair. This process is repeated until only a stable hadron remains [49]. The

correlated pairs are observed in both unlike- and like-sign pairs and are gen-

erally close together in η. While they also appear to be located at all values

of φ∆, the correlation structure is more enhanced in the φ∆ ≈ π region of the

US data as evident in the second panel of Fig. 4.4.

A narrow spike at the origin is also observed in the unlike-sign, soft

pairs. The probable source of these correlated pairs is e+e− pair production

from photon interactions with detector material. This process will be described

in more detail in Sec. 5.5.3. The main characteristics of these correlated pairs

are that they are opposite in charge, generally distributed in a lower momen-

tum region, and close in angular space. This results in a narrow spike in the

unlike-sign, soft data.

The prominent source of correlated particles in the two right panels of

Fig. 4.4 (“hard” pairs) is jet fragmentation. Jets are defined experimentally

as collimated sprays of particles from high momentum scattering. Following

conservation of momentum, two back-to-back jets are usually observed and are
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known as “dijets”. In correlation space, this creates pairs of particle produced

in one of the jets with a small relative difference in both η and φ. This

“intrajet” correlation gives rise to the peak around the origin in the right

panels of Fig. 4.4. The region of the 2D correlation space in which φ∆ < π

is referred to as the “same-side”. So a model independent way of referring to

this observed correlation structure is the “same-side” peak.

Pairs are also formed with a particle from each side of the di-jet forming

what is known as “interjet” correlations. These particles are generally sepa-

rated by 180◦ which creates the signal around φ∆ ≈ π. The long ridge along

η∆ is due to the fact that the center of mass of the parton-parton interactions

is broadly distributed in η.

In summary, selecting pairs from the broad peak around (yt1, yt2) =

(3, 3) shows evidence of jet correlations. Selecting pairs from the lower mo-

mentum corner (yt of both particles less than 2) shows evidence of HBT,

photon conversion, and soft string fragmentation.

4.2.1 Proton-proton Fit Model

Correlation data from pairs with all charges and momentum values

contain the superposition of the correlation structures described above. A two

dimensional fit model allows the information about each individual structure

to be isolated and quantified. The fit model required to fit proton-proton data

consists of five components. A 2D exponential centered around (η∆, φ∆) =

(0, 0) describes the contributions from HBT and electron pairs. A 1D Gaussian
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along η∆ = 0 fits the longitudinal string fragmentation. A cos(φ∆) (dipole)

term is used to describe the ridge along φ∆ ≈ π. This term along with any

future sinusoidal components are referred to with the terminology of a series

expansions into multiple moments (dipole, quadrupole, sextupole, ...). A 2D

Gaussian describes the same-side peak attributed to jets. Lastly there is a

constant offset which is highly dependent on the procedures used to normalize

the number of mixed pairs to the number of sibling pairs and has no physical

significance.

4.3 Jets

Perturbative QCD (pQCD) is a successful theory describing jet produc-

tion or high momentum transfer processes [16]. Past successes motivate the

attempt to determine to what extent RHIC data can be described with pQCD.

This section will provide details about jets in a pQCD description using the

event generator HIJING and the book “An Introduction to Quantum Field

Theory” by Peskin as a reference [52, 53].

HIJING is a Monte Carlo model for multiple jet production in p+p,

p+A, and A+A collisions [53]. The derivation of the differential jet cross

section reported in [53] will begin with a simpler expression of the total cross

section of two-body to two-body processes as seen in Eq. 4.2. The hadron level

scattering will be described as (A) + (B) → (C) + (D) and the parton level
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scattering will be described as (1)+(2)→ (3)+(4) in the following expression

σjet (A+B → C +D) =

∫ 1

0

dx1

∫ 1

0

dx2

∑
a,b

fa (x1) fb (x2)σab (1 + 2→ 3 + 4) ,

(4.2)

where σab is the pQCD cross section for parton species a and b. Feynman

x is the ratio of the longitudinal momentum carried by the parton to the

total longitudinal momentum carried by the parent hadron. In the center of

mass frame of the scattered partons ~p = x1~pA + x2~pB where p is the four-

momentum vector of the partons ~p = (E, px, py, pz). The structure function,

f(x), is the parton’s longitudinal momentum distribution also known as the

parton distribution function. In HIJING, the Duke-Owens structure functions

give the values of f(x) [54].

Next, the differential cross section is formed and the pQCD cross section

is expressed as a function of the Mandelstam variable t̂, which is related to the

scattering angle in the center of mass frame. The differential cross section is

d3σjet

dx1dx2dt̂
(A+B → C +D) =

∑
a,b

fa (x1) fb (x2)
dσ

dt̂
(1 + 2→ 3 + 4) . (4.3)

Cross sections of scatterings are often expressed in terms of the Lorentz-

invariant Mandelstam variables, u, t, and s. They help reduce the 4 four-

momentum vectors for the two incoming and two outgoing particles into just

three variables (plus the masses). These kinematic variables also correspond

to the four-momentum of the exchanged particles in the three fundamental

Feynman diagrams in Fig. 4.5.
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Figure 4.5: Feynman diagrams of two-body processes. The u, t, and s-channel
correspond to the Mandelstam variables which describe the four-momentum
of the exchanged particle.

The mathematical definitions of the Mandelstam variables are found

in Eq. 4.4 where s is the total center of mass energy and t and u are the

four-momentum transfer in the corresponding exchange channel.

ŝ = (p1 + p2)2

t̂ = (p1 − p3)2

û = (p1 − p4)2

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4

(4.4)

The left hand side of Eq. 4.3 needs to be re-expressed with observ-

able variables. The Feynman x and t̂ can be related to the rapidities and pt

of the partons. The variable transformation is done through the Jacobian,

δ(x1, x2, t̂)/δ(y1, y2, pt) = 2ptŝ/s.
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d3σjet
dy1dy2dpt

(A+B → C +D) =
∑
a,b

fa (x1) fb (x2)
2ptŝ

s

dσab

dt̂
(1 + 2→ 3 + 4)

(4.5)

The equation is further manipulated with the relation ŝ = x1x2s and

dp2
t = ptdptdφ. The azimuthal acceptance is assumed to be 2π. The final

expression is in Eq. 4.6. The constant K is approximately 2 to correct the

lowest order pQCD rates for next to leading order effects.

dσjet
dp2

tdy1dy2

= K
∑
a,b

x1fa(xa, dp
2
T )x2fb(x2, dp

2
T )
dσab(ŝ, t̂, û)

dt̂
(4.6)

HIJING uses Eq. 4.6 for the jet cross sections. This cross section is for

only two-body to two-body processes leading to final states consisting of two

jets with equal and opposite transverse momentum. The transverse momen-

tum scales are on the order of pt > 2 GeV/c.

The x1 and x2 variables in the right hand side of Eq. 4.6 still need

to be expressed as the rapidities of the scattered partons. Through algebraic

manipulation the Feynman x can be shown to be related to the rapidities in

the following way,

x1 =
2pt√
s

(
ey3 + ey4

)
x2 =

2pt√
s

(
e−y3 + e−y4

)
. (4.7)
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The pQCD cross sections, σab, found in Eq. 4.6 can be derived from the

following general expression of a cross section as a function of the solid angle

Ω, (
dσ

dΩ

)
CM

=
1

2EA2EB|vA − vB|
|~p1|

(2π)24ECM
|M(pA, pB → p1, p2)|2, (4.8)

where EA =
√
p2
A +m2

A is the energy of the scattering particle A (similarly for

EB), |vA − vB| is the relative velocity of the particles, ECM is the total initial

energy, and |p1| is the absolute value of the momentum of either of the final

particles (p2 = −p1).

The matrix element |M |2 for scattering processes can be determined

from the Feynman rules for tree-level diagrams. The cross section of qiq̄i →

qj q̄j, for example, is

dσ

dt̂
=

4πα2

9ŝ2

(
t̂2 + û2

ŝ2

)
. (4.9)

The Mandelstam variables are also related to the rapidities of the scat-

tered partons.

s =
E2 − (p2

t + p2
z)

x1x2

t = −p2
t

[
1 + e(y4−y3)

]
u = −p2

t

[
1 + e(y3−y4)

]
(4.10)

In summary, this section has derived the expression for the jet differ-

ential cross section used by HIJING (Eq. 4.6). The components of this cross
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section have also been given as functions of observed variables (y, pt).

4.3.1 Minijets

Applying pQCD theory to lower momentum jets was first attempted at

the UA1 experiment at the proton-antiproton collider SPS at CERN. These

jets with a very low pt threshold are referred to as minimum-bias jets or “mini-

jets”. The abstract of Ref. [55] states “a theoretical cutoff of pmint ≈ 3 GeV

seems to describe the observed total minijet cross section with Et,jet ≥ 5 GeV.”

The pmint is the parton minimum transverse momentum and Ejet
t is the total

energy of the jet. This paper also purports that jets at this low pt range should

be dominated by gluons.

The remarkable result that pQCD can describe jet cross sections over

many orders of magnitude is very significant to the formation of analysis tech-

niques of heavy ion data. Conventional heavy ion analyses assume the contri-

bution of jet physics to be small at low momentum due to the strongly coupled

medium. This assumption prevents a significant effort in the heavy ion com-

munity to use pQCD before abandoning it in favor of other explanations.

4.4 Heavy Ion Correlations

After a thorough study of proton-proton data the investigation can

continue into the new territory of heavy ion collisions. Reference [11] presents

minimum bias angular correlation results for Au+Au 62 and 200 GeV colli-

sions at STAR in eleven centralities. This paper undergoes the same analysis
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Figure 4.6: Two-particle angular correlations for Au+Au collisions at√
sNN=200 and 62 GeV (upper and lower rows respectively). Centrality in-

creases left-to-right from most-peripheral to most-central [11].

techniques described in Chapter 3. The most peripheral Au+Au centrality

looks very similar to proton-proton collisions, as expected, but with increas-

ing centrality the correlation landscape begins to change noticeably as seen in

Fig. 4.6.

In fact, the five components of the 2D fit model in Sec. 4.2.1 are no

longer sufficient to completely describe the data. A new structure is observed

in the residual which can be modeled with a quadrupole (cos(2φ∆)) term.
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The fit function in the paper is then defined as

F = A1exp

{
−1

2

[(
φ∆

σφ∆

)2

+

(
η∆

ση∆

)2
]}

+ ADcos (φ∆ − π)

+ AQcos (2φ∆) + A0exp

{
−1

2

(
η∆

σ0

)2
}

+ A2exp

−
[(

φ∆

wφ∆

)2

+

(
η∆

wη∆

)2
]1/2

+ A3. (4.11)

The complete fit results are shown in Fig. 4.7 and an example fit de-

composition is shown in Fig. 4.8. In the four most-peripheral centralities a

steady increase in the amplitude and widths of the 2D Gaussian is observed.

It increases at the same rate expected for a superposition of individual nucleon-

nucleon collisions known as binary scaling. Generating events with HIJING

(“jet quenching” option off) reproduces these trends as well. Interestingly, at

the 46-55% centrality there is a dramatic increase in the fit parameters, which

was referred to as the “sharp transition” in Ref. [11]. The maximum ampli-

tude of the quadrupole is observed in the mid-central bins while the minimum

amplitude is 0 at the most peripheral and the most central.

The results from Ref. [11] are unique since they are obtained with a

theory-independent fit model over the pt integrated 2D (η∆, φ∆) space. A

strong increase in the amplitude of the same-side peak and away-side (φ∆ ≈ π)

dipole do not support an opaque, strongly interacting medium if the minijet

hypothesis is valid [11].
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Figure 4.7: Fit parameters versus centrality reported in [11] for Au+Au colli-
sions at

√
sNN=200 GeV (solid symbols) and 62 GeV (open symbols). The 2D

Gaussian amplitude and widths are shown in the upper panels. The amplitude
of the dipole and quadrupole and shown in the bottom left and middle panel
respectively. The bottom right panel shows the width aspect ratio, ση∆

/σφ∆
,

of the 2D Gaussian. The error bars represent fitting errors. The dotted line la-
beled “GLS” indicates the prediction from Glauber linear superposition. The
hatched regions indicate the systematic uncertainties.

