Probing Gluon Saturation Through Two-Particle Correlations at STAR

Matt Posik
Temple University
for the STAR Collaboration

Gluon Density in the Nucleon

- Particles from high energy collisions can be used to probe and take "snap shots" of the partonic structure of the proton.
- Results from DIS: Gluon density rapidly increases towards small x
 - > gluon splitting

Gluon Saturation

- Rapid rise of gluon density caused by gluon splitting → Linear evolution
- \circ At a certain point the gluon increase should be tamed by gluon recombination \rightarrow non-linear evolution
- \circ New regime of QCD: Gluon saturation ($\mathbb{Q}^2 < \mathbb{Q}_s^2$) where gluon recombination = gluon splitting
- Saturation region is easier to access in nuclei: $Q_s \propto A^{1/3}$

Looking for Saturation

- Color Glass Condensate successfully described the strong suppression of the inclusive hadron yields in dAu relative to pp owing to gluon saturation effects.
 - Can be further tested in di-hadron correlation and nuclear dependent transverse single spin asymmetry measurements

Di-Hadron Correlations

First proposed by D. Kharzeev, E. Levin and L. McLerran NPA 748

(2005) 627.

Observable:
$$C(\Delta \phi) = \frac{N_{pair}(\Delta \phi)}{N_{trig} \times \Delta \phi_{bin}}$$

Saturation Signatures

Decrease x, Q^2 :

- 1. More forward direction
- 2. Lower p_T hadron: very sensitive to p_T

Saturation Signatures

Decrease x, Q^2 :

- 1. More forward direction
- 2. Lower p_T hadron: very sensitive to p_T

Increase Q_s :

- 1. More central collisions
- 2. Heavier nuclei

Di- π^0 Measurements at STAR

Measurement

o pp, pAl, pAu and dAu collisions at $\sqrt{s_{NN}}=200~GeV$

 \circ NN $\rightarrow \pi^0 \pi^0 X$, detected by FMS (2.6 $\leq \eta \leq 4.0$)

Event Activity (E.A.)

Energy deposition in BBC characterizes the "centrality" of the collisions

Observable:

 $C(\Delta\phi) = \frac{N_{pair}(\Delta\phi)}{N_{trig}\Delta\phi_{bin}}, \pi^0_{trig} \rightarrow \text{larger } p_T^{\pi^0}$

Beam beam counter (BBC) (inner BBC: -5< η <-3.3)

NOW-Xg

Forward Meson Spectrometer (FMS)

 $2.6 < \eta < 4.0$

10¹⁰

10⁶

10²

p_T and A Dependence

- \circ Suppression observed at low p_T not high p_T
- In fixed $x Q^2$ phase space, suppression is dominantly affected by various A:
 - \triangleright Suppression linearly depends on $A^{1/3}$

Event Activity Dependence

- O Suppression increases with E.A., highest E.A. data is consistent with predictions at b=0;
- No broadening is observed

rcBK: J. L. Albacete et al., PRD 99, 014002 (2019)

What About dAu?

*M. Strikman et al., PRD 83, 034029 (2011)

- DPS is predicted* to be enhanced and not negligible at forward rapidities; different in pp, pA and dA
- Open questions: Two π^0 generated from the same or different hard scattering? DPS affects the correlation?

$Di-\pi^0$ Measurement in dAu at STAR

Challenging to conclude the forward di- π^0 correlation measurement in dAu

- $\circ \pi^0$ PID: much higher background in dAu than pp and pAu
- Pedestal: much higher in dAu than pp and pAu; stable in pp and pAu

 $\text{Di-}\pi^0$ measurement favors cleaner pA than dA collisions

E.A/ Centrality Dependence in dAu

- \circ In the overlapping p_T range (1.6–5.0 GeV/c) of two collaborations, no clear suppression or E.A./centrality dependence in dAu relative to pp
- Suppression observed only at very low $p_T \ (p_T^{asso} = 0.5 0.75 \ {
 m GeV}/c)$ at PHENIX, where STAR FMS cannot reach

