ESE $\Delta \gamma$ vs. invariant mass in Au+Au collisions at $\sqrt{s_{NN}}=200 GeV$

Han-Sheng Li (li3924@purdue.edu),

Department of Physics and Astronomy, Purdue University,

for the STAR collaboration

Abstract Chiral Magnetic Effect (CME) is a phenomenon in which electric charge is separated by a strong magnetic field from local domains of chirality imbalance and parity violation in quantum chromodynamics (QCD). The CME-sensitive observable, charge-dependent three-point azimuthal correlator $\Delta \gamma$, is contaminated by a major physics background proportional to the particle elliptic anisotropy (v_2). In this contribution, we report a fresh investigation of charge separation in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with the STAR detector using the Event Shape Engineering (ESE) approach [1]. Our approach has several novel aspects, such as using three subevents to identify dynamical fluctuations of v_2 by using subevent different from particles of interest for the ESE selection. Since the CME is a low- p_T phenomenon, we further apply the ESE differentially to the $\Delta \gamma$ as a function of the pair invariant mass (m_{inv}) , particularly at lower m_{inv} , which is dominated by a larger fraction of low- p_T pions. We extract the signal as the intercept by projecting $\Delta \gamma$ to zero v_2 , both integrated over inclusive mass and at low mass. Our results suggest non-zero intercept with an approximately 2σ significance, which we compare to the published results from the spectator/participant measurement [2]. The extracted signals, highly sensitive to the CME, may still be contaminated by residual flow as well as nonflow contributions in the v_2 measurement and in the three-particle correlator [3]. We investigate these contaminations in the ESE measurement, and report measurement using the zero-degree calorimeter (ZDC) that largely suppresses the nonflow contamination.

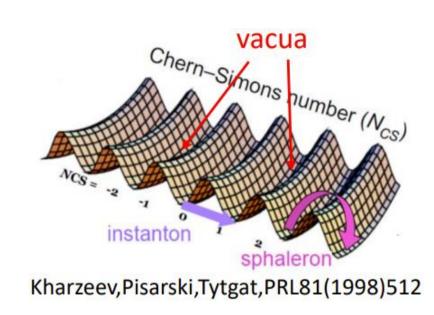
The Chiral Magnetic Effect (CME)

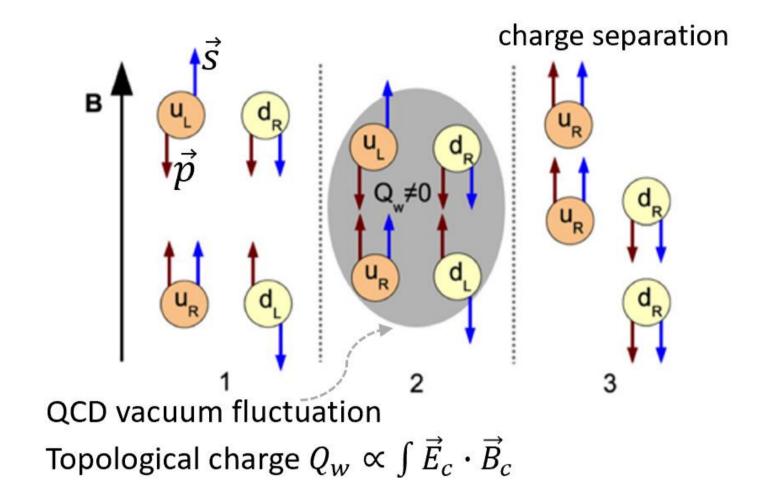
■ The CME

- Non-zero topological charge → Chirality imbalance of fermions
- ☐ Strong magnetic field → Spin separation according to charge -> Charge separation

■ Importance of the CME

- ☐ Approximate chiral symmetry restoration
- Local P/CP-violation in strong interaction
- ☐ It may resolve the strong CP problem of matter—antimatter asymmetry