4.4.1 Quadrupole

The quadrupole structure observed in the correlation data is conven-

tionally assumed to be a result of an anisotropy in the single-particle density

on azimuth. Much attention in the heavy ion community has been focused on

theoretical predictions and measurements of this observed anisotropy.

The azimuthal anisotropy is interpreted by most in the heavy ion field
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Figure 4.8: The fit decomposition of 46-55% centrality data for 62 GeV Au+Au
collisions [11]. The data, fit, and residual are shown in the upper left plots.
The upper right plot shows the 2D Gaussian component. The lower panels
show the dipole, quadrupole, 1D Gaussian, and the 2D exponential.

as a signature of a strongly interacting system. According to the conventional

hydrodynamic interpretation, the nuclear overlap of a non-central collision cre-

ates a spatial anisotropy (almond shape) which, with a pressure gradient built

up by a strongly interacting medium, evolves into a momentum anisotropy of

the final state particles. The particles flow preferentially in the direction of

the reaction plane defined by the beam axis and the impact parameter, where

the pressure gradient is the largest. With this collective behavior description

the azimuthal anisotropy is often referred to as elliptic flow. Measurements

of elliptic flow were first reported at RHIC energies in 2001 for 22k Au+Au

collisions at 130 GeV in Ref. [12].

According to hydrodynamic models, elliptic flow measurements provide

insights to the early stage of the system evolution. This is because the pres-
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sure driven gradient quickly self quenches as the elliptical shape approaches

a spherical shape. Thus the anisotropy was created in the early stage of the

system.

Reference [12] reports that the anisotropy is 6% for peripheral collisions

and decreases for more central collisions. This measurement, on a 1D projec-

tion of the data on φ, was made by correlating each particle with the event

plane Ψ and averaging over all events (〈cos [2 (φ−Ψ2)]〉). The event plane is

used as an estimation of the reaction plane, which cannot be measured. This

“event plane” method is statistically equivalent to the two-particle correlation

analysis discussed in this dissertation. In the hydrodynamic picture, “non-

flow” effects, such as jets, were thought to be small enough to fit within the

error bars based on HIJING studies.

The analysis technique in Ref. [12] is standard in the field but many of

its limitations can be easily removed with a 2D two-particle correlation analysis

technique. First, a 2D correlation measurement does not need to estimate

an event plane which is prone to biases and errors. Also, contamination of

correlations from jets or “non-flow” are easily removed by taking into account

the η∆ dependence.

The low level of non-flow contamination claimed in 1D analyses was

challenged by the 2D two-particle correlation study in Ref. [13]. The 2D two-

particle correlation measurements of the quadrupole component, v2{2D}(pt),

are reported to be systematically lower than the values previous reported by

“event-plane” methods, v2{EP}(pt), as seen in Fig. 4.9. This is argued to
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Figure 4.9: The first three panels show v2 and jet measurements as a function
of pt in centralities 30-40%, 5-10%, and 0-5% for Au+Au 200 GeV data [12].
The right panel shows the quadrupole spectrum as a function of yt with a fit
Qo(yt).

be because the 2D fit utilizes the η∆ dependence of the jet component (2D

Gaussian) to completely separate jet correlations and the azimuthal anisotropy.

Two implications of the analysis in Ref. [13] disagree with a hydrody-

namical picture. First, the most central collisions show no v2{2D}(pt) ampli-

tude. This contradicts the idea that even the most central collisions should

have a non-zero v2 due to small fluctuations of nuclear overlap from a per-

fectly centered collision. Also, the v2 data in [13] are described with a “fixed

transverse boost and universal Levy form nearly independent with centrality”

which does not agree with a hydrodynamic flow interpretation.

4.4.2 The η∆ Elongated 2D Gaussian

Features of the same-side peak also dramatically change with an in-

crease in centrality. In proton-proton collisions the same-side peak can be

attributed to minijets and is accurately modeled with a 2D Gaussian. How-

ever, beginning in the 46-55% Au+Au centrality fraction the width (ση∆
) of
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the Gaussian dramatically increases and extends past the TPC acceptance.

Is this broadening a signature of new physics such as flow in heavy ion

collisions, a modification to jet fragmentation in the dense heavy ion environ-

ment or some other novel QCD phenomenon?

Reference [20] analyzes the properties of this new broadening, known

as the “ridge”, in central Au+Au collisions. The analysis labels the 0.7 <

|η∆| < 1.4 regions as the “ridge” and the |η∆| < 0.7 region as the “jet”. A

momentum cut on the pairs is imposed which requires a trigger particle to have

a pt between 3 and 4 GeV/c and all associated particles to have a pt greater

than 2 GeV/c. The properties of the correlations are studied after subtracting

an assumed value for “elliptic flow” (v2).

The jet region around the origin is observed to be similar to the jet peak

in proton-proton data while the jet+ridge component differs. It was concluded

that the ridge had properties consistent with a medium. However, the ridge

yield increases up to the highest pt value (9 GeV/c) which suggests “the ridge

is associated with jet production” [20].

A counterpoint to the conclusions of this analysis is that the properties

of the “ridge” measured in [20] contain a significant contribution from the

underlying event. All of the particles in the ridge region (0.7 < |η∆| < 1.4)

are not necessarily contributing to the correlation structure. In Chapter 6 the

momentum distribution of pairs correlated in only the elongated structure will

be presented.
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4.4.2.1 Sextupole

A recent development revolutionized the field’s approach to measuring

azimuthal anisotropy. Previously the belief was that collective flow generated

only even-order moments of azimuthal anisotropy (v2, v4, ...). New hydrody-

namical calculations showed that event-wise fluctuations in the density of the

colliding nuclei could produce a v3 component to the particle correlations [56].

However, attributing the amplitude of v3 as a measurement of flow is

an important topic of debate and highly dependent on the chosen fit model.

In Ref. [11] it is determined that the only source of a v3=〈cos(3φ)〉 in central

Au+Au data is the η elongation of the same-side peak. An important point

to make is that there are many choices to describe the same-side peak: an

asymmetric 2D Gaussian; a 2D Gaussian plus sextupole; a 2D Gaussian plus a

1D Gaussian on φ∆, constant along η∆; or a 2D peaked non-Gaussian function.

All of these describe the same signal in the data. Assigning a physical inter-

pretation based on the somewhat arbitrary choice of the statistical fit model

is misleading.

In addition, the fact that sextupole measurements are conventionally

made with 1D φ projections makes them very sensitive to “non-flow” (i.e.

jets). This often necessitates assumptions about non-flow such as the η∆ and

pt dependencies, which cast doubt on the physical interpretation of the mea-

surements.
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Chapter 5

Transverse momentum correlations

Two-dimensional (2D) transverse momentum correlations complete the

measurements of the six dimensional correlation space (η1, φ1, pt1, η2, φ2, pt2).

They provide another observable in which theoretical models can be com-

pared. This chapter presents the latest measurements of minimum bias (yt, yt)

correlations and comparisons to several theoretical models.

5.1 Charge Independent Results

Figure 5.1 contains 200 GeV Au+Au charge independent (CI) correla-

tions ∆ρ/
√
ρsoft(yt1, yt2) in 11 centralities. These momentum correlations are

for all charged particles with pt > 0.15 GeV/c, |η| < 1, and full azimuth. The

reference distribution ρsoft, described in Sec. 3.4.2, is absent of binary scaling

in order to emphasize our correlation signals of interest (e.g. jets). The number

of mixed pairs is normalized using event normalization with a bin width bias

correction factor, to retain a possible connection to a non-statistical mean-pt

fluctuation measure described in Sec. 3.4.3.3.

The main feature in all centralities is a bump peaked near (yt1, yt2) =

(3, 3) (pt=1.4 GeV/c). The amplitude of the bump increases with central-
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Figure 5.1: 2D CI correlations ∆ρ/
√
ρsoft(yt1, yt2) for Au+Au collisions at√

sNN=200 GeV. Centrality increases from left-to-right and top-to-bottom.

ity but remains in approximately the same location. This gradual evolution

of structures with centrality differs from what is observed in angular space,

where a sharp transition in the features of the correlations around the 46-55%

centrality is observed [11].

The effects of different reference distributions and normalization pro-

cedures are presented in Fig. 5.2. Comparing the figures in the second row

to the first demonstrates the large effect of an “event” normalization. With

“event” normalization the number of sibling and mixed pairs are simply di-
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Figure 5.2: CI (yt1, yt2) correlations for 200 GeV Au+Au collisions in four
combinations of reference distributions and normalization procedures, all with
a common z-axis scale. Centrality increases from left-to-right. The three upper
rows use ρmix while the bottom row uses ρsoft. The normalization from top
to bottom is “pair”, “event” and “event” with a finite bin width correction
factor (last two rows).

vided by the total number of events (sibling or mixed respectively). However,

in the 55 − 64% centrality, for example, there is a large difference in the av-

erage number of sibling and mixed pairs purely due to the finite multiplicity

bin width. This effect alone results in a non-zero value of ∆ρ, even in the

absence of correlations. The figures in the third row are corrected for this bias

as detailed in Sec. 3.4.3.3 and now the 55− 64% centrality bin has a structure
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similar to the pair normalized data.

The data in the last row of Fig. 5.2 contain a soft reference distribution.

The amplitude of the higher momentum peak increases as compared to a

mixed reference. This is expected because the soft distribution is a subset of

the “total” or mixed pair distribution. Therefore the denominator,
√
ρref , is

smaller and the ratio ∆ρ/
√
ρref becomes larger.

5.2 Charge and Angle Differentiations

Separating particle pairs by charge combination and/or relative open-

ing angle is useful because some correlation sources are restricted to certain

projections. Figure 5.3 contains momentum correlations in four combinations

of away-side (AS), same-side (SS), unlike-sign (US), and like-sign (LS) pairs.

Pairs with a relative azimuthal angle greater than π/2 are classified as away-

side and conversely pairs with a relative azimuthal angle less than π/2 are

classified as same-side.

The top two rows in Fig. 5.3 are correlations of AS LS and AS US

pairs. Any evidence of back-to-back jet fragmentation is expected to be ob-

served in these figures. A peak around (yt1, yt2) = (3, 3) (pt=1.4 GeV/c) is

observed, similar to the CI correlations. Interestingly, this peak persists in

higher centralities, increases in amplitude, and remains in approximately the

same location.

The SS LS figures in the third row of of Fig. 5.3 show clear signals from
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Figure 5.3: Two-dimensional (yt1, yt2) correlations for Au+Au collisions at√
sNN = 200 GeV. Centrality increases from left-to-right. The two upper rows

show away-side pairs and the two lower rows show same-side pairs. The first
and third rows are like-sign pairs and the second and fourth row are unlike-sign
pairs.

HBT along the diagonal (yt1 = yt2), as expected [57]. A higher momentum

peak is also observed but it is weaker than the AS correlation data. The

smaller signal could be due to charge conservation effects if the primary source

of jets is gluon scattering. To conserve charge, gluons fragment into pairs of

positive and negative particles. Therefore a like-sign pair is only formed when

there are at least four fragments, which is less probable than forming only two

fragments.
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Signals from intrajet correlations are expected in the SS US figures in

the last row of Fig. 5.3. Surprisingly, two peaks are observed in this projection

and the separation of the peaks increases with centrality. Reference [7] provides

a possible explanation of this correlation feature. This paper fits identified

pion and proton spectra with a two component model. The pion and proton

hard and soft components are plotted in Fig. 5.4. The peaks of the pion

and proton hard components are roughly at the same location (yt = 2.66) in

peripheral collisions (ν = 1). Interestingly, in central collisions (ν = 6) the

peak of the pion hard component decreases in yt and the peak for protons

increases slightly. Therefore the two peaks observed in SS US correlation data

could correspond to the jet fragmentation distributions of pions and protons.

