Two-particle correlations on log(p_t) and the log(p_t) dependence of angular (η , Φ) correlation features in Au+Au at $\sqrt{s_{_{NN}}} = 200$ GeV at STAR

Elizabeth Oldag for the STAR Collaboration May 7, 2012

Two-particle correlation measure

Event A

Event B

Correlation Measure:

$$\frac{\rho_{sib} - \rho_{mix}}{\sqrt{\rho_{ref}}} = \frac{\Delta \rho}{\sqrt{\rho_{ref}}} \rightarrow \sqrt{\rho_{ref}} \frac{\Delta \rho}{\rho_{ref}}$$

- Efficiency corrected ref. dist.
- Number of correlated pairs *per* final state particle
- Reference Pairs

- Mixed pairs in momentum space show an enhancement in the two-particle distribution due to physics
 - We hypothesize our signal of interest is jets and therefore need to select a reference that is absent of jets
 - Soft particle spectrum of the two-component model (ref:arXiv:0710.4504v1[hep-ph]).

$$\frac{\Delta \rho}{\sqrt{\rho_{ref}}} = \sqrt{\rho_{soft}'} \frac{\rho_{tot}'}{\rho_{soft}'} \times \sum_{\Delta Nch, \Delta z, \dots} \frac{\Delta \rho}{\rho_{mix}}$$

• Data Set: Au+Au Collisions at 200 GeV, ~11.5 Million Minimum Bias Events, p_t >0.15 GeV/c, $|\eta| < 1$, full ϕ

E. Oldag, U.T. Austin, INT Workshop - The "Ridge", May 2012

Sibling Pairs

Mixed Pairs

X₁

X₁

 X_2

X₂

Motivation for a log(p_t) measure

(y_t, y_t) correlations – Analysis Details Momentum Correlations •Relationship to Angular Corr. •Implications for ridge

The reference distribution was event normalized with a correction factor •

$$\frac{\Delta \rho}{\sqrt{\rho}} = \frac{\alpha \overline{n_{sib}(y_{t1}, y_{t2})} - \overline{n_{ref}(y_{t1}, y_{t2})}}{\sqrt{\overline{n_{ref}(y_{t1}, y_{t2})}}}, \ \alpha = \frac{\overline{N_{ch}}^2}{\overline{N_{ch}(N_{ch} - 1)}}$$

Outline:

 α ensures the correlation measure is zero in the absence of true correlations

Centrality Bin	N _{ch} Range	$\overline{N_{sib}} / \overline{N_{mix}}$	Find $\overline{N_{sib}} = \overline{N_{ch}(N_{ch}-1)}$
0	[2,15)	1.078	and $\overline{N} = \overline{N}^2$
1	[15,35)	1.014	from the real event multiplicity distribution in each multiplicity bin =1 with the bias correction
2	[35,68)	1.014	
3	[68,117)	1.012	
4	[117,152)	0.998	
	[152,187)	0.998	
			For centrality info refer to arXiv:1109.4380

Charge Independent (y_t, y_t) correlations

(y_t,y_t) Away-side

(y_t,y_t) Same-side

(y_t,y_t) Fitting Model

- Goal: To fit the correlations with a simple fit function that quantifies the main features of the correlation (the bump at (y_t, y_t) ~ (3,3)).
 - A cut window will allow us to exclude soft correlation structures and edges.
- Fit Function:

$$fit = A_{0} + A_{1}e^{-0.5*(((y_{t\Sigma} - 2^{*}y_{t,0})/\sigma_{y_{t\Sigma}})^{2} + (y_{t\Delta}/\sigma_{y_{t\Delta}})^{2}}$$
$$y_{t\Sigma} = y_{t1} + y_{t2}$$
$$y_{t\Delta} = y_{t1} - y_{t2}$$
$$y_{t\Delta} = y_{t1} - y_{t2}$$

Fitting Results (Unlike-sign away-side)

*STAR Preliminary

Fitting Results (Unlike-sign same-side)

