

Gluon polarization and jet production at STAR

Pibero Djawotho *for the STAR Collaboration* Texas A&M University 12 April 2011

The proton spin sum rule

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

- Quark polarization $\Delta\Sigma\approx$ 0.3 from polarized deep inelastic scattering
- Gluon polarization (ΔG) and orbital angular momentum (L) are poorly constrained
- A primary charge of RHIC spin physics \Rightarrow map $\Delta g(x)$

RHIC: The World's First Polarized Hadron Collider

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- Billions of spin reversals during a fill with little if any depolarization

The STAR detector

Jet reconstruction in STAR

2006 inclusive jets cross section

- Data well described by NLO pQCD+Hadronization+Underlying Event
- Hadronization+Underlying event corrections significant at low jet p_T

2006 inclusive jets A_{LL}

- Sampled 4.7 pb⁻¹ at 60% average beam polarization
- STAR data rule out several previous models of gluon polarization

DSSV – First Global Analysis with Polarized Jets de Florian et al., PRL 101 (2008) 072001 STAR 0.05 STAR (prel.) 0.3 $A_{LL}^{\text{jet}} \, {}^0$ ′x∆g 0.2 DSSV DSSV $\Delta \chi^2 = 1$ -0.05 DSSV $\Delta \chi^2 / \chi^2 = 2\%$ 0.1 p_{T}^{20} [GeV] 30 100 χ^{2} all data sets HENIX 15 $\Delta \chi_i^2$ STAR x-range: 0.05-0.2 SIDIS -0.1 405 DIS 10GRSV max. Δg GRSV min. Δg 400 -0.25 10⁻² -1 10 395 х (a) (b) 0 -0.2 -0.20.2 Δg^{1,[0.05-0.2]} $\Delta g^{1,[}$ **STAR**

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC pp data on an equal footing
- Finds a node in the gluon distribution near x ~ 0.1, but with the opposite phase from GS-C

2009 upgrades

- 2009 jet patch trigger upgrades
 - Overlapping jet patches and lower E_{T} threshold improve efficiency and reduce trigger bias
 - Net increase of 37% in jet acceptance
 - Remove beam-beam counter trigger requirement:
 - Trigger more efficiently at high jet p_T
 - Measure non-collision background
 - Increased trigger rate enabled by DAQ1000
- Improvements in jet reconstruction
 - Subtract 100% of track momentum from struck tower energy (2009) instead of MIP (2006)
 - Overall jet energy resolution improved from 23% to 18%
- Sampled 20 pb⁻¹ at 58% average beam polarization

From detector to particle jets

• Jet p_T uncertainties are highly correlated

Trigger and reconstruction bias

- 1. Calculate PYTHIA A_{LL} at PARTICLE jet p_T
- 2. Calculate GEANT A_{LL} at DETECTOR jet p_T
- 3. Move GEANT A_{LL} from DETECTOR jet p_T to appropriate PARTICLE jet p_T
- 4. Calculate δA_{LL} =(PYTHIA-GEANT) $A_{LL} \Rightarrow$ trigger and reconstruction bias

Relative luminosities

- Relative luminosities are calculated using the beam-beam counters (BBC)
- Relative luminosity systematic from comparisons of BBC and zero-degree calorimeter (ZDC) rates
- Preliminary estimated systematic for A_{LL} (±0.0015) very conservative
- False asymmetries from jet data are consistent with zero

2006 vs 2009

- 2009 STAR data is a factor of 3 (high- p_T) to >4 (low- p_T) more precise than 2006 STAR data
- Results fall between predictions from DSSV and GRSV-STD
- Precision sufficient to merit finer binning in pseudorapidity

2009 inclusive jets A_{LL}

- A_{LL} separated into two pseudorapidity ranges
- Models predict a ~20% reduction in A_{LL} from $|\eta| < 0.5$ to 0.5< $|\eta| < 1$
- $A_{\rm LL}$ falls between the predictions from DSSV and GRSV-STD

Summary

- STAR inclusive jets cross section from 2006 is in good agreement with NLO pQCD calculations when hadronization and underlying event effects are included
- STAR inclusive jets A_{LL} from 2006 provide significant constraints on gluon polarization in NLO global analyses
- 2009 STAR inclusive jets A_{LL} is factor of 3 (high-p_T) to >4 (low-p_T) more precise than 2006 results; will lead to a significant further reduction in uncertainties for gluon polarization
- A_{LL} for inclusive jets falls between DSSV and GRSV-STD predictions

BACKUP

Trigger and reconstruction bias

Uncertainty on A_{LL} is larger of maximum/minimum δA_{LL} for 3 models (GRSV-STD, GRSV-ZERO, DSSV) and positive/negative statistical error bar

2009 jet patch trigger upgrades

• Overlapping jet patches and lower E_T threshold increase efficiency and reduce trigger bias in η :

- JP1 (~5.4 GeV, prescaled) ~130M events on tape
- JP2 (~7.3 GeV) ~84M events on tape
- Compare to Run 6: JP (~8.5 GeV) ~4.2M events on tape

• Adjacent jet patches (AJP):

- Require 2 neighboring jet patches in φ above JP0 threshold (~3.5 GeV)
- Capture jets that would deposit only half their energy in each jet patch \Rightarrow soften gaps in ϕ

2009 jet patch trigger upgrades

Two analyses of the same 2009 data subset:

Overlapping jet patches in η
Collisions at different z-vertex locations provide an even more uniform acceptance for particle jet η

- Two adjacent jet patches in ϕ at half nominal jet patch E_{T} threshold combined to fill in ϕ gaps
- \bullet Gaps in ϕ softened

37% increase in jet acceptance due to improvements in jet patch trigger

Improvements in jet reconstruction

- EMCs are ~1 strong interaction length thick
- Many charged hadrons deposit Minimum Ionizing Particle (MIP) ~250 MeV
- Others shower and may deposit sizeable fraction when passing through

Improvements in jet reconstruction

- 2006 treatment: Subtract MIP from EMC tower when charge track passes through
- Allows to see EM energy emitted very close to charge track
- Makes reconstruction susceptible to fluctuations in charge hadron showering
- Major contribution when jet energies are larger at detector level than particle level

- 2009 treatment: Subtract total charged track momentum from EMC tower when passing through
- Reduces ability to see EM energy emitted close to charge track
- Significantly reduces response to fluctuations from charge hadron showering
- Reduces average difference between jet energies at the detector and particle level

Improves overall jet energy resolution 23% to ~18%

A_{LL} vs run number