This hypothesis will be tested with future studies of momentum correlations

of identified particles.

Examining the difference between like-sign and unlike-sign pairs (CD =

LS - US) is also informative. The charge dependent (CD) data are sensitive to

local charge conservation and can present a different perspective of hadroniza-

tion. Correlated pairs from minijets might exhibit a difference in LS and

US pairs due to the distribution of charge during fragmentation. Conversely,

pairs which contribute to the quadrupole structure and are hypothesized to

be from collective flow of a thermalized medium are not expected to have

a charge dependence. An analysis of CD angular correlations of
√
sNN=130

GeV Au+Au collisions found significant structure consistent with local charge

conservation [58].
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Figure 5.4: The dotted curves are the soft components for protons and pions.
The dash-dot curves are the hard components for ν = 1 and the solid curves
are the hard components for ν = 6 [7].

Figure 5.5 contains charge dependent (yt1, yt2) correlations in 11 cen-

tralities for same-side pairs, in an attempt to emphasize jets. A large negative

structure is observed which implies a larger unlike-sign correlation structure

compared to like-sign. The shape of the correlation also does not change sig-

nificantly with an increase in centrality, similar to CI correlations.

5.3 Fitting

The next goal is to quantify the features of the momentum correlation

as a function of centrality with a 2D fitting model. The following subsections

will guide the reader through each model attempted in this analysis. The

advantages and disadvantages of each are presented and used to motivate the
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Figure 5.5: Two-dimensional (yt1, yt2) same-side charge dependent correlations
for Au+Au collisions at

√
sNN = 200 GeV. Centrality increases from left-to-

right and top-to-bottom.

final fit model choice.

5.3.1 Inclusive Fit Models

A two-component analysis of single particle yt spectra in Ref. [7] in-

spired the first fit model. The analysis fit 1D pt spectra data with a Levy (soft

component) and a Gaussian plus power-law tail (hard component). If the peak

observed in 2D correlation data is related to the hard component then a 2D

Gaussian plus a power-law tail might model the data well.
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The 2D model in Eq. 5.1 consists of a 2D Gaussian with a smoothly

matched power-law tail which would “wrap-around” only part of the 2D Gaus-

sian and not appear at lower yt. The model contains 6 parameters: the 2D

Gaussian amplitude A, widths σΣ, σ∆ and position y0; the power-law exponent

α; and the smoothing factor δ̄. Later a 2D exponential was added to the fit

to describe the lower momentum structure. The log-derivative between the

2D Gaussian and power-law was matched at α/2 according to the following

expression,

for y′t ≤ α/2, F = Ae−y
′2
t

and for y′t > α/2, F = AFδ(e
α2/4e−αy

′
t − e−y′2t ) + Ae−y

′2
t , (5.1)

where

y′2t ≡ y2
t∆

2σ2
∆

+
(ytΣ − 2y0)2

2σ2
Σ

Fδ = 1/2sin(δπ/δ̄) + 1/2 if |δ| ≤ δ̄/2

= 0 if δ < −δ̄/2

= 1 if δ < δ̄/2

δ = tan−1

(
ytΣ − 2y0

|yt∆|

)
, δ ∈ [−π/2, π/2]. (5.2)

The model fits and residuals for three centralities are shown in Fig. 5.6.

The residuals show a significant amount of structure, suggesting that this

model fit is not adequate. In an attempt to improve the fits, the 2D Gaussian

was replaced with a hybrid peak model that consisted of a Gaussian along

the yt∆ axis and a Landau distribution along the ytΣ axis, which has a longer
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Figure 5.6: The upper panels show the inclusive model fits and the lower
panels show residuals for Au+Au CI ∆ρ/

√
ρsoft data in three centralities.

The centralities from left-to-right are 64-74%, 28-38%, and 0-5%.

tail than a Gaussian. A Landau distribution is a probability density function

that can be expressed as a function of a location parameter µ and a scale

parameter σ as exp[iy′tµ− |σy′t|(1 + 2i
π

log(|y′t|)]. However, this adjustment did

not significantly improve the residuals.

5.3.2 Cut Window Method

Primarily the goal is not to describe the complete (yt1, yt2) correlation

space but just the 2D peak. Defining a region around the 2D peak with a ytΣ

and yt∆ cut can remove all the complicated structure at the lower momentum

corner and along the edges. Now, only a 2D Gaussian is required to accurately

fit the data contained in this cut window. The cut window ranges are specified

in the captions of the figures displaying the fit models and residuals.
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Figure 5.7: Au+Au US AS ∆ρ/
√
ρsoft data (upper), cut window model fits

(middle), and residuals (lower). The centralities from left-to-right are 74-
84%, 38-46%, and 0-5%. The cut window is approximately |yt∆| < 2.0 and
4 < ytΣ < 8.

Figure 5.7 shows the US AS data in the cut window as well as the fit

models and residuals. The residuals contain very little structure. The LS AS

fit results in Fig. 5.8 have similar properties.

The US SS data had an unusual double peak feature. This feature was

easily modeled with the addition of a second 2D Gaussian. The fit results can

be seen in Fig. 5.9.

The cut window for the LS SS data is positioned higher in yt to describe

the relatively higher location of the peak in the data and also to avoid the HBT

correlation at lower momentum. The fit results can be seen in Fig. 5.10.
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Figure 5.8: Au+Au LS AS ∆ρ/
√
ρsoft data (upper), cut window model fits

(middle), and residuals (lower). The centralities from left-to-right are 74-
84%, 38-46%, and 0-5%. The cut window is approximately |yt∆| < 2.0 and
4 < ytΣ < 8.

The fit parameters for all charge and angle combinations in all cen-

tralities are presented in Fig. 5.11. The amplitude of the 2D Gaussian rises

monotonically in all cases. The Gaussian widths remain relatively constant

for the AS LS, AS US, and US SS data. Due to the weaker correlation signal

in the LS SS data, the trend of the fit parameters is more varied. The posi-

tion of the 2D Gaussian is surprisingly constant as a function of centrality. It

remains between yt values of 3 and 3.5 for all charge combinations. The lower

momentum peak that appears in the US SS data is centered around yt=1.5.

While the cut window method vastly simplifies the fitting problem,

it lacks any correspondence to a theoretical model. Therefore, the search
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Figure 5.9: Au+Au US SS ∆ρ/
√
ρsoft data (upper), cut window model fits

(middle), and residuals (lower) . The centralities from left-to-right are 74-
84%, 38-46%, and 0-5%. The cut window is approximately |yt∆| < 2.0 and
ytΣ < 8.

continued to find a model that not only describes the transverse momentum

correlation data but also gives insights into the correlation mechanisms.

5.3.3 2D Levy Model

An analysis of 130 GeV Au+Au data in Ref. [57] inspired the following

fit model. That paper presents two-particle correlations on transverse mo-

mentum variable X(pt) ≡ 1− exp{−(mt −m0)/0.4 GeV} and compared it to

theoretical predictions. The extent to which pQCD could match the data was

tested with events generated from HIJING. HIJING matched the high mo-

mentum region of the data but failed to predict the lower momentum region,
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Figure 5.10: Au+Au LS SS ∆ρ/
√
ρsoft data (upper), model fits (middle), and

residuals (lower). The centralities from left-to-right are 74-84%, 38-46%, and
0-5%. The cut window is approximately |yt∆| < 2.0 and 5.5 < ytΣ < 8.

which had a distinct saddle shape.

That paper investigated the possibility that the saddle shape may be

due to fluctuations in the lower momentum single particle distribution. The

spectrum in the lower momentum region (0.15 ≤ pt ≤ 2 GeV/c) can be de-

scribed with a exp(−mt/T ) = exp(−mtβ) function. The inverse slope param-

eter T is conventionally referred to as “temperature” and β = 1/T . The ter-

minology is unfortunate because there are other possible, non-thermal sources

of this trend, e.g. longitudinal string fragmentation, recombination, or any

source giving rise to the soft component.

A model was then developed to predict correlations due to fluctuations
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Figure 5.11: Fit parameters for (yt, yt) correlation data versus centrality mea-
sure ν. The parameters in the upper row are the 2D Gaussian amplitude (left)
and the ytΣ width (right). The lower row contains the yt∆ width (left) and the
center location along the diagonal (yt1 = yt2) (right). The error bars represent
fitting errors derived from the statistical error of the data.

in the lower momentum single particle distribution. The mt distribution in

Eq. 5.3 was calculated from the convolution of two distributions: exp(−β(mt−

m0)), which is the momentum distribution of an ensemble of events for a given

β; and g1(β − β0), which represents the distribution of β from event to event

as well as within an event. g1(β − β0) is any general peaked distribution that

is peaked at β0.

dN

mtdmt

= A

∫ ∞
0

dβg1(β − β0)e−β(mt−m0) (5.3)

If g1(β − β0) is modeled as a Gamma distribution then the expression
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above can be expressed as a Levy distribution

dN

mtdmt

= A/ [1 + β0(mt −m0)/nfluct]
nfluct , (5.4)

where 1/nfluct = σ2
β/β

2
0 is the relative variance of g1(β).

In that paper the two-particle momentum distribution of pairs was de-

termined by convoluting the two-particle distribution function exp[−β1(mt1−

m0)]exp[−β2(mt2−m0)] with the 2D distribution g2(β1, β2). The particles were

sampled from local mt distributions determined by β(η, φ). The shape of the

2D distribution g2(β1, β2) has two limiting cases worth mentioning: the parti-

cles in an event are not point-to-point correlated; or the event is equilibrated

at a value of β, but β can fluctuate from event to event. In Ref. [57] it was

found that the model which matched the data best had an intermediate de-

scription such that there are some point-to-point correlations and β fluctuates

from event to event.

The two-particle sibling density is given by

d4N

mt1dmt,1dηmt,2dmt,2dη
= A

∫ ∫
dβ1dβ2g2(β1, β2)e−β1(mt1−m0)e−β2(mt2−m0)

=

(
1 +

β0mtΣ

2ηΣ

)−2ηΣ

[
1−

(
β0mt∆

2η∆ + β0mtΣ

)2
]−η∆

,(5.5)

where 1/ηΣ and 1/η∆ are the relative variances of g2(β1, β2), ∆(1/n)Σ ≡ 1
ηΣ
−

1
nfluct

, and ∆(1/n)∆ ≡ 1
η∆
− 1

nfluct
. The relative covariance of g2 is (1/n)tot ≡

1/ηΣ − 1/η∆.

The complete model function that was compared to data in the present

analysis was
√
ρsoft

n̂sib−n̂mix
n̂soft

, where n̂sib is the normalized quantity in Eq. 5.5,
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Figure 5.12: Data (left), Levy fit model (middle) and residual (right) for CI
200 GeV 28-38% central Au+Au collisions.

n̂mix is the normalized product of two single particle spectra, and n̂soft is the

normalized soft particle spectra. The three parameters contained in n̂sib that

were allowed to vary were nfluct, ∆(1/n)Σ, and ∆(1/n)∆.

Figure 5.12 contains a fit with this model to CI data in centrality bin

28-38%. The 2D Levy fit model can describe the saddle shape seen in the data

but the residual contains a significant amount of structure. Since some of the

residual is from background contamination like HBT or electrons, further fits

were made to away-side CI data in which these contributions are not found.

