Study of freeze-out parameters in Beam Energy Scan Program of STAR at RHIC

Sabita Das, for the STAR Collaboration

Institute of Physics, Bhubaneswar, INDIA

Abstract

Statistical thermal model of grand canonical approach was used to extract the chemical freeze-out parameters by using the particle yields in Au+Au collisions at $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27$ and 39 GeV. We show the centrality dependence of extracted chemical freeze-out parameters for all the energies studied. We found as collision energy increases the chemical freeze-out temperature increases whereas baryon chemical potential decreases. We also found the strangeness saturation factor increases from peripheral to central for all the energies studied. The kinetic freeze-out parameters have been extracted using blastwave model through transverse momentum (p_T) spectra. Lower kinetic temperature corresponds to larger collectivity.

1. Introduction

> One of the main goal of Beam Energy Scan (BES) program is to search for the critical point and QCD phase boundary.

> Grand-canonical ensemble (GCE) approach of statistical THERMUS [1] model is used for fitting the experimental RHIC data at BES energies $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV to extract chemical freeze-out Temperature T_{ch} and baryon chemical potential μ_{B} . \geq Blast wave model [2] is used to extract kinetic freeze-out temperature (T_{kin}) and flow velocity (β) through p_T spectra [3].

- > As collision energy increases chemical freeze-out temperature increases
- Baryon chemical potential decreases with increase in collision energy.
- > We observe a centrality dependence of chemical freeze-out parameters (T_{ch} , μ_B) at lower energies [4,5].

Chemical and KineticFreeze-out

Chemical Freeze-out: (GCE) Central collisions.

- **Kinetic Freeze-out:** \succ Lower value of T_{kin} corresponds to larger collectivity β
- Stronger collectivity at higher energy

8. Summary

- \checkmark Spectra are characterized through $< m_{T} > -m$ which Indicates the first order phase transition
- Chemical Freeze-out: statistical Thermus Model calculation has been done for Au+Au collisions at 7.7, 11.5, 19.6, 27 and 39 GeV and particle yields are used to extract T_{ch} and μ_B : Study the QCD phase diagram
- Centrality dependence of chemical freeze-out parameters are discussed.
- Kinetic freeze-out: Higher kinetic temperature corresponds to lower collectivity and stronger collectivity at higher energies.

9. References

[5]

around BES energies

Indication for a 1st order

phase transition region

100

√s_{NN} (GeV)

10

1000

100

√s_{NN} (GeV)

1000

[1] J. Cleymans et al., PRC 71, 054901 (2005).

[2] E. Schnedermann, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 48, 2462 (1993).

[3] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 024911 (2010).

[4] S. Das (STAR Collaboration), Nucl. Phys. A 904-905 (2013) 891C, J. Phys.: Conf. Ser. 509 012066 (2014)

[5] L. Kumar (STAR Collaboration), Nucl. Phys. A 862-863, 125 (2011), Nucl. Phys. A 904-905, 256c (2013), arXiv:1408.4209arXiv:1408.4209

 \sim

E 0.3

IOPB

100

 $\sqrt{s_{_{NN}}}$ (GeV)

1000

10