

Exploring the Gluon Polarization with Inclusive and Correlation Measurements in Polarized p-p Collisions at RHIC

Technology

On behalf of the STAR Collaboration

Inclusive Measurements:

> Recent STAR Neutral and Charged Pion A_{LL} results

> > \vec{p}

 Correlation Measurements:
 Status of STAR Di-Jet

measurements

Theoretical foundation:

Inclusive and correlation measurements

Summary and Outlook

Theoretical foundation

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

dN / d(log x)

3

0.3

0.2

0.1

0

-0.1

-0.2

0.75

0.5

0.25

0

-1

10⁻¹

X _{gluon}

Х

p_=28 GeV/c - 1.0

x10⁵

Theoretical foundation

0.06 ہے

₹ 0.05

0.04

0.03

0.02

0.01

-0.02

_ 0.06

0.03

0.02

0.01

-0.01

-0.02

0

₫ 0.05 0.04

0 -0.01

2

Gluon polarization - Inclusive Measurements

• Examine wide range in $\Delta g: -g < \Delta g < +g$

O GRSV-STD: Higher order QCD analysis of polarized DIS experiments!

$$\Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

$$x_{\rm parton} \simeq 2p_T / \sqrt{s}$$

Theoretical foundation

Gluon polarization - Correlation Measurements

• Correlation measurements provide access to partonic kinematics through Di-Jet/Hadron production and Photon-Jet production

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left(p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right)$$

- O Di-Jet production / Photon-Jet production
 - Di-Jets: All three (LO) QCD-type processes contribute: gg, qg and qq with relative contribution dependent on topological coverage
 - Photon-Jet: One dominant underlying (LO) process with large partonic a_{LL} at forward rapidity
 - Larger cross-section for di-jet production compared to photon related measurements
 - Photon reconstruction more challenging than jet reconstruction
 - $\Box \quad Full NLO framework exists \Rightarrow Input to Global analysis$

Di-Jet production

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

The STAR Experiment

Overview

- Wide rapidity coverage of STAR calorimetry (Jets /Neutral Pions / Photons) system:
 - FPD: -4.1 < n < 3.3
 - **Ο BEMC**: -1.0 < η < 1.0
 - EEMC: 1.09 < η < 2.0
 - **Ο** FMS: 2.5 < η < 4.0
- BBC: Relative luminosity and Minimum bias trigger

- Key elements for STAR $\Delta g(x)$ program:
- □ Higher precision on ∆g(x) : Luminosity /
 DAQ upgrade (DAQ 1000)
- □ Sensitivity to shape of $\Delta g(x)$: Correlation measurements
- □ Low-x region of ∆g(x): 500GeV program / Asymmetric collisions (Forward calorimetry)

• TPC: Tracking and PID using dE/dx for $|\eta| < 1.3$ and $p_T < 15$ GeV/c

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

STAR Run 5 Cross-section results: Mid-rapidity charged and neutral pion production

 Sophisticated TPC (dE/dx) calibrations improve precision at high p_T (arXiv:0807.4303-physics)

Good agreement between data and NLO calculations for

charged and neutral pion production

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

STAR Run 5 / 6 ALL result: Mid-rapidity neutral pion production

$$\Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$
$$\Delta G(Q^2 = 1 GeV^2) \approx 1.8$$
$$\Delta G(Q^2 = 1 GeV^2) \approx 0.4$$

$\Delta G(Q^{-})$	$= 1 GeV^{-1}$	$) \approx 1.0$

p⊺ range [GeV/c]	A _{LL} ± Stat. ± Sys.	
5.2 - 6.75	0.0080 ± 0.0115 ± 0.002	
6.75 - 8.25	0.0058 ± 0.0136 ± 0.004	
8.25 - 10.5	0.0203 ± 0.0189 ± 0.004	
10.5 - 16.0	-0.0084 ± 0.0306 ± 0.002	

- O RUN 6 results: GRSV-MAX ruled out
- Significant increase in statistical precision as well as greater
 - p_T reach compared to previous Run 5 Neutral Pion result

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

STAR Run 6 ALL result: Forward rapidity (FPD/EEMC) neutral pion production

• First ALL measurements at forward rapidity (STAR EEMC / STAR FPD)

- Probe small-x region (Probe smaller $\Delta g(x) \Rightarrow$ Smaller A_{LL} consistent with theoretical predictions)
- Important baseline measurements for STAR inclusive y and y-jet program