Also, a 2D Gaussian was added to help reduce the residuals. The fit results

for this new configuration are shown in Fig. 5.13.

The parameters of the fit to AS CI data in all 11 centralities are shown

in Fig. 5.14. This fit method’s ability to fit the majority of the structure

in (yt, yt) correlations is promising. Also, the concept of a fluctuating “soft”

component and a 2D Gaussian “hard” component is meaningful and important
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Figure 5.13: Data (left), 2D Levy fit plus Gaussian model (middle) and residual
(right) for AS CI 200 GeV 28-38% central Au+Au collisions.

in the development of a complete view of the heavy ion system.

5.4 Model Comparisons

Momentum correlations, specifically the peak observed around (yt1, yt2) =

(3, 3) (pt=1.4 GeV/c), reveal an important new feature of the data in which

theoretical models can be compared. The three models presented in this sec-

tion include a variety of possible dynamics in heavy ion collisions. HIJING

predicts pQCD minijets with no collective behavior. AMPT, which includes

jets, predicts a quadrupole in angular correlations using a hybrid transport

model that includes a period of parton-parton re-scattering. NexSpheRIO is

a hydrodynamical model with fluctuating initial conditions that also predicts

a ridge-like structure in angular correlations as well as a quadrupole.
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Figure 5.14: Fit parameters for AS CI (yt1, yt2) data versus centrality measure
ν. The parameters in the upper panels corresponds to the 2D Levy component.
The parameters in the lower panels correspond to the 2D Gaussian. The two
most peripheral centralities had a reduced (yt1, yt2) range (ytΣ < 4.0). The
error bars represent fitting errors derived from the statistical error of the data.

5.4.1 HIJING

HIJING is a Monte-Carlo event generator that is based on the LUND

string model and pQCD semi-hard jet fragmentation [53]. These components

originated in PYTHIA, which models a single binary (nucleon-nucleon) colli-

sion [49]. Heavy ion collisions in HIJING are described as a superposition of

nucleon-nucleon collisions. The number of binary collisions is estimated with a

Glauber simulation where the distribution of nucleons in a heavy ion nucleus is

described with a Wood-Saxon profile. HIJING can also include jet quenching

which helps reproduce the observations of missing transverse energy for jets

in data. For this study, jet quenching was turned off in order to maximize jet
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Figure 5.15: Two-particle correlations from HIJING for 75-85% central events.
The first and third panel show results with jets on; the second and fourth are
with jets off.

correlations.

In HIJING, high-pt transfer processes (i.e. jets) can also be simply

turned on or off. Therefore, the jet contribution to angular and momentum

correlations can be observed by comparing the two settings. Approximately

600,000 HIJING events were generated via the AMPT model code (v1.21-

v2.21). AMPT reduces to HIJING when the parton-parton interaction cross

section is set to zero. All charged particles were analyzed with the pt > 0.15

GeV/c, |η| < 1, and full azimuth.

The results in Fig. 5.15 show that HIJING with jets turned on repro-

duces the data well in angular space in peripheral collisions [11]. A peak is

also observed in the (yt, yt) correlations that is similar to data. When jets are

turned off the same-side peak in angular space disappears, which is expected

from a minijet hypothesis. Interestingly the peak in the momentum correla-

tions disappears as well. This study suggests that most of the pairs in the

(yt, yt) = (3, 3) peak are from jet fragmentation.
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5.4.2 AMPT

AMPT (A Multi-Phase Transport Model) consists of four main com-

ponent’s; initial conditions, partonic interaction, hadronization, and hadronic

interaction [59]. With increasing partonic interaction, AMPT can generate a

quadrupole component, which motivates the investigation of the corresponding

momentum correlations.

AMPT’s initial conditions are obtained from HIJING and include spa-

tial and momentum information of minijets and soft strings (i.e. the color

flux tubes in the Lund fragmentation model). Next, the ZPC (Zhang’s Par-

ton Cascade) models a phase of partonic-partonic interactions. The partons

which are included in this interaction depends on which of two running modes

is chosen. The first and default option allows only minijet partons to interact.

The second options is called “string melting” and allows interactions of both

minijet partons and soft strings (after being converted to partons). Without

string melting it can be argued that the partonic interaction effects will be

underestimated. The study presented here used the “string melting” mode in

order to maximize the effects of parton-parton scattering.

The hadronization procedure in the third phase is dependent on the

running mode as well. In the default AMPT mode, minijet partons will re-

combine with the remaining strings in their parent nucleons after they stop

interacting. The new excited strings then hadronize using the Lund string frag-

mentation model. In string melting mode, the partons are hadronized using

a simple quark coalescence model. The model combines the two nearest par-
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tons (in space-time) into mesons and the three nearest quarks into baryons. A

source of concern is that this coalescence model considers only the coordinate

space location, not the relative momentum value of the partons. While total

energy is not conserved, the three-momentum is conserved and the species is

assigned to whichever hadron is closest in mass.

The last phase involves a period of hadronic re-scattering using the

ART (A Relativistic Transport) model. For the purposes of this study the

hadron re-scattering was turned off. The effects of this phase were examined

and believed to be small but will be studied in the future.

The two body scattering cross section in the second phase is approxi-

mately 9πα2
s

2µ2 [59] and in the default setting equals 3 mb. The strength of the

interaction can be adjusted with a change to either the screening mass µ or

the strong coupling constant αs. This study looked at a range of cross sections

from zero (HIJING-like) to a value that produces a quadrupole amplitude that

matches the data.

The hadron-hadron correlations, however, produced some suspicious

results. The increase from 0 mb to 3 mb created a dramatic increases in the

size of the same-side peak (amplitude and η width) but the φ width surpris-

ingly decreases. Intuitively one would assume that as the scattering amongst

particles increases, the φ width of a jet would increase as well. Also, the peak

in (yt, yt) space was surprisingly unaffected

Some of the non-intuitive behavior might be due to the coalescence
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Figure 5.16: Two-parton correlations from AMPT for collisions in the 45-
55% centrality bin. The upper row contain angular space correlations and the
bottom row contain momentum space correlations. The partonic cross section
values are (left to right) 0 mb, 1.5 mb, 3 mb, and 6 mb.

hadronization model. Forming correlations on the parton instead of hadron

level will eliminate the effects of the assumed hadronization model. Figure 5.16

contains parton-parton correlations for four values of partonic cross section in

angular space (upper) and momentum space (lower). For this preliminary

survey, the correlations were formed with a mixed pair reference and pair

normalization. In any case, final comparison between model and data should

be with the same reference distribution and normalization to allow for direct

comparisons.

Fits to the data were made with the standard 11 parameter fit func-

tion [11]. The trend of the fit parameters made somewhat more sense on the

parton level than the hadron level. With the initial increase in partonic inter-

action the φ width of the same-side peak increases (but then decreases). As a

point of reference, the amplitude of the quadrupole in data in this centrality
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is 0.136. The amplitude of the AMPT model at 6 mb is 0.115 and at 12 mb

is 0.153. Therefore a partonic cross section somewhere between 6 and 12 mb

was needed to produce a quadrupole amplitude that matched the data.

The momentum correlations in the bottom row of Fig. 5.16 show, for

0 mb, a higher momentum peak similar to what is observed in data. With

a slight increase in cross section, however, this peak quickly dissipates. The

peak gradually re-appears with higher values of partonic cross section. This

study suggests that, while AMPT can describe some features of heavy ion

data in angular space, it fails to reproduce the observed correlation structure

in momentum space.

5.4.3 NexSpheRIO

The proclaimed successes of hydrodynamics motivates the attempt to

compare its predictions to (yt, yt) data. Hydrodynamics describes strong col-

lective flow assuming local thermal equilibrium. This model reproduces many

aspects of the data but cannot describe the entire lifetime of the medium with-

out using adjustable parameters for the initial conditions, equation of state,

hadronization and freeze-out transitions.

NexSpheRIO is a hybrid of the Spherio and Nexus models [60]. Sphe-

rio is based on the Smoothed Particle Hydrodynamics (SPH) method which

originated in the field of astrophysics [61]. The initial conditions in Spherio

are expressed in terms of distributions of fluid velocity and generally averaged

over small variations in local features. However, recent developments in the
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field have identified the importance of small fluctuations in the density profiles

of the colliding nuclei. These fluctuations are proposed to generate many cor-

relation structures including the same-side ridge [62]. Nexus is the component

of NexSpheRIO which provides fluctuating initial conditions.

Reference [63] contains an analysis of 200 GeV Au+Au NexSpheRIO

events in angular space. While the model was successful in predicting a same-

side ridge, predictions of the correlations in momentum space need to be also

compared to data.

A public copy of the Spherio code is available online and a copy of Nexus

was obtained through personal communications. Many attempts were made

to produce events but at the time of this dissertation none were successful

in producing a reliable, trustworthy sample. However, the events used in

the publication of Ref. [63] were made available. The two-particle correlation

results from these events are shown in Fig. 5.17.

The figures in the upper panel of Fig. 5.17 approximately match the

results reported in Ref. [63]. The momentum correlations in the lower row

are formed with a mixed pair reference and pair normalization. A higher

momentum peak can be seen in all the centralities except the 0-10% bin.

However, the inability to reproduce these NexSpheRIO events directly prevents

any confident conclusion of the physical implications of this analysis at this

time.
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Figure 5.17: Correlations from NexSpheRIO events in angular (upper) and
momentum (lower) space for Au+Au 200 GeV collisions in four centralities.
The centralities, from left-to-right, are 60-80%, 40-60%, 20-30%, and 0-10%.

5.5 Errors and Reference Distributions Choices

The statistical errors on the quantities nsib and nmix are equal to the

square root of the number of pairs. These errors are then propagated through

the calculation of the quantity ∆ρ/
√
ρmix. The errors on the final quantity

∆ρ/
√
ρsoft assume proportional errors as demonstrated in Eq. 5.6.

Error

(
∆ρ
√
ρsoft

)
=

Error
(

∆ρ√
ρmix

)
∆ρ√
ρmix

∆ρ
√
ρsoft

(5.6)

The statistical errors of the correlation data in (yt, yt) space are shown

in Fig. 5.18. Since it is proportional to the number of pairs in the bin, the

largest errors are found in the higher momentum region where statistics are

poor.
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Figure 5.18: The statistical error on the final ∆ρ/
√
ρsoft(yt1, yt2) data for 38-

46% central collisions. The z-axis scale on the left panel is equal to the data.
The z-axis scale on the right panel is zoomed in for better visual access.

The amplitudes of the errors fluctuate and increase slightly from pe-

ripheral to central collisions. The maximum error for most of the centralities

is between 0.1 and 0.15. However, in the 28-38% centrality there is a large

spike in the error that is due to a small value of ∆ρ/
√
ρmix. This effect is

observed in only this bin.

5.5.1 Systematic Errors

Any potential biases in the (yt1, yt2) correlation data due to track or

event selection criteria, or experimental inefficiencies qualify as systematic

errors. This section will describe the types of systematic errors investigated

thus far. There are remaining issues to investigate including systematic errors

due to the choice of fitting model. The sources of systematic errors which were

found to be insignificant (i.e. less than statistical noise) will be described first.

Events are grouped in multiplicity ranges that are typically no wider
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than ∆Nch = 50. This ensures the ratio ∆ρ/ρ is formed from events with

similar multiplicities. Any dependence on this multiplicity bin width was

investigated by reducing the width in half, to approximately ∆Nch = 25. The

difference in the correlation data between the two configurations was found to

not exceed statistical noise.

When STAR collected Au+Au data in 2004 the detector operated for a

period of time in each of the two magnetic field orientations. The correlation

data should, in principle, not depend on the magnetic field orientation but any

charge-dependent effects could be identified by analyzing events taken in both

orientations separately. The difference in the data was observed to be smaller

than statistical noise. It should also be noted that the ratios ∆ρ/ρ are always

formed from events with the same magnetic field orientation.

