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Abstract Chiral Magnetic Effect (CME) is a phenomenon in which electric charge is separated by a strong magnetic field from local domains of chirality imbalance and parity violation in quantum
chromodynamics (QCD). The CME-sensitive observable, charge-dependent three-point azimuthal correlator Ay, is contaminated by a major physics background proportional to the particle elliptic
anisotropy (v;). In this contribution, we report a fresh investigation of charge separation in Au+Au collisions at /sy = 200 GeV with the STAR detector using the Event Shape Engineering (ESE)
approach [1]. Our approach has several novel aspects, such as using three subevents to identify dynamical fluctuations of v, by using subevent different from particles of interest for the ESE
selection. Since the CME is a low-p; phenomenon, we further apply the ESE differentially to the Ay as a function of the pair invariant mass (m;,,,,), particularly at lower m;,,,,, which is dominated by
a larger fraction of low- p pions. We extract the signal as the intercept by projecting Ay to zero v,, both integrated over inclusive mass and at low mass. Our results suggest non-zero intercept with
an approximately 2o significance, which we compare to the published results from the spectator/participant measurement [2]. The extracted signals, highly sensitive to the CME, may still be

contaminated by residual flow as well as nonflow contributions in the v, measurement and in the three-particle correlator [3]. We investigate these contaminations in the ESE measurement, and
report measurement using the zero-degree calorimeter (ZDC) that largely suppresses the nonflow contamination.
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from POl's. Select events on dynamical fluctuations of v,, in contrast to statistical fluctuations [4].
After cuts, we have 2.1 B events.
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Systematic uncertainty flow magnitude.
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