Strange Hadron Production in Small System Using the STAR Detector

Ishu Aggarwal (for the STAR Collaboration) Panjab University Chandigarh, India

Email : *iaggarwal@rcf.rhic.bnl.gov*

I. Motivation

Motivation I : Strangeness as a Probe for Deconfinement

- Strangeness enhancement in A+A collisions w.r.t. $p + p \rightarrow a$ signature of QGP formation.
- Strangeness measurement in d+Au can bridge the multiplicity gap between peripheral A+A and p + p.

Motivation II : Probing Cold Nuclear Matter Effects

Nuclear modification factor R_{dAu}

Cronin effect is seen with nuclear modification factor R

Measurements of particle type and centrality dependence of R_{dAu} (p_T)

may help us to understand the

mechanism behind Cronin Effect.

Raw yields are extracted and corrected for efficiency and acceptance.

V. Results

<u>1. Strangeness Enhancement</u>

E		
5 √s _{NN} = 200 GeV	STAR Preliminary	lyl < 0.5
∳Au+Au 4-∳Cu+Cu K _S ⁰	Λ	$\overline{\Lambda}$
d+Au		T

- $\Lambda(\bar{\Lambda})$ and K_s^0 yields in d+Au 200 GeV are enhanced as compared to p + p collisions.
- d+Au fill the gap between p + pand peripheral Cu+Cu & Au+Au collisions.

R

STAR

Rapidity Asymmetry

II. Overview of the STAR Detector

- The Solenoidal Tracker At RHIC, known as **STAR**, tracks the thousands of particles produced by heavy-ion collisions at RHIC.
- STAR detector is used to study the signatures of the Quark Gluon Plasma (QGP) formation.
- Time Projection Chamber (TPC) is the main detector used for the analysis.

2. Nuclear Modification Factor

3. Rapidity Asymmetry

Strange particle yields increases as a function of $\langle N_{part} \rangle$.

- Cronin-like enhancement is observed for K_{s}^{0} & Λ at intermediate p_T.
- R_{dAu} of K_s^0 is consistent with charged kaons.
- Enhancement in d+Au compared to p+p for p_T in 2-4 GeV/c is stronger for baryons (Λ , p) compared to mesons (K_s^0 , π).

 $\frac{\mathrm{d}^2 N(p_{\mathrm{T}})/\mathrm{d}y_{\mathrm{CM}}\mathrm{d}p_{\mathrm{T}}|_{y_{\mathrm{CM}}\in[-b,-a]}}{\mathrm{d}^2 N(p_{\mathrm{T}})/\mathrm{d}y_{\mathrm{CM}}\mathrm{d}p_{\mathrm{T}}|_{y_{\mathrm{CM}}\in[a,b]}}$ $Y_{\rm asym}(p_{\rm T}) =$

- Y_{asym} > 1 is observed at low p_T • Signifies the presence of nuclear effects.
- Consistent with unity at high p_T.
- Hint of more prominent effect towards higher rapidity (0.4 <

|y| < 0.8). р_т (GeV/*c*)

STAR : PhysRevC.76.054903 (2007)

VI. Summary

- Yields of $K_s^0 \& \Lambda(\overline{\Lambda})$ in d+Au collisions are observed to be enhanced w.r.t. p + p collisions : Strangeness enhancement.
- Nuclear modification factor (\mathbf{R}_{dAu}) for $K_s^0 \& \Lambda$ show Cronin-like enhancement.
- **Rapidity asymmetry** for $K_s^0 \& \Lambda$ is observed
 - At low p_T: indicating presence of nuclear effects and is more pronounced at more forward rapidity regions.
 - Asymmetry is more pronounced for Λ compared to K_{c}^{0} .

67th DAE SYMPOSIUM ON NUCLEAR PHYSICS

Acknowledgments :

The author acknowledges the support from the DST Research project grant No. SR/MF/PS-02/2021- PU.