The effects of the transverse momentum resolution, which is on average

a few percent [64], were examined by convoluting a 2D Gaussian smearing

function, whose widths depend on the yt-dependent resolution, with the data:

F (yt1, yt2) =

∫
dy′t1

∫
dy′t2

∆ρ
√
ρ

(y′t1, y
′
t2)

1

2πσ1σ2

e
−1/2

[
(yt1−y

′
t1)2

σ2
1

+
(yt2−y

′
t2)2

σ2
2

]
,

(5.7)

where σ is the pt resolution obtained from [64]. The effect of this smearing

was less than statistical noise.

The sources of systematic error which were larger than statistical noise

include two-track inefficiencies, primary vertex finding inefficiencies, secondary

particle contamination, and conversion electrons. These errors will ultimately
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be reported with the 2D (yt1, yt2) fitting parameters.

Two-track inefficiencies from track merging or crossing are reduced by

removing pairs that satisfy a group of conditions described in Sec. 3.3.1. One

of the requirements in the track merging cut is that the separation distance

in both the longitudinal and transverse direction are less than 5 cm at any of

three radial points. The tracking crossing cut had a similar separation distance

requirement. An alternative method used in previous analyses would reject

pairs based on the average of the separation distances at a few points along the

track. A difference in the data between these two methods was found in the

yt = [1.5,3] region in mid-central events and can be approximately modeled

by a Gaussian. The systematic error on the fit parameters from this effect is

approximately one-third of the difference between the two configurations.

In the three most central bins (0-5%, 5-9%, 9-18%), events are binned

according to their z-vertex positions with a bin-size of 5 cm. This ensures the

events in a bin have similar effective experimental acceptances that cancel in

the ratio ∆ρ/ρ. Reducing the bin size from 5 cm to 2 cm was found to not

have an effect on the data. Events in the eight most peripheral centralities

are typically not grouped by z-vertex position so, for this study, a 5 cm range

was introduced. The result was a net increase in the data at higher yt that

can be modeled as a constant offset. The offset component of the fit should

be adjusted by half the difference between the two configurations (no binning

and 5 cm binning). The systematic error on the offset due to this effect is also

half the difference.
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Contamination of particles that did not originate from the primary

vertex, known as secondary particles, is reduced by requiring the distance of

closest approach (DCA) of a track to the primary vertex to be less than 3 cm.

Reducing the DCA cut to 1 cm measures any remaining contamination from

secondary particles. A direct comparison between a 1 cm and 3 cm analysis

is complicated because the standard centrality definitions are given as ranges

in Nch with a 3 cm DCA cut. Therefore the same event could be classified

in two different centralities if the DCA cut is reduced. In order to properly

classify events, new centrality definitions need to be made for the distribution

of events on multiplicity with a 1 cm DCA cut. While the analysis of the data

with new centrality definitions was not finished at the time of this dissertation,

preliminary findings show the effect occurs in the lower momentum regions of

the more central bins.

Systematic error due to any remaining pileup contamination after ap-

plying the pileup removal procedure was also investigated. Pileup is most easily

identified in angular data and primarily affects the 1D Gaussian component in

mid-centralities. Comparing the centrality dependence of the amplitude of the

1D Gaussian in angular space before and after the pileup removal procedure

suggests that approximately 10% of the pileup still remains. The systematic

error on the fit parameters due to this effect is 10% of the difference between the

data with and without the pileup removal procedure in centralities 2 through

7 (18-74%).

Lastly, photon interaction with detector material produces pairs of elec-
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trons and positrons. This is a well-known background that will be described

in more detail in Sec. 5.5.3. The distribution of electron pairs is located at low

yt and can be modeled with an exponential. The systematic error is 1/3 the

difference between the final fit parameters and those obtained by fitting the

data minus the electron component.

5.5.2 Reference Distribution

The soft distribution ρsoft used in the final results is described in

Sec. 3.4.2 but there are other approaches to estimating the soft reference distri-

bution. While the effects of choosing other values of ρsoft should be discussed,

they do not qualify as true systematic errors on the correlation measurements.

Three of the five options for estimating the soft reference, described below, in-

corporate particle identified data from the analysis in Ref. [7]. The other two

utilize STAR and PHENIX unidentified spectra data that was not available

at the time [7] was published. Figure 5.19 contains a 1D distribution of five

options for the soft reference.

In Ref. [7] the soft component is reported for identified pions and pro-

tons only. To form a reference for an inclusive analysis it was therefore nec-

essary to add the kaon component. However, there is ambiguity in the kaon

component due to an observed enhancement of the kaon to proton yield in

heavy ion collisions. Should this enhancement be attributed to the soft or

hard component?

One option is to assume the entire enhancement is associated with the
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hard component xK . The value of xK was estimated from the slope parameter

of a linear fit to dN
dη

1
〈Npart〉/2 versus ν. The integrated yields, dN/dη, were

obtained with Maxwell-Boltzmann fits to kaon spectrum data from STAR [44].

The relative yield fK(ν) should not change for the soft component in this

scenario. This option is labeled in Fig. 5.19 as “All Hard Component”.

Alternatively, some of the enhancement could be present in the soft

component and the enhancement in the yield of the kaons in the soft compo-

nent fK(ν) will vary with centrality. The value of xK can be estimated from

pion data in the p-p limit. In the present analysis this would correspond to

no enhancement over binary scaling in heavy ion collisions. This option is

labeled in Fig. 5.19 as “Some Soft - fixed x”. The other option, used in the

final results, calculates xK from pion data over the entire range of ν and more

accurately represents the increase over binary scaling. This option is labeled

in Fig. 5.19 as “Some Soft - fixed H”.

The last two options were obtained from STAR [41] and PHENIX [42]

unidentified spectra separately. In this method the particle densities were

extrapolated to the ν=0 limit for each pt value. There were several instances

of incomplete centrality and momentum information so extrapolations had to

be taken carefully or not at all. The soft components were then described

with Levy distributions like in Eq. 3.20. The parameters of the distribution

from STAR were A=4.32, T=0.1342 GeV, n=9.67 and the parameters from

PHENIX were A=11.94, T=0.0955 GeV, and n=8.22.
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Figure 5.19: A distribution of ρsoft on yt for five different configurations on a
linear (left) and log (right) scale.

5.5.3 Electron Contamination Simulation

Electrons are considered background for this correlation analysis, as

the majority of them are produced from photons interacting with detector

material. In angular space, the correlated electrons form a distinct 2D expo-

nential shape near the origin. A simulation study was performed to see how

the electrons are distributed in momentum space.

The simulation studied photons that originated from the decay of neu-

tral pions (π0). First, a candidate π0 was created by sampling a π0 momentum

distribution, obtained from Ref. [65, 44]. The π0 then decays into two back-

to-back photons with a random orientation in the pion’s center of mass frame.

The Bethe-Heitler differential cross-section for photons to produce a

e+e− pair is found in the GEANT manual [66]. The cross section depends on

the atomic number of the material, which was assumed to be mostly Silicon
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Figure 5.20: The simulated momentum distribution of electrons from photon
conversion.

from the Silicon Vertex Tracker [67], the total energy of the photon in the lab

frame, and the fraction of the photon energy ε carried by one of the electrons.

The distribution of the cross-section, integrated over all values of ε, as a func-

tion of the total photon energy was used to either accept or reject potential

γ → e+e− decays. If the γ was accepted, then a value of ε was determined

from sampling a distribution of ε for that particular total photon energy. The

momentum distribution of 1150 correlated electron pairs is in Fig. 5.20.

The distribution should be normalized to the total number of correlated

electron pairs in an event. This can be estimated from the 2D exponential com-

ponent of the fit to US angular correlation data. This makes the assumption

that the 2D exponential is only from pairs correlated from photon conversion
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and therefore is most likely an overestimation.

The 2D exponential (F2D Exp) is a function of ∆ρ/
√
ρ. The number of

correlated pairs (Ne+e−) due to photon conversion equals ∆ρ × ∆η∆φ. The

density of correlated particles (∆ρ) is related to the 2D exponential fit function

in the following expression:

F2D Exp =
√
ρref,US

∆ρ

ρref,US
(η∆, φ∆) = Ae

−
[
η2

∆/σ
2
η∆

+φ2
∆/σ

2
φ∆

]1/2
. (5.8)

The total number of correlated pairs is the 2D integral of Eq. 5.8∫ ∆η

0

∫ π

−π
dη∆dφ∆

√
ρref

∆ρ

ρref
(η∆, φ∆) =

1

2

∫ ∆η

0

∫ π

−π
dη∆dφ∆Ae

−
[
η2

∆/σ
2
η∆

+φ2
∆/σ

2
φ∆

]1/2
,

(5.9)

where the 1
2

on the right-hand-side is needed to compensate for the fact

that both permutations of particles in a pair are taken in the analysis (i.e.

ρ(η∆, φ∆) = ρ(−η∆,−φ∆)). The limits of integration also take into account

the specific permutations and reflections done in the analysis code.

The integral of a 2D exponential is calculated from the Gaussian inte-

gral and shown below.

1

2

∫ ∆η

0

∫ π

−π
dη∆dφ∆Ae

−
[
η2

∆/σ
2
η∆

+φ2
∆/σ

2
φ∆

]1/2
=
π

2
Aση∆

σφ∆
(5.10)

Next, ∆ρ needs to be extracted from the left-hand-side of Eq. 5.9. The

integral of a ratio can be shown to equal approximately the ratio of integrals

multiplied by the area of integration,
∫

x
y
≈ Ω

∫
x∫
y
, if y is approximately con-

stant. This relation is used in Eq. 5.11.
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∫ ∫
dη∆dφ∆

√
ρref,US

∆ρ

ρref,US
(η∆, φ∆) =

√
ρref,US2π∆η

∫ ∆η

0

∫ π
−π dη∆dφ∆∆ρ∫ ∆η

0

∫ π
−π dη∆dφ∆ρref,US

=
√
ρref,US2π∆η

∫ ∆η

0

∫ π
−π dη∆dφ∆∆N∫ ∆η

0

∫ π
−π dη∆dφ∆Nref,US

(5.11)

The single particle density
√
ρref is approximately d2Nch

dηdφ
. One can as-

sume that
√
ρref,US = 1√

2

(
d2Nch
dηdφ

)
= 1√

2

Nch
2π∆η

and the expression above can be

further simplified.

√
ρref2π∆η

∫ ∆η

0

∫ π
−π dη∆dφ∆∆N∫ ∆η

0

∫ π
−π dη∆dφ∆Nref

=
Nch√
22π∆η

2π∆η
N

1
2
N2
ch

=
2Ne√
2Nch

(5.12)

Equating the results of Eq. 5.10 and Eq. 5.12 per Eq. 5.9 leads to an

expression for the total number of correlated electrons, Ne.

Ne =
π

2
√

2
NchAση∆

σφ∆
(5.13)

In reality, the default prefactor for LS and US correlation measures is

√
ρref,CI . Also, the ∆ρ/ρ ratios for US charge combinations (+−, −+) are

multiplied by a factor of 1
2

to transform the measure from a sum-of-ratios to a

ratio-of-sums. So the US correlation measure is actually
√
ρref,CI

∆ρ
2ρref,US

and

the number of electrons equals π
2
NchAση∆

σφ∆
.

In the 18-28% centrality bin, the amplitude of the US 2D exponential

is 0.2698±0.0015 with ση∆
=0.1184±0.0011 and σφ∆

=0.1304±0.0015. With
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Figure 5.21: ∆ρ/
√
ρsoft for correlated electron pairs in the 18-28% centrality

bin.