- STAR Run 6 ALL result: Mid-rapidity charged pion production
 - Significant improvements compared to Run 5:
 - 50% \Rightarrow 60% beam polarization
 - **O** 1.6 $pb^{-1} \Rightarrow 5.4 pb^{-1}$
 - BEMC n acceptance $[0,1] \Rightarrow [-1,1]$
 - But ... increased JP trigger thresholds result in strong fragmentation bias for charged pions in trigger jet
 - Limit bias by measuring charged pions opposite a trigger jet
 - Plot asymmetry versus $z = p_T(\pi) / p_T(\text{trigger})$ jet) to cleanly isolate favored fragmentation

Jet Patch Trigger

STAR Run 6 ALL result: Mid-rapidity charged pion production

Conservative systematic uncertainties are evaluated for:

- Trigger bias: 6 15 x 10⁻³
- PID background contamination: 2 10×10^{-3}
- Uncertainty on the jet p_T shift: 3 16 x 10⁻³
- Non-longitudinal components, relative luminosity: small

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

STAR Run 6 ALL result: Mid-rapidity charged pion production

- Full NLO pQCD predictions are not yet available for this measurement
- These curves generated by sampling a_{LL} and parton distribution functions at kinematics of PYTHIA event.
- \circ π^+ offers significant sensitivity at high z

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

Gluon polarization - Correlation Measurements

 Correlation measurements provide access to partonic kinematics through Di-Jet/Hadron production and Photon-Jet production

• 2-2 processes:

$$\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$
 $\cos \theta^* = \tanh \left(\frac{\eta_3 - \eta_4}{2} \right)$

Status of Di-Jet measurements

Correlation measurements: Di-Jet production - Data Understanding - Run 5

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

Correlation measurements: Di-Jet production - Data Understanding - Run 5

 Di-Jet distributions with asymmetric p_T cuts more appropriate for NLO comparison 15

Direct

 comparison
 requires
 completion of
 hadronization
 and underlying
 event
 corrections

ALL Run 6 reconstructed statistical uncertainties

• Strong impact of Di-Jet

ALL based on Run 6 data on

gluon polarization

O Statistical uncertainties

reconstructed from Run 6

data sample

$$M = \sqrt{x_1 x_2 s} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

Run 9 STAR Beam-Use Request: Di-Jet projections

STAR East Barrel - Endcap Substantial improvement in 0.06 MC 0.05 GRSV std NLO GRSV m03 Run 9 from Di-Jet 0.04 GRSV zero - DSSV GS-C(pdf NLO 0.03 50pb⁻¹ P= 60% A production: 50pb⁻¹ and 60% 0.02 0.01 beam polarization $-0.01 \vdash 1.0 < \eta_3 < 2.0, -1.0 < \eta_4 < 0$ - 0.02 • Good agreement between 0.10 0.15 0.20 0.25 0.30 M/√s STAR East Barrel - East Barrel & West - West LO MC evaluation and full 0.06 0.05 NLO calculations 0.04 0.03 A 0.02 $\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$ $M = \sqrt{x_1 x_2 s}$ 0.01 $x_{1(2)} = \frac{1}{\sqrt{s}} \left(p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right)$

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

Future prospects of low-x measurements

STAR low-x program: 500GeV / Wide-rapidity coverage

- High precision at √s = 500GeV at small x
 (W program demands large data sample
 ~300pb⁻¹) for
 - Inclusive channels (Here: Inclusive Jets)
 - Correlations measurements (Here: Di-Jets)

Summary and Outlook

Summary

- pQCD: Critical role to interpret measured asymmetries
- 2005 result: first spin asymmetry for neutral and charged pion production at STAR at mid-rapidity
- 2006 result: First A_{LL} result at forward rapidity / Improved precision at mid-rapidity / Improve π⁺ analyzing power at high z
- Di-Jet cross-section and A_{LL} measurement in progress: Effects of, e.g. underlying event and hadronization corrections, are being evaluated
- Correlation measurements (Di-Jets / γ-Jets) will allow to provide needed constrain on the partonic kinematics
- 500GeV program together with wide rapidity coverage in STAR (-1<n<4) will allow to extend the currently measured kinematic region towards small-x (x ~ 10⁻³)

International Conference on Particles and Nuclei, PANIC2008 Eilat, Israel, November 10, 2008