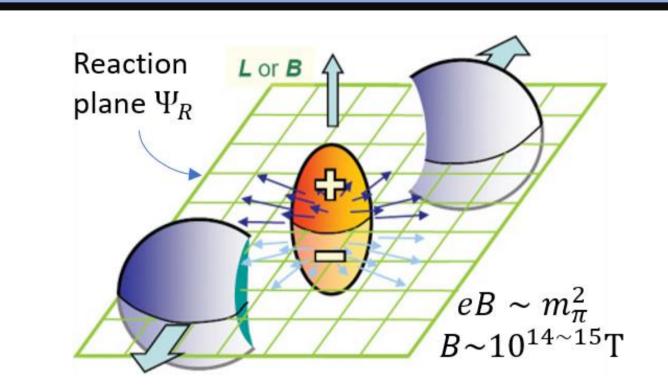




Observables

Heavy ion collisions

- Deconfined quarks and gluons
- ☐ Strong magnetic field



\blacksquare The γ correlator

$$\gamma_{\alpha\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi) \rangle = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle / v_{2,c}$$

$$\Delta \gamma = \gamma_{OS} - \gamma_{SS} \approx b_{bkg} * v_2 + CME$$

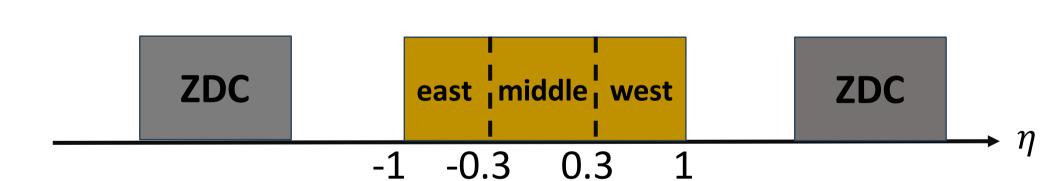
Major flow background in $\Delta \gamma$. Intercept more sensitive to CME.

Event-shape engineering (ESE)

Selects events within narrow centrality bins according to the flow vector q_2 in phase space apart from POI's. Select events on dynamical fluctuations of v_2 , in contrast to statistical fluctuations [4]. After cuts, we have 2.1 B events.

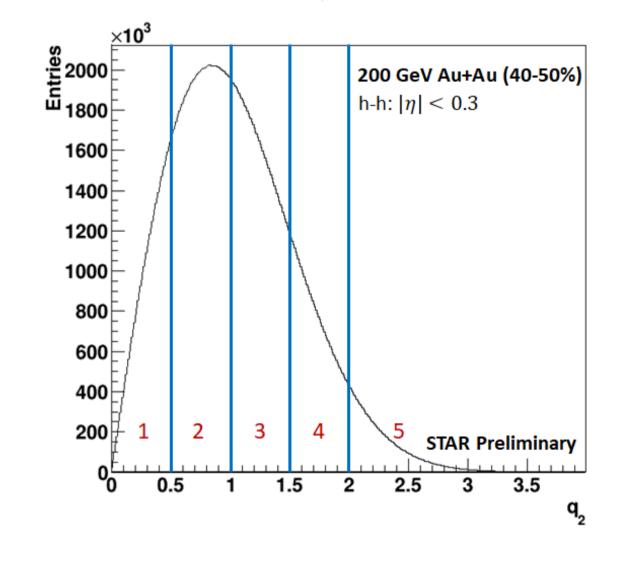
ESE Analysis procedure

■ Three subevents: east $(-1 < \eta < -0.3)$, middle $(-0.3 < \eta < 0.3)$, and west $(0.3 < \eta < 1)$



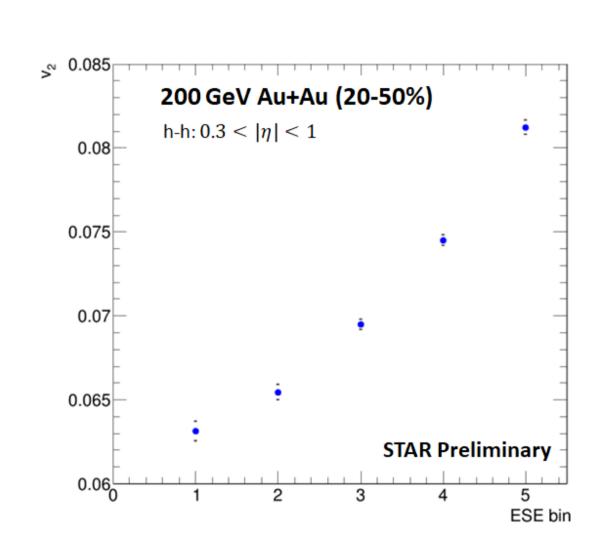
■ The flow vector

$$q_2 = \sqrt{\left[\left(\sum_i^M cos2\phi_i\right)^2 + \left(\sum_i^M sin2\phi_i\right)^2\right]/M}$$
 calculated from the middle subevent.



elliptic anisotropy flow

 $v_2 = \sqrt{\langle \cos 2(\phi_{c_1} - \phi_{c_2}) \rangle}$ (cumulant method) c_1 from east subevent, c_2 from west subevent