Nch=475.13, the number of unique pairs of correlated electrons is estimated

to be 3.11±0.05.

To match the data both permutations of a pairs (yt1, yt2) = (yt2, yt1)

should be taken. So the total number of electrons shown in Fig. 5.20 was scaled

to 6.22 and expressed as the quantity ∆ρ/
√
ρsoft. This study demonstrated

that correlated electrons from pair production are distributed primarily in the

lower momentum region.

5.6 Discussion

This chapter presented comprehensive results of transverse momentum

correlations for Au+Au 200 GeV collisions. The main feature observed in the
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correlations is a broad peak extending from 0.5-4.0 GeV/c. This broad peak is

observed in not only charge independent pairs but also both like- and unlike-

sign charge combinations and same- and away-side relative azimuth angles.

Interestingly, this peak in the data for AS or “back-to-back” pairs per-

sists in higher centralities, increases in amplitude, and remains at approxi-

mately the same transverse momentum. If this peak is related to jet physics

then this observation does not support an opaque medium hypothesis. If

an opaque, thermalized core is generated in central heavy ion collisions then

one side of a di-jet should undergo significant energy loss known as “quench-

ing” [19]. However, neither the position of the peak nor the amplitude in

Fig. 5.3 decreases with an increase in centrality.

Two peaks are observed in the same-side unlike-sign data. These two

peaks may correspond to a shift in the momentum distribution of pions and

protons and be related to the observed increase of the proton-to-pion ratio in

heavy ion collisions. The recombination model is one of the explanations of

this enhancement and it assumes a formation of a partonic medium [68, 69].

Reference [7] claims, however, that the observed increase in the ratio of protons

to pions in intermediate momentum (2 < pt < 6) in heavy ion collisions is due

to a change in the jet fragmentation distribution.

The observations in all centralities and charge and angle combinations

are quantified through fit models. The final fit model is based on a fluctuating

soft component characterized by a 2D Levy distribution and higher momentum

peak characterized by a 2D Gaussian. It is successful in describing most of
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the features of the data.

The momentum correlation results also provide definitive tests for the-

oretical models. HIJING predicts a broad peak similar to data when jets are

turned on, which suggests the peak is associated with semi-hard jet fragmen-

tation. Partons in AMPT do not follow the observed trends when sufficient

interaction strength is included to reproduce v2. AMPT results also show a

strong dissipation of the peak with a small increase in the parton-parton in-

teraction strength. Comparisons to the NexSpheRIO model, which is based

on hydrodynamics with fluctuating initial conditions, are also underway.
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Chapter 6

The Momentum Dependence of Angular

Correlations

All of the information contained in the available six-dimensional corre-

lation space can be completely described in four dimensions (η∆, φ∆, yt1, yt2),

given the two-particle distribution is stationary on ηΣ and φΣ. This chapter

presents measurements binned on these four variables by forming angular cor-

relations as a function of (yt1, yt2). This will determine how pairs correlated

in a specific angular structure are distributed in momentum. The momentum

distribution of pairs in the same-side peak, for example, has the potential to

support or falsify the idea that the “ridge” and “jet” are two separate pro-

cesses.

6.1 Analysis Setup

A comprehensive study of the momentum dependence of angular corre-

lations began by dividing pairs into unique regions in momentum space, known

as “cut bins”, according to their (yt1, yt2) values. The correlations of the pairs

from each cut bin were then formed in angular space and analyzed.

The size of a cut bin was made large enough to provide ample statistics
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Figure 6.1: The locations of the 28 unique cut bins in (yt1, yt2) space for the
present study. Both permutations of a pair were taken but only one half of
the (yt1, yt2) space was filled due to an inherent symmetry.

but small enough to provide an adequate resolution of the resulting struc-

tures. The final design consisted of 28 distinct cut bins in the range of

(yt1, yt2)=([1,4.5],[1,4.5]) for each of the eleven centralities. The bins were

square with sides of length 0.5 as seen in Fig. 6.1. Both permutations of par-

ticles in a pair were counted and therefore the (yt1, yt2) space is symmetric by

construction along the diagonal (yt1 = yt2). This symmetry permitted filling

only one half of the (yt1, yt2) space and therefore the bins located along the

diagonal are only half the nominal bin size.

6.2 Weighting

The goal of this study is to determine how the relative number of pairs

correlated in a specific angular structure are distributed in momentum space.
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However, the correlation signal, ∆ρ/
√
ρref , measures the number of correlated

pairs per particle. The denominator introduces a dependence on the number of

particles in each cut bin. This dependence will be removed in order to measure

a quantity which can be directly compared between momentum regions.

An effective weighting factor wi can be constructed that effectively

creates a common denominator. The common denominator, ρref,tot, is the pt

integral density of pairs. With this weighting, the sum of the angular bin

content from each of the 28 (yt1, yt2) bins would be equal to the angular bin

content from a pt integral analysis as in the following expression[
∆ρ
√
ρref

]
All yt

≈ Σiwi

[
∆ρ
√
ρref

]
i

, (6.1)

where i denotes a 2D bin in (yt1, yt2) space.

However, a more precise relationship between the i = 28 bins and the pt

integrated value is expressed in Eq. 6.2 and uses the definitions nsib ≡ Σinsib,i

and nref ≡ Σinref,i.

[
∆ρ

ρ

]
total

=
nsib(η∆, φ∆)− Nsib

Nref
nref (η∆, φ∆)

Nsib
Nref

nref (η∆, φ∆)

=

∑
i nsib,i(η∆, φ∆)− Nsib

Nref

∑
i nref,i(η∆, φ∆)

Nsib
Nref

∑
i nref,i(η∆, φ∆)

(6.2)

N is the total number of pairs in the full (η, φ) acceptance and n is the number

of pairs in one (η∆, φ∆) bin for sibling or reference pairs. The factor Nsib
Nref

normalizes the number of mixed pairs via pair weighting.
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First, the three summations over i in Eq. 6.2 are combined into one

sum over the ratio ∆ρ/ρ.

[
∆ρ

ρ

]
total

=

∑
i
Nsib
Nsib

Nref
Nref

nref,i
nref,i

nsib,i − Nsib
Nref

∑
i nref,i

Nsib
Nref

nref

=

Nsib
Nref

∑
i nref,i

(
Nref
Nsib

nsib,i
nref,i

− 1
)

Nsib
Nref

nref

=
∑
i

nref,i
nref

(
Nref

Nsib

nsib,i
nref,i

− 1

)
(6.3)

Ultimately, the expression above will need to contain the quantity ac-

tually measured in the analysis code, which is[
∆ρ

ρ

]
i

=
nsib,i − Nsib,i

Nref,i
nref,i

Nsib,i
Nref,i

nref,i
. (6.4)

The normalization factor used in each cut bin,
Nsib,i
Nref,i

, needs to be replaced

with the normalization factor for the entire pt integrated data sample. The

expanded expression is[
∆ρ

ρ

]
total

=
∑
i

nref,i
nref

[
Nref

Nsib

Nsib,i

Nref,i

(
Nref,i

Nsib,i

nsib,i
nref,i

)
− 1

]
=

∑
i

nref,i
nref

[
Nref

Nsib

Nsib,i

Nref,i

([
∆ρ

ρ

]
i

+ 1

)
− 1

]
≡

∑
i

∆ρi
ρref,tot

, (6.5)

where
[

∆ρ
ρ

]
i

is defined in Eq. 6.4. The relationship between the correlation

measure in each cut bin and the correlation measure of a pt integrated analysis

is now given in Eq. 6.5.
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6.3 Fitting Procedure

Information contained in the 28 weighted (yt1, yt2) bins in 11 centralities

can be extracted and quantified via fitting. The six model components used

in pt integrated analyses [11] are defined in Eq. 6.6. As a first step, this fitting

model was applied to each of the cut bins, with the expectation that some

adjustments would be required due to the momentum restrictions.

F = A1exp

{
−1

2

[(
φ∆

σφ∆

)2

+

(
η∆

ση∆

)2
]}

+ ADcos (φ∆ − π)

+ AQcos (2φ∆) + A0exp

{
−1

2

(
η∆

σ0

)2
}

+ A2exp

−
[(

φ∆

wφ∆

)2

+

(
η∆

wη∆

)2
]1/2

+ A3 (6.6)

The correlation data were fit with ROOT’s software package, Minuit.

Minuit’s default fitting algorithm, MIGRAD, uses information about the first

derivatives of χ2 with respect to the fitting parameters to find the minimum χ2

value [70]. The user is also able to start MIGRAD at a specific location in the

N-dimensional parameter space and impose limits on each of the parameters.

MIGRAD calculates a 1σ error on each parameter by varying each pa-

rameter independently until the χ2 value increases by one. It likely underesti-

mates the error because it assumes there is no covariance between parameters.

A better error estimation is done with the processor MINOS. MINOS will vary

each parameter simultaneously and refit until the χ2 value increases by one.
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The first step in the fitting procedure for the present analysis was to fit

the data using MIGRAD. This is a quick way to locate the χ2 minimum. The

data are then re-fit with MINOS, starting at the location given by MIGRAD, to

get a better estimation of the errors. The ranges in which the parameters were

allowed to vary were kept as wide as possible to help the fitting algorithms

(i.e. calculation of the first derivative) and error calculations. There were

instances in which limitations to the parameter ranges were required. This was

most often needed when structures in the data vanished and the corresponding

fitting components tried to model other features of the data.

Another fitting algorithm called Downhill Simplex [71] was used to

evaluate the validity of the MIGRAD fit results. The Simplex algorithm, while

slower than MIGRAD, is more robust due to the fact that it does not rely on

first derivatives [70]. The Simplex method is also advantageous for its ability

to identify local minima in the χ2 contour map, due to its frequent inability to

locate the global minimum. Often the Simplex fitter ends at a local minimum

or some other intermediate stage. The fitting results are highly dependent on

the location in parameter space in which the fitting begins. Therefore if one

takes a large sample of random starting values, the χ2 distribution of the final

fit parameters will contain a detailed map of local and global minima. The

results from ROOT’s fit to the data were compared to these χ2 distributions

and any inconsistencies were marked for further examination. The following

subsections will detail situations in which the standard fitting model defined

in Eq. 6.6 was not adequate.
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Figure 6.2: Scatter plot of 500 Simplex fit results for centrality 5-9% in the
range yt1 = [3, 3.5] and yt2 = [2, 2.5] (cut bin 15). Each fit was started at a
random location in the 11-dimensional parameter space. Left Panel: χ2 versus
2D Gaussian amplitude. Right Panel: χ2 versus 2D exponential amplitude.

6.3.1 2D Exponential

The χ2 map in Fig. 6.2, generated by the Simplex algorithm, shows

evidence of two parameters covarying due to an unsuitable fitting model. The

left panel shows a scatter plot containing values of χ2 versus the 2D Gaussian

amplitude for 500 fits and the right panel shows the χ2 values versus the 2D

exponential amplitudes.

In this momentum range, yt1 = [3, 3.5] and yt2 = [2, 2.5], there is no

observed 2D exponential component in the angular correlation data. There-

fore, the standard fit model is now overdetermined and the 2D Gaussian and

2D exponential compete to fit one same-side peak. The two bands of points

at amplitude values of 0 and 0.04 in Fig. 6.2 correspond to the two situations

in which either the exponential or the Gaussian fit the same-side peak. The
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solution to this fitting ambiguity is to remove the 2D exponential in the cut

bins in which a sharp peak is not directly observed in the data.