Investigate Saturation via Spin Asymmetries

- The transverse single spin asymmetry, A_{N_i} is sensitive to QCD fields near a struck quark, the nuclear dependence of A_N should be sensitive to phenomena that modify the local fields \rightarrow gluon saturation
- O There are predictions that in the saturation region that A_N would scale as $A^{-1/3}$, and scale as A^0 above the saturation region [Phys. Rev. D95 (2017) 014008]

$$A_N(p^{\uparrow}A) = \frac{d\sigma_{pA}^{\uparrow} - d\sigma_{pA}^{\downarrow}}{d\sigma_{pA}^{\uparrow} + d\sigma_{pA}^{\downarrow}}$$

 \circ STAR measured π^0 A_N and its nuclear dependence in transversely polarized pp, pAl, and pAu collisions $\sqrt{s_{NN}}=200~GeV$ in the FMS [Phys. Rev. D103 (2021) 072005]

A_N Nuclear Dependance

STAR Summary

- Measured A_N for π^0
- $2.6 \le \eta \le 4.0$
- $0.17 \le x_F (= 2 \frac{p_L^h}{\sqrt{s}}) \le 0.81$
- $1.5 \frac{GeV}{c} \le p_T \le 7.0 \frac{GeV}{c}$
- $P = -0.06 \pm 0.04$

PHENIX Summary

- Measured A_N for positively charged hadrons
- $1.4 \le \eta \le 2.4$
- $0.1 \le x_F (= 2 \frac{p_L^h}{\sqrt{s}}) \le 0.2$
- $1.8 \ GeV/c \le p_T \le 7.0 \ GeV/c$
- Fits from PHENIX measurements favor exponent $P = -0.37^{+0.12}_{-0.23}$

- STAR observes weaker nuclear dependence than PHENIX
- More pp and pA data is critical to understanding observed behavior

Future Measurements with STAR Forward Detector

Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~50%/VE+10%	
Tracking	charge separation photon suppression	$0.2 < p_T < 2 \text{ GeV/c}$ with 20-30% $1/p_T$

STAR Forward Detector: $2.5 < \eta < 4$

Successfully completed its commissioning run in 2022

Three new systems:

- Forward Silicon Tracker (FST)
- Forward sTGC Tracker (FTT)
- 3 Forward Calorimeter System (FCS)

Future STAR data with forward detector

Year	System	\sqrt{s} (GeV)
2023	$\mathrm{Au}{+}\mathrm{Au}$	200
2024	$p{+}p,\ p{+}\mathrm{Au}$	200
2025	$\mathrm{Au}{+}\mathrm{Au}$	200

To explore nonlinear gluon dynamics with expanded observables beyond π^0s :

- Di- $h^{+/-}$: access lower p_T down to 0.2 GeV/c
- Di-jet
- Direct photon (-jet)
- Forward h^{+/-} A_N

Summary

- ➤ Di-hadron measurements at RHIC provide insights into the understanding of nonlinear gluon dynamics in nuclei
- > Di-hadron measurements favors "cleaner" pAu collisions rather than dAu collisions
- > A_N measurements at RHIC provide additional observables to study gluon dynamics in nuclei
- ightharpoonup New STAR Forward detector allows for nonlinear gluon dynamics to be investigated beyond π^0 observables.

Additional pp/pA running at RHIC is critical to understanding physics

Backup

Normalization in d+Au from PHENIX

$$R_{dA} \sim \frac{2}{N_{coll}}$$
, $N_{coll} = 15.1$ for central collisions

Xiaoxuan Chu

How to describe suppression?

From PhD Thesis

In the highest associated p_T bin (red box), no clear suppression or centrality dependence is observed

10

<N_{coll}>

6

12

14

16

-1 0 1 2 3

 $\Delta \phi$ (rad)

<N_{coll}>