Systematic uncertainty

■ Sources of the systematic uncertainty

- **□** Run11:
 - |VertexZ| < 30 cm (default), VertexZ< 0 Run 14, 16:
- \square nHitsFit \geq 20 (default), 15, 25
- \square DCA ≤ 1 cm (default), 0.8 cm, 2 cm, 3 cm
- |VertexZ| < 6 cm (default), VertexZ< 0
- The calculation of systematic uncertainty based on the Barlow prescription

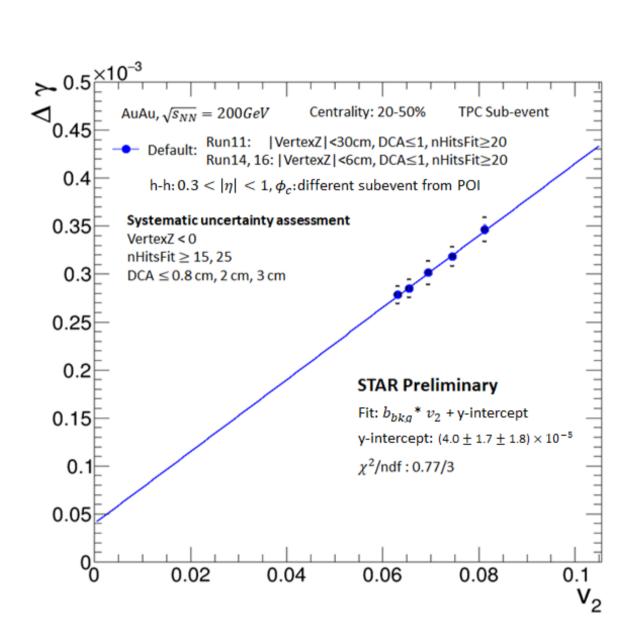
Result

- lacksquare $\Delta \gamma$ vs. v_2 using five ESE bins

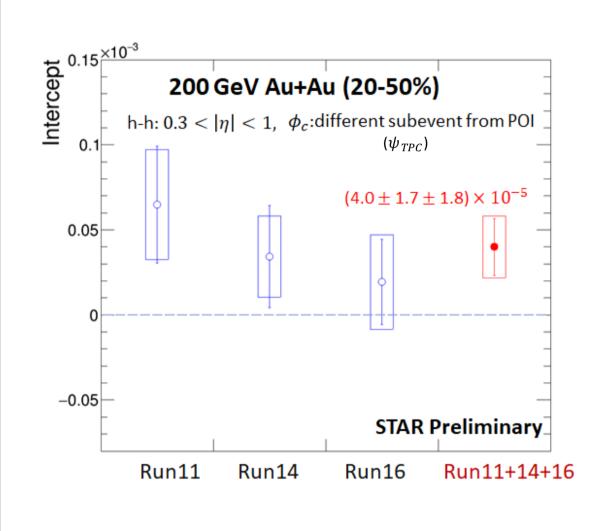
$$\gamma_{OS} = \langle \cos(\phi_{\alpha}^{\pm} + \phi_{\beta}^{\mp} - 2\phi_{c}) \rangle / v_{2}$$

$$\gamma_{SS} = \langle \cos(\phi_{\alpha}^{\mp} + \phi_{\beta}^{\mp} - 2\phi_{c}) \rangle / v_{2}$$

- POI (α, β) from east subevent, c from west subevent; and vice versa.
- \Box The intercept is about 1.5σ significance