The 2D exponential component was removed from the fit in 14 cut

bins (6, 10-12, 16, 17 and 19-26). These cut bins are located in the higher

momentum region where there is a large relative difference in the momentum

of the particles in a pair. The 2D exponential contains correlated particles

from photon conversion in detector material as well as HBT, Coulomb repul-

sion, or other short range momentum correlations. Studies have shown the

electron pairs from photon conversion are distributed in mostly the lower mo-

mentum region along the diagonal (yt1 ≈ yt2) (see Sec. 5.5.3). Therefore the

disappearance of this structure in these cut bins is not surprising.

6.3.2 Quadrupole

Due to these simplex results, peculiarities with the quadrupole com-

ponent in some of the cut bins were identified. Figure 6.3 contains a plot

of χ2 values versus quadrupole amplitudes for 10,000 starting values. A rea-

sonable judgment of the χ2 minimum would be at a quadrupole amplitude of

approximately 0.0085. However MIGRAD returns a value of 0.0015.

The residual from the MIGRAD fit is small, however, so the observed

discrepancy in the quadrupole amplitude must be compensated by other fit

components. Perhaps the dipole, quadrupole, and/or 2D Gaussian were con-

spiring to fit the structures in the data. This discrepancy between the simplex

and MIGRAD fit results appeared in the higher centrality fractions of cut bins
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Figure 6.3: Scatter plot of the χ2 versus quadrupole amplitude for 10,000
Simplex fits with random starting locations for 10-18% central events in the
range yt1 = yt2 = [1.5, 2] (cut bin 7).

1, 2, 5, 7-9, and 13.

Interestingly, adding the quadrupole amplitudes from fits to LS and US

data separately matched the CI quadrupole amplitude determined from the

Simplex results. This resolved the fitting ambiguity and the CI data were then

fit with a fixed quadrupole amplitude.

6.3.3 Negative Like-sign Dip

Correlations in some cut bins developed a negative dip at the origin

which does not appear in pt integrated results. Also, this negative dip was

present in only LS pairs as seen in Fig. 6.4. In some cut bins this LS negative

dip was hidden by a larger, positive structure in US pairs and therefore did
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Figure 6.4: Charge independent (left) and like-sign (right) angular correlations
in the range yt1 = [2, 2.5] and yt2 = [1, 1.5] (cut bin 2) and centrality fraction
9-18%

not appear in CI correlations. In any case, this new correlation feature needed

to be properly addressed with the fit model.

The negative dip in LS pairs was identified in cut bins 1-4, 8-10, 14-16,

18, 19, 22 and 23 and fit with a negative 2D exponential. The negative 2D

exponential was then subtracted from the CI data before proceeding with the

standard fitting routine.

Generally LS pairs contain positive correlations from HBT near the

origin. HBT occurs between identical particles with similar relative velocity

so it is observed mainly along the yt1 ≈ yt2 diagonal. This negative dip ap-

peared in pairs with a larger difference in momentum and therefore the HBT

signal is too small to conceal a negative dip. The negative correlation may

be due to Coulomb repulsion between like-sign charged particles or a result of

hadronization.
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Figure 6.5: CI angular correlations in the range yt1 = yt2 = [3.5, 4.0] (cut bin
25) and centrality fraction 9-18%.

6.3.4 Same-side Peak Gaussian(s)

The 2D Gaussian fitting component, which describes the same-side

peak, required adjustments in the higher (yt1, yt2) bins. In these cut bins there

is no significant 2D exponential component due to the small contributions from

electrons, HBT, or other possible small range correlations.

The same-side peak in cut bins 23-25 deviated from a single Gaussian

shape as seen in Fig. 6.5. This new structure was found to be described well

by two 2D Gaussian functions, one wide in η∆ and the other narrow. The

same-side peak was then represented by the sum of these two components.

6.3.5 Higher Order Fourier Components

The fitting function defined for this analysis contains only the required

components to produce a statistically negligible residual. However, higher

order harmonics such as vn = 〈cos(n[φ− ψn])〉 (n=3,4,...) have been claimed
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to be significant [72]. The amplitudes of these proposed higher order harmonics

can, in fact, be directly obtained from the 11 parameter 2D fit results in

Eq. 6.6. This is due to the fact that the only available structure for higher

order Fourier components to describe is that which has already been described

to the statistical limits of the data with one of the six original components.

For more detail on this refer to Appendix B of Ref. [11].

6.4 Results

The fitting results in 28 cut bins and 11 centralities need to now be

meaningfully displayed. For a pt integral analysis, if the fit model completely

describes the features in the data (i.e. there is no structure in the residual)

then the approximation√
ρ′ref

∆ρ

ρref
(η∆, φ∆)all,yt ≈

∑
k

fk(η∆, φ∆) (6.7)

is valid, where fk represent the six fitting components: offset, dipole, quadrupole,

2D Gaussian, 2D exponential, and 1D Gaussian.

The weighting procedure described in Sec. 6.2 ensured the sum of the

bin content from each of the 28 bins added up to the bin content in the pt

integral result. Similarly the summation of the fitting components in each of

the 28 bins should equal the pt integral data√
ρ′ref

∆ρ

ρref
(η∆, φ∆)all,yt ≈

∑
i

∑
k

fk,i(η∆, φ∆), (6.8)

where subscript i denotes a 2D bin in (yt1, yt2) space.

133



The magnitudes of the fit components, fk,i, represent the number of

correlated pairs (∆ρ) in an angular correlation feature per final state particle

(
√
ρref,tot = d2N/dηdφ). However, the number of correlated pairs in each bin

i is dependent on the number of available particles in that (yt1, yt2) range. To

remove this dependency the denominator is replaced with a measure of the

number of final state particles on yt and the expression becomes

d2N/dηdφ√
ρ′ref,i(yt1, yt2)

fk,i(η∆, φ∆), (6.9)

where d2N/dηdφ is the pt integrated value and
√
ρ′ref,i(yt1, yt2) =

√
d2Ntot
dyt1dyt2

or√
d2Nsoft
dyt1dyt2

. The quantity in Eq. 6.9 is now the number of correlated pairs in kth

angular correlation feature, for pairs in (yt1, yt2) bin i, per final state particle

on yt.

For the offset, dipole, and quadrupole the amplitude is the relevant

quantity for fk. For the 1D and 2D Gaussian and the 2D exponential the

volumes are more appropriate measures because the widths also change as

a function of momentum. This chapter will present the measure in Eq. 6.9

using a soft reference
(√

ρ′ref =
d2Nsoft
dyt1dyt2

)
. The amplitudes or volumes will be

mapped onto a 2D (yt1, yt2) distribution that corresponds to the momentum

range of the original pair sample.

6.4.1 Dipole

The momentum distributions of the dipole amplitude are displayed in

Fig. 6.6 for 11 centralities with a common z-axis scale. The peak of the dis-
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Figure 6.6: The amplitude of the dipole component on (yt1, yt2) in 11 cen-
tralities for Au+Au 200 GeV collisions.

tribution is around (yt1, yt2) = (3, 3), similar to the two-particle momentum

correlations ∆ρ√
ρ
(yt, yt) in Chap. 5. The amplitude of the peak increases with

centrality but the position remains constant.

6.4.2 Quadrupole

The momentum distributions of the quadrupole amplitude are dis-

played in Fig. 6.7. Most of the pairs are distributed also near (yt1, yt2) = (3, 3).

The amplitude of the distribution peaks in the mid-central collisions and then
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Figure 6.7: The amplitude of the quadrupole component on (yt1, yt2) in 11
centralities for Au+Au 200 GeV collisions.

decreases to approximately zero at the most central collisions. The position

of the peak, however, appears to remain constant.

6.4.3 1D Gaussian

The momentum distributions of the 1D Gaussian volume on η∆ are

displayed in Fig. 6.8. Only the four most peripheral centralities are presented

because a 1D Gaussian structure is not observed in more central data. The

distribution is peaked in the lowest (yt, yt) bin and the amplitude of the peak
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Figure 6.8: The volume of the 1D Gaussian on η∆ on (yt1, yt2) in 4 centralities,
increasing left-to-right, for Au+Au 200 GeV collisions.

decreases with centrality. A large 1D Gaussian volume is reported in the higher

momentum region due to a fitting ambiguity in which the 1D Gaussian width

increases significantly and the entire structure becomes equivalent to an offset.

6.4.4 2D Exponential

The momentum distributions of pairs correlated in the 2D exponential

component are displayed in Fig. 6.9. The empty (yt, yt) bins correspond to

momentum regions in which the 2D exponential was removed from the fitting

function. Pairs correlated in the 2D exponential are distributed in the low

momentum region and at yt1 ≈ yt2. The 2D exponential in some of the higher

momentum cut bins is very narrow which causes fit instabilities that result in

a large reported volume.

6.4.5 2D Gaussian(s)

The same-side peak is described with either one or two 2D Gaussian

functions. The momentum distributions of pairs correlated in the Gaussian(s)
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Figure 6.9: The volume of the 2D exponential on (yt1, yt2) in 11 centralities
for Au+Au 200 GeV collisions.

are displayed in Fig. 6.10. The distributions are peaked around (yt1, yt2) =

(3, 3) in all centralities and the amplitude increases with centrality.

More detailed information about the peak position and widths were

obtained by projecting the data onto the ytΣ and yt∆ axes and then fitting

with a 1D Gaussian. An alternative method to obtaining the peak position

and widths would be to calculate the mean and variance of the distribution

directly. However, there are data points at the tail (large yt) with large error

bars due to poor statistics. The size of the error bars are not taken into account
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Figure 6.10: The volume of the 2D Gaussian(s) on (yt1, yt2) in 11 centralities
for Au+Au 200 GeV collisions.

when calculating the mean and variance directly, unlike in a fit.

The fits along the ytΣ axis are displayed with the data in the upper

panels of Fig. 6.11. The error bars represent the MINOS fitting errors which are

dependent on the statistical error of the data. The amplitudes of the Gaussians

in the left-lower panel appear to increase with centrality above binary scaling.

The widths in the middle-lower panel generally vary between 0.5 and 1. The

right-lower panel shows the position of the peak stabilizes around yt=3 in

the six most central bins. Interestingly, the position and width of the 1D

139



Figure 6.11: Upper panels: Projections of the momentum distribution of the
2D Gaussian(s) on the ytΣ axis for five centralities with a 1D fit in blue. Lower
panels: The 1D Gaussian amplitude (left), width (center) and position (right)
of the fit to the projections as a function of ν for 11 centralities.

Gaussian deviates from the general trends in the 46-55% centrality, where a

sharp transition is observed to occur in pt-integral angular correlations.

The fits along the yt∆ axis are displayed with the data in the upper

panels of Fig. 6.12. The amplitudes of the Gaussians in the left-lower panel

appear to increase with centrality above binary scaling like in Fig. 6.11. The

widths in the middle-lower panel vary between 1 and 1.5. In the right-lower

panel the position of the peak as a function of centrality is shown to be con-

sistently 0, which is purely a consequence of the data being symmetric about

the ytΣ axis by construction.

Some analyses define η∆ cuts to form two regions, a “jet-like” region
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Figure 6.12: Upper panels: Projections of the momentum distribution of the
2D Gaussian(s) on the yt∆ axis for five centralities. Lower panels: The 1D
Gaussian amplitude (left), width (center), and position (right) of the fit to the
projections as a function of ν for 11 centralities.

close to the origin and a “bulk-like” region at larger values of η∆. The proper-

ties of the pairs in the two regions are often interpreted as originating from two

separate processes [20]. The present analysis is useful in its ability to measure

the momentum distribution of pairs which only contribute to the “ridge” or

“jet” structures.

The same-side 2D Gaussian(s) were divided into three sections along

η∆ of equal length. The momentum distributions of the pairs in each of these

three ranges are displayed in Fig. 6.13.

