Observation of Coherent $\phi(1020)$ Resonance in Photonuclear Ultra-Peripheral Au+Au Collisions at STAR

3	Xihe Han
4	The Ohio State University
5	han.1929@osu.edu
6	Abstract
7	We present the first measurement of photoproduction of ϕ mesons in ultra-peripheral Au+Au
8	collisions at a center-of-mass energy of $\sqrt{s_{NN}}$ = 200 GeV using the STAR detector at RHIC. The ϕ
9	mesons are reconstructed through their decay into K^+K^- pairs, enabled for the first time by the
10	extended low transverse momentum (p_T) coverage provided by the STAR inner TPC upgrade. The ϕ
11	meson measurements complement previous vector meson studies $(\rho^0, J/\psi)$, allowing for
12	investigations into the mass dependence of photoproduction processes and providing new insights
13	into the nuclear gluon distribution.
14	In this presentation, we report coherent ϕ photoproduction differential cross sections as functions of
15	transverse momentum (p_T) and rapidity (y) . Our comparative analysis with the previous STAR
16	measurements shows that the ϕ meson photoproduction cross section falls between those of $ ho^0$ and
17	J/ψ , highlighting the transition from soft to hard photoproduction regimes. This measurement
18	provides new constraints on theoretical models of photonuclear interactions and enhances our
19	understanding of the nuclear gluon structure at low x .