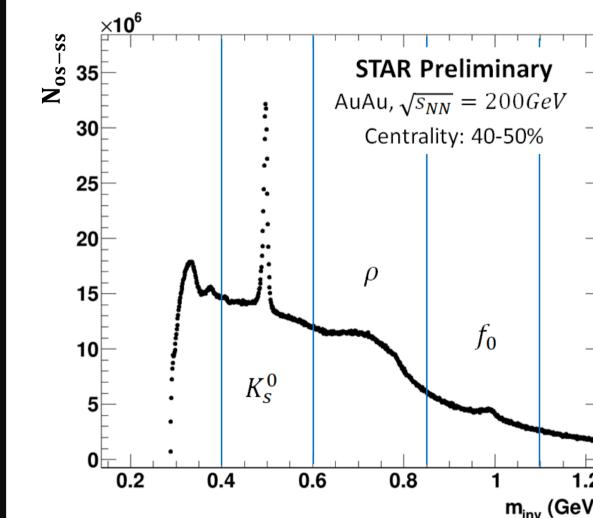


■ POI from one side sub-event, c particle from the other sub-event

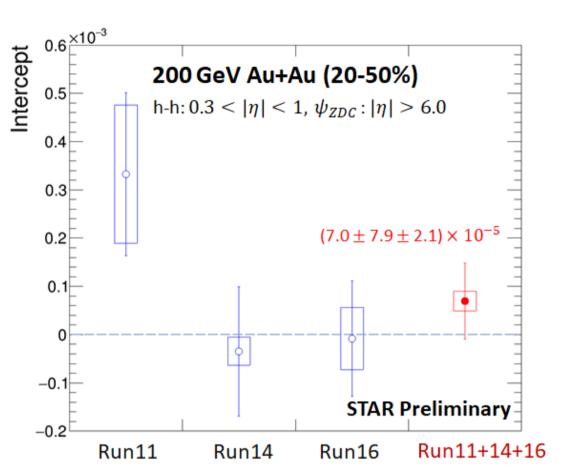


■ Mass windows

- \square Low mass: mass $(\pi^+\pi^-) < 0.4$ \square K_S^0 region: 0.4 < mass $(\pi^+\pi^-)$ < 0.60 \square ρ region: 0.6 < mass $(\pi^+\pi^-)$ < 0.85
- \Box f_0 region: 0.85 < mass $(\pi^+\pi^-) < 1.1$ \square High mass: 1.1 < mass $(\pi^+\pi^-)$

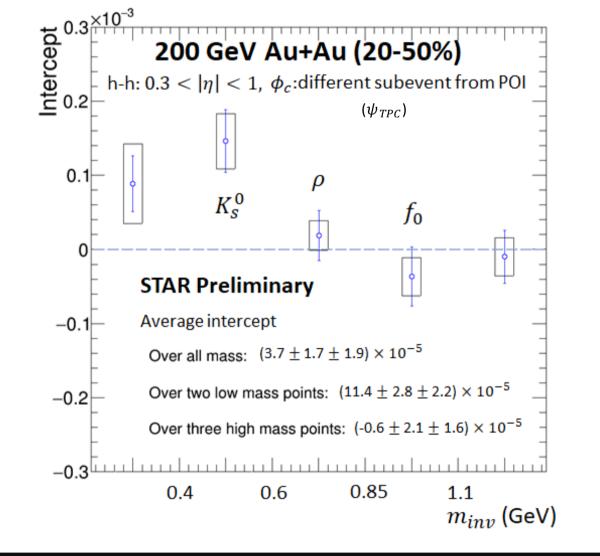


■ POI from one side sub-events, EP from ZDC ☐ ZDC void of nonflow, but statistics poor



■ The intercept vs. invariant mass

- \square Data binned in POI (α, β) pair inv. mass; All other aspects of analysis identical to inclusive ESE.
- \square Low mass region appears to have a larger signal (3 σ) than high mass region (consistent with zero)



Conclusion

- ESE studies performed: inclusive and differential in invariant mass (2.1 B Au+Au events)
- Intercept (sensitive to CME) from inclusive data:
- □ TPC sub-event: $(4.0 \pm 1.7 \pm 1.8) \times 10^{-5}$ (1.5 σ effect) □ ZDC sub-event: $(7.0 \pm 7.9 \pm 2.1) \times 10^{-5}$
- Intercept from low/high mass regions (TPC data):
- \blacksquare mass < 0.6 GeV/ c^2 (low pt): (11.4 \pm 2.8 \pm 2.2) \times 10⁻⁵ (3 σ effect)
- \square mass > 0.6 GeV/ c^2 (high pt): (-0.6 \pm 2.1 \pm 1.6) \times 10⁻⁵
- \blacksquare To be studied: nonflow effects, q_2 variation of the magnetic field direction

Future steps

- Nonflow effects to be assessed
- \square Non-flow effect in v_2 -> intercept underestimates CME
- \square Three-particle non-flow in $\Delta \gamma$ -> intercept overestimates CME
- \square Use $v_2\{4\}$ where nonflow is negligible. Assuming flow fluctuations proportional to flow magnitude.
- \blacksquare Account for variations over q_2 in determining the magnetic field direction

Reference

- [1] J. Schukraft, A. Timmins, and S.A. Voloshin, Phys. Lett. B719 (2013) 394.
- [2] M.S. Abdallah et al. (STAR Collaboration), Phys. Rev. Lett. 128, 092301.
- [3] Y. Feng, J. Zhao, H. Li, H.-j. Xu, and F. Wang, Phys. Rev. C105 (2022) 024913.
- [4] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 89, 044908