*STAR Preliminary

Fitting Results (Unlike-sign same-side)

Model Comparisons

- Is the peak in (y_t,y_t) correlations from semi-hard jet fragmentation?
- HIJING

 Interested in exploring other models: AMPT (see Lanny's talk), SpheRio, NexSPheRio, HydJet

Angular Correlations

• Minimum bias angular correlations signal a change in the correlation structures as centrality increases from peripheral to central

- How are the pairs that contribution to each of these correlation features distributed in momentum space?
- Further evidence gathered by selecting pairs from distinct momentum regions and fitting with a well studied 11 parameter fit function

Momentum Correlations
Relationship to Angular Corr.
Implications for ridge

Momentum dependence of angular correlation structures

1D Gaussian

2D Gaussian

Fitting ambiguities with higher order harmonics

- p+p and peripheral Au+Au data clearly show 4 corr structures which can be described with a choice of 4 fit model components. Each are required (otherwise the omitted structure appears in the residuals).
- With increasing centrality the fit model fails due to the development of an additional structure. Another model component is required that can describe it (we chose a quadrupole)
- The data *can* be fit with higher-order harmonics but in the absence of a clear signal in the residuals such terms are not required. Including them introduces fitting ambiguities.
 - v_3 conspires with v_1 and v_2 to fit the away-side structure which is fit equally well with just a v_1 and v_2 term.
 - v₃ on the same side is representing the η elongation of the same-side peak
 - The v₃ amplitude is not representing a required $cos(3\Phi_{\Delta})$ term and instead obscuring the interpretation of the other fit components.

Displaying Fit Results

- Map back onto (y_t, y_t) space the features of interest, for example:
 - Volume of the 2D Gaussian
 - The integral of the 2D Gaussian over a range of η_{Δ}
 - Amplitude of the dipole, quadrupole
- Prefactor applied in order to get the number of correlated pairs in an angular correlation feature, for pairs in a (y_t,y_t) bin, per final state particle on y_t

Momentum Correlations
Relationship to Angular Corr.
Implications for ridge

Momentum dependence of sameside peak

Momentum Correlations
Relationship to Angular Corr.
Implications for ridge

Momentum dependence of same-side peak as a function of η_Δ

Momentum Correlations
Relationship to Angular Corr.
Implications for ridge

Momentum dependence of dipole

Momentum Correlations
Relationship to Angular Corr.
Implications for ridge

Momentum dependence of quadrupole

 The extended correlation on η_Δ, commonly referred to as the "ridge", is not comprised of softer pairs relative to the center of the 2D Gaussian peak.

- We are unable to determine if correlated pairs in the sameside structure originate from one or more physical processes.
 - Until then we should not assume that pairs beyond a certain η_{Δ} value are not correlated from jets

Momentum Correlations
Relationship to Angular Corr.
Implications for ridge

Conclusion

- Momentum correlations complete the six dimensional correlation space $(p_{t1}, \Phi_1, \eta_1, p_{t2}, \Phi_2, \eta_2)$.
 - A broad peak is observed extending from y_t of 2-4 (0.5-4.0 GeV/c)
 - The peak position remains constant as centrality increases.
 - HIJING, which models peripheral Au+Au collisions, suggests this broad peak in (y_t,y_t) is due to jet fragmentation.
- The correlated pairs that contribute to the 2D Gaussian structure, hypothesized to be from minijets, have a momentum distribution peaked around (y_{t,1},y_{t,2})=(3,3) (1.4 GeV/c).
- The dipole (hypothesized to be the dijet away-side) does not soften with an increase in centrality.
- In Progress: Repeat same cut scheme but with identified particles. Study correlations of baryons vs. mesons and strange vs. non-strange particles.

Back-Up Slides

pt integrated 2D Gaussian amplitude versus centrality

arXiv:0710.4504

FIG. 6: Proton y_t spectra for five Au-Au centralities (solid curves). The general features are comparable to Fig. 2.