Since the η elongation of the same-side peak only appears in mid- to

most-central events, Fig. 6.13 contains only the five most-central centralities.
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Figure 6.13: The volume of the 2D Gaussian(s) on (yt1, yt2) in three η∆ regions
(rows) in five centralities (columns). The η∆ regions from top to bottom are
|η∆| < 2/3, 2/3 < |η∆| < 4/3 and 4/3 < |η∆| < 2.

The pairs correlated near the origin in the upper panels are distributed in

momentum around (yt1, yt2) = (3, 3). As the integration region moves to larger

values of η∆ (middle and bottom row) the peak position of this distribution

does not change.

6.5 Discussion

This study’s ability to measure the momentum distribution of pairs

which contribute only to specific angular correlation features is very infor-

mative. It contrasts with other analyses that impose η∆ cuts, pt triggering

requirements or ZYAM [73] background subtraction techniques in order to
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measure momentum information about angular correlation features, such as

the ridge [74].

The momentum distribution of the correlated pairs in the same-side

structure is peaked around (yt1, yt2) = (3, 3) in peripheral collisions. HIJING

predictions support the hypothesis that this same-side peak structure, espe-

cially near the angular origin, is due to jet fragmentation. As centrality in-

creases the peak amplitude increases and the position remains relatively con-

stant. Surprisingly, the dipole component, which is hypothesized to be the

di-jet away-side follows the same trends as the same-side peak. These find-

ings do not support an opaque core hypothesis in which di-jet correlations

are strongly suppressed from interactions with the medium and dissipation is

expected on the away-side.

Also, the correlated pairs in the η elongated portion of the same-side

peak structure appear to come from roughly the same distribution as pairs in

the center near η∆ = 0. This does not support the claim in the literature that

the “ridge” is coming from “bulk” correlations which are expected to have a

lower average momentum than pairs coming from “jet” correlations [74].

The momentum distribution of pairs correlated in the quadrupole, 1D

Gaussian, and 2D exponential were also measured. The pairs correlated in

the quadrupole component are distributed around (yt1, yt2) = (3, 3) in all cen-

tralities. The pairs correlated in the 1D Gaussian structure are distributed in

the lower momentum region and the amplitude of the distribution decreases

with centrality. This follows the expectations from PYTHIA which suggests
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that the 1D Gaussian is due to soft longitudinal fragmentation as described in

Sec. 4.2. The momentum distribution of pairs correlated in the 2D exponential

are also distributed at low momentum which agrees with simulation studies of

photon conversion electrons presented in Sec. 5.5.3.

6.5.1 Comparison to a Similar Analysis

The results from the present analysis can compare directly to those re-

ported in Ref. [13]. In [13], a marginal distribution of two-particle correlations

(∆ρ/ρ) were formed from Au+Au 200 GeV data by restricting the pt of one

of the particles, similar to “triggered” analyses. These data were then fit with

the standard fit function, excluding the 2D exponential.

The first yt bin was defined as yt=[1,1.4] and the seven subsequent bins

were 0.4 units of yt wide. The last bin contained particles with a yt greater

than 4.2. This distribution is similar to summing square (yt1, yt2) bins along

the 7 columns and rows with a common yt value as seen in Fig. 6.14.

The process of relating the two measurements will be made easier by

defining a ratio r̂, which is the normalized ratio of sibling to reference pairs.

The measurement, r̂j, in Ref. [13] is[
∆ρ

ρref

]
j

= r̂j − 1 =
Nref,j

Nsib,j

nsib,j
nref,j

− 1, (6.10)

where upper case N is the total number of pairs in the full (η, φ) acceptance,

lower case n indicates the number of pairs in one (η∆, φ∆) bin for sibling or

reference pairs, and j indicates the column in (yt1, yt2) space. The sum of the

144



Figure 6.14: The analysis in Ref. [13] forms a marginal distribution equivalent
to symmetric stripes in the present 2D (yt1, yt2) analysis.

five fitting components used in Ref. [13] also completely describes the features

in the correlation data.

[
∆ρ

ρref

]
j

≈
5∑

k=1

gk,j (6.11)

In the present analysis a column j will be formed from the sum of seven

square bins along a column or row. Equation 6.11 can be re-written with the

notation “i:j” which indicates a sum over the seven bins i in column j.

5∑
k=1

gk,j =
Nref,j

Nsib,j

∑
i:j nsib,i∑
i:j nref,i

− 1 (6.12)

Next, the equation above is expanded to include the normalized ratio
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relevant to the present 28 bins analysis is r̂i =
Nref,i
Nsib,i

nsib,i
nref,i

.

5∑
k=1

gk,j =
Nref,j

Nsib,j

∑
i:j nref,i

Nsib,i
Nref,i

r̂i∑
i:j nref,i

− 1 (6.13)

The relationship between r̂i and ∆ρi/ρref in the 28 cut bin analysis is

given in Eq. 6.5 and results in the following expression,

r̂i =
Nsib

Nref

Nref,i

Nsib,i

[
nref
nref,i

∆ρi
ρref

+ 1

]
. (6.14)

Equation 6.7 is used again to relate ∆ρi/ρref to 1√
ρ′ref

6∑
k=1

fk,i.

r̂i =
Nsib

Nref

Nref,i

Nsib,i

 nref
nref,i

1√
ρ′ref

6∑
k=1

fk,i + 1

 (6.15)

This value for r̂i is inserted into Eq. 6.13 and, after making the approx-

imations that Nsib
Nref

≈ nsib,j
nref,j

, the following relation between the fitting model

components in Ref. [13] and the present analysis is made.

gk,j ≈
1√
ρ′ref

nref
nref,j

∑
i:j

fk,i ≈
1√
ρ′ref

Nref

Nref,j

∑
i:j

fk,i (6.16)

The last step in the equation above neglects the yt variation of the reference

pair density in angular space.

The upper panels in Fig. 6.15 contain the results reported in Ref. [13]

while the lower panels contain similar measurements based on the present

analysis. The left panels show the 2D Gaussian amplitude as a function of
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Figure 6.15: The amplitude of the same-side Gaussian (right) and quadrupole
(left) from Ref. [13] (upper) and the present analysis (lower) in six centralities
of Au+Au 200 GeV data. The points in the upper (lower) panels represent
the mean yt in each of the 9 (7) yt bins. Error bars in the upper panels are fit
errors only.

centrality and mean pt. The amplitudes and overall trend agree between the

two analyses. The same is true for the quadrupole amplitude in the right

panels. The agreement between these two independent analyses supports the

validity of the results in the present analysis.
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6.5.2 Future Work

The analysis of the (yt1, yt2) dependence of 2D angular correlations can

be improved in the future with finer momentum binning, particle identification

information, and other beam energies and species. However, these preliminary

results are a rich source of information that completes the experimental deter-

mination of the six-dimensional two-particle correlation space.
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Chapter 7

Conclusion

Since the 1960s, when structure was discovered inside a proton, the

study of the strong interaction between quarks and gluons has been an active

area of research. It is hoped that through current nuclear experiments physi-

cists will test predictions of the Standard Model in dense, energetic nuclear

collisions systems, specifically those involving the strong interaction which is

described by Quantum Chromodynamics (QCD). It is also hoped that these

experiments will test the hypothesis that a quark gluon plasma can be created

in a laboratory setting.

The length scales in which quarks and gluons interact are generally

restricted to the size of a hadron due to confinement. However, after the

discovery of asymptotic freedom in the 1970s scientists hypothesized that in

extremely dense nuclear environments quarks and gluons would become de-

confined into a soup called the quark gluon plasma. The Relativistic Heavy

Ion Collider (RHIC) has collided two beams of heavy ions at relativistic speeds

in an effort to create this unique phase of matter since 2000.

Since direct observation of this short-lived phase is impossible, many

analysis techniques attempt to study the early interactions via the final state
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particles. What has emerged from analyses of the data from STAR and the

other RHIC experiments are two, contradictory paradigms for understanding

the results. On the one hand the colliding particles (quarks and gluons within

the colliding nuclei) are thought to strongly interact and quickly reach ther-

mal equilibrium, leading to hydrodynamic behavior which is described with

an equation of state. The resulting hydrodynamic pressure produces collec-

tive, flowing matter. The strong interactions among the partons also imply

suppression of hard scattering phenomenon such as jets.

The other view is that primary parton-parton scattering leads directly

to jet fragmentation with little effect from parton re-scattering following the

initial nucleus-nucleus impact. Superposition of independent nucleon-nucleon

collisions provides a good starting point for describing the nucleus-nucleus

collisions. Significant deviations from superposition occur but these are viewed

as being due to strong modifications of the fragmentation processes.

The challenge is to distinguish and perhaps falsify one or both of these

models of relativistic heavy ion collisions via analysis methods. Complicated

analysis methods are often required to extract information from millions of

events that can consist of over 1000 particles. Therefore it is very important

to identify the assumptions of each analysis method before forming definitive

conclusions.

In my research I used a two-particle correlation measure of Au+Au

collisions at
√
sNN=200 GeV at STAR. This analysis was able to enhance

small signals in the data with few to no assumptions about the underlying
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physics mechanisms. Correlations can be constructed from several projections

of the available six-dimensional space (η1, φ1, pt1, η2, φ2, pt2).

Two-particle correlations in momentum (pt1, pt2) space display a rich

structure and evolution with centrality. The main feature in charge indepen-

dent correlations is a broad peak extending from pt = 0.5 − 4.0 GeV/c that

evolves smoothly with centrality. Results from particle pairs distinguished by

charge and relative azimuthal angles were also presented. Surprisingly, the

peak for away-side or “back-to-back” pairs did not dissipate or soften with

centrality. The same-side unlike-sign pairs exhibited an unusual double peak

feature that might be related to a change in the momentum distribution of

pions versus protons.

The parametrization of the correlation structures was done via fitting

functions. The leading model is based on a fluctuating soft component and a

2D Gaussian located at intermediate pt. The parameters for the peak evolve

smoothly with centrality, contrary to the structures associated with jets in

angular space. The overall findings are that the amplitude of the peak struc-

ture evolves smoothly with an increase in centrality and the location remains

approximately at the same pt.

These results were also compared to theoretical models. The event

generator, HIJING, often used to model peripheral heavy ion interactions,

predicts a similar peak in intermediate pt but only when jets are included.

AMPT, which models some characteristics of central Au+Au data successfully

does not follow the general trends in (pt1, pt2) correlations. When sufficient
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parton-parton interaction strength is included in AMPT to reproduce v2 the

(pt1, pt2) peak for partons is strongly dissipated.

This dissertation also answers the question, how are pairs correlated

in specific angular features distributed in momentum? The results show that

pairs correlated in the same-side peak and the dipole (dijet away-side) are

distributed around (yt1, yt2) = (3, 3) and the distribution does not soften with

an increase in centrality. Furthermore, the momentum distribution of pairs in

different η∆ regions of the same-side peak were presented. The study found

the extended correlation on η∆, commonly referred to as the “ridge”, was not

comprised of softer pairs relative to the center of the same-side peak. This

challenges the notion that the same-side angular structure can be classified

into a “ridge” and “jet” region with different physical mechanisms.

This dissertation presented new correlation measurements of 200 GeV

Au+Au collisions in important aspects of the six dimensional correlation space.

These measurements can be used to distinguish competing hypotheses. The

observation of back-to-back jet fragments in the pt range 0.5-4.0 GeV/c with no

suppression does not appear to support the hypothesis of a strongly interacting

QGP.

The scope of this analysis can be broadened in the future to include

identified particle correlations, now possible with the new Time-Of-Flight de-

tector subsystem installed in 2010. Comparing correlations in momentum and

angular space of pions, kaons, and protons could lead to a better understanding

of the underlying physics mechanisms such as jets with medium modification
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or collective flows. Furthermore, momentum correlations from collisions with

varying beam energies and species, which have already been collected, could

help piece together a comprehensive model of the heavy ion collision dynamics.
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