Femtoscopy with unlike-sign kaons at STAR in 200 GeV Au+Au collisions

Jindřich Lidrych for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Abstract

In the collisions of heavy ions the nuclear matter can undergo a phase transition from hadrons to a state of deconfined quarks and gluons, the Quark-Gluon Plasma (QGP). Femtoscopic measurements of twoparticle correlations at small relative momenta reveal information about the system at the moment of particle emission. The correlations result from quantum statistics, final-state Coulomb interactions, and the strong final-state interactions (FSI) between the emitted particles.

It has been predicted [1] that correlations due to the strong FSI in a system where a narrow resonance is present will be sensitive, in the region of the resonance, to the source size and momentum-space correlations. Such a measurement can provide complementary information to the measurements at the very low relative momenta. This poster presents a status report of a STAR analysis of unlike-sign kaon femtoscopic correlations in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, including the region of $\phi(1020)$ resonances. The experimental results are compared with HYDJET++ simulations and to a theoretical prediction that includes the treatment of resonance formation due to the final-state interactions [1].

Motivation

The formalism of femtoscopic measurement at very low q_{inv} is well understood. The formalism proposed in [1] allows to use strong FSI going through a narrow resonance at higher q_{inv} . The system of unlike-sign kaon pairs is ideally suited for testing this extension of femtoscopy formalism as it contains narrow $\phi(1020)$ resonance.

Use strong FSI in region of resonance:

- More sensitive
- Statistically advantageous
 - High statistics
 - Low feed down
 - Source well known from imaging

Unlike-sign kaon correlation function:

- $\phi(1020)$ resonance:
 - $k^* = 126 \text{ MeV/c}, \Gamma = 4.3 \text{ MeV}$
- Narrow separation of emission and FSI

Challenges - femtoscopy formalism at higher q_{inv} Possibility of breakdown of basic assumptions

- Smoothness assumption
- Equal-time approximation

The Solenoidal Tracker at RHIC (STAR)

- 2π azimuthal coverage
- Pseudorapidity $|\eta| < 1$

Main subdetectors used for this analysis are:

Time Projection Chamber (TPC)

- Particle identification via specific ionization energy loss dE/dx
- Charged particle tracking and momentum reconstruction

Like-sign 1D correlation function and fitting

- Used for extraction of kaon emission source size R_{inv} and lambda parameter λ
- Fitting function: $CF(q_{inv}) = \left[(1 \lambda) + \lambda K(q_{inv}) e^{-R_{inv}^2 q_{inv}^2} \right] N$,

where λ - correlation strength, $K(q_{inv})$ - Coulomb function and N - normalization

• The source radii R_{inv} increase with the centrality and decrease with pair transverse momentum k_T Only statistical errors shown; systematic error is underway

Comparison of unlike-sign 1D correlation function with HYDJET++ simulations

- HYDrodynamics plus JETs Monte-Carlo heavy ion AA collisions generator [2]
- HYDJET++ contains only thermal production of ϕ , no Quantum statistics, Coulomb, Strong and FSI
- Experimental correlation function is corrected via $CF^{corr} = \frac{CF^{raw} 1}{\lambda} + 1$, where λ parameter is from fitting like-sign correlation function

Time of Flight (TOF)

- Particle identification via $1/\beta$
- Timing resolution < 100 ps
- Separation of charged kaons from other hadrons up to momentum ~1.5 GeV/c

Data selection and construction of correlation function • Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ taken in 2011

Track selection

- Primary track with signal from TOF
- $|\eta| < 1$ and |DCA| < 3 cm
- 0.15
- $0.21 < m^2 < 0.28 \, (\text{GeV}/c^2)^2$
- $|n\sigma_{kaon}| < 3$,

where $n\sigma_{kaon}$ is the distance from the expected dE/dx for kaons expressed in terms of standard deviation units

Correlation function:

Koonin-Pratt eq.: $C(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$, where S(r, k) is emission source function and $\psi_{1,2}(r,k)$ is wave function describing interaction **Experimentally:** $C(q_{inv}) = \frac{N_{same}(q_{inv})}{N_{mixed}(q_{inv})} = \frac{real \, pairs}{mixed \, pairs}$ $q_{inv} = p_1 - p_2 = 2k^*, \ k_T = \frac{p_{1,T} + p_{2,T}}{2}$

-1.5 -1 -0.5 0 0.5 **Event mixing**

• To obtain uncorrelated two-particle distributions $N_{mixed}(q_{inv})$. In order to remove non-femtoscopic correlations, events are divided into sub-classes according to primary vertex position along the beam direction and multiplicity

Comparison of unlike-sign 1D correlation function to Lednicky model

- Lednicky model [1] includes the treatment of ϕ resonance due to the FSI as well as generalized smoothness approximation
- Gaussian source sizes R_{inv} used for calculation of theoretical CF are extracted from fitting like-sign CF
- Clean theoretical function is transformed to a raw one via: $CF^{raw} = (CF^{corr} 1)\lambda + 1$, in order to compare to an experimental correlation function

Unlike-sign 1D correlation function

Correlation functions are sensitive in the region of the ϕ resonance to the source size and momentum-space correlations

This work was supported by the grant of the Grant Agency of Czech Republic n.13 - 20841S and by the Grant Agency of the Czech Technical University in Prague, grant No. SGS13/2150HK4/3T/14.

This poster was presented at the 4th International Conference on New Frontiers in Physics ICNFP2015 in Crete, Greece.

Conclusion

- Measurement of K⁺K⁻ correlation function in Au+Au collisions
- Extraction of λ parameter and source radii R_{inv} from fitting like-sign correlation function
- HYDJET++ model reproduced the correlation functions well especially in the phi-mass region, final comparison will be done after the efficiency correction is applied to the data
- Studies of 3D correlation function underway

References:

[1] R.Lednicky, Phys.Part.Nucl.Lett. 8 (2011) 965-968 [2] I.P. Lokhtin et al., Comp.Phys.Comm 180 (2009) 779-799