Comparing X² of fit model with and without sextupole

- Corresponding to slide 15
 - 9-18% Au-Au 200 GeV
 - No sextupole (standard model) X²/dof = 3.91
 - With sextupole $X^2/dof = 3.67$

Construct ratio of 2D histograms:

Details to weighted sum of (yt,yt) dependent axial correlations (slide 14)

$$\begin{split} \frac{n_{sib}(\eta_{\Delta},\phi_{\Delta})}{n_{ref}(\eta_{\Delta},\phi_{\Delta})} &= \frac{\sum_{i}n_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{\sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{\Delta})} & \text{Ratios of 2D histograms} \\ \text{are computed bin-by-bin} \\ \frac{N_{ref}}{n_{sib}(\eta_{\Delta},\phi_{\Delta})} &= \frac{N_{ref}}{N_{sib}} \sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{\Delta}) \\ \frac{N_{ref}}{n_{sib}(\eta_{\Delta},\phi_{\Delta})} &= \frac{N_{ref}}{N_{sib}} \sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{\Delta}) \\ -1 &= \frac{N_{ref}}{N_{sib}} \sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{\Delta}) \\ = \frac{N_{ref}\sum_{i}n_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{n_{ref}(\eta_{\Delta},\phi_{\Delta})} -1 \\ = \frac{N_{ref}\sum_{i}n_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{N_{sib}} \sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{\Delta}) \\ = \frac{N_{ref}\sum_{i}\frac{N_{sib}}{N_{sib}} \frac{N_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{n_{ref,i}(\eta_{\Delta},\phi_{\Delta})} \\ = \frac{N_{ref}\sum_{i}\frac{N_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{N_{sib}} \frac{N_{ref,i}(\eta_{\Delta},\phi_{\Delta})}{N_{sib,i}(\eta_{\Delta},\phi_{\Delta})} \\ = \frac{N_{ref}\sum_{i}\frac{N_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{N_{sib}} \frac{N_{ref,i}(\eta_{\Delta},\phi_{\Delta})}{n_{ref,i}(\eta_{\Delta},\phi_{\Delta})} \\ = \frac{N_{sib}\sum_{i}\left[n_{ref,i}(\eta_{\Delta},\phi_{\Delta})\left(\frac{N_{ref}}{N_{sib,i}} \frac{N_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{n_{ref,i}(\eta_{\Delta},\phi_{\Delta})}\right) \\ = \sum_{i}\frac{n_{ref,i}(\eta_{\Delta},\phi_{\Delta})}{n_{ref}(\eta_{\Delta},\phi_{\Delta})} \left[\frac{N_{ref}}{N_{sib,i}} \frac{N_{sib,i}}{N_{ref,i}} \frac{N_{sib,i}(\eta_{\Delta},\phi_{\Delta})}{n_{ref,i}(\eta_{\Delta},\phi_{\Delta})} -1\right] \\ = \int \frac{N_{ref}\sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{A})}{n_{ref}(\eta_{\Delta},\phi_{A})} \\ = \frac{N_{sib}\sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{A})}{n_{ref}(\eta_{\Delta},\phi_{A})} \left[\frac{N_{ref}}{N_{sib,i}} \frac{N_{sib,i}}{n_{ref,i}(\eta_{\Delta},\phi_{A})} -1\right] \\ = \left[\frac{\Delta\rho}{\sqrt{\rho_{ref}}}\right]_{Ally_{i}} \\ = \sum_{i}\frac{n_{ref,i}(\eta_{\Delta},\phi_{A})}{n_{ref}(\eta_{\Delta},\phi_{A})} \sqrt{\rho_{ref}'} \left[\frac{N_{ref}}{N_{sib,i}} \frac{N_{sib,i}}{n_{ref,i}(\eta_{\Delta},\phi_{A})}\right] \\ + \sum_{i}n_{ref,i}(\eta_{\Delta},\phi_{A}) + \sum_{i}n_{ref,i}(\eta_{A},\phi_{A}) + \sum_{i}n_{ref,i}(\eta_{A}$$

Exact decomposition