

Reconstruction of D⁰ mesons in d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR experiment

Lukáš Kramárik, for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

S

Schematic view of a decision tree [3]

MOTIVATION	MACHINE LEARNING ALGORITHM TRAINING
 Heavy-flavor quarks are produced in hard scatterings at the early stage of nuclear collisions, therefore they experience the entire evolution of the hot medium, quark-gluon plasma (QGP). The nuclear modification factor <i>R</i>_{AA} of open charm mesons at RHIC exhibits strong suppression at high <i>p</i>_T in Au+Au collisions, indicating substantial energy loss of charm quarks in the medium. 	 The TMVA - Boosted Decision Trees (BDT) method was used. Classifier is a binary structured decision tree. Number of decision trees and their maximum depth may be set in the TMVA.
• The collective behavior of charm quarks reflects the degree of thermalization of charm quarks in the medium, and is related to the bulk properties of the QGP.	Signal sample for training: • D ⁰ decay is simulated using PYTHIA.
 For quantitative studies of the QGP properties (e.g. charm transport coefficients), understanding of the cold nuclear matter effects, accessed via proton-nucleus or deuteron-nucleus collisions, is required. 	• Momenta and DCA of daughter particles are smeared in accordance to the detector response. B S $x_k > c_4$ $x_k < c_4$ $x_k < c_4$

1.5 Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV} \quad \bullet \bigcirc 2014$ \$\overline{2010/11}

STAR DETECTOR

- STAR has excellent tracking and charged particles identification at mid-rapidity ($|\eta| < 1$) with full azimuthal coverage.
- Most of the subsystems are immersed in a 0.5 T solenoidal magnetic field.

Time Projection Chamber (TPC):

 main tracking device, momentum determination, particle identification via energy loss.

Time Of Flight (TOF):

• particle identification via velocity (β).

Classifier output distributions

• wrong (like) sign pairs at the D^o mass region taken directly

• Both signal and background input pairs are divided to training and test samples.

Background sample for training:

- The trained BDT is applied on both samples.
- Overtraining check: if distributions obtained from training and test samples are consistent, BDT is not overtrained.

Classifier cut efficiencies

- TMVA evaluates BDT cut efficiencies and purities of signal and background.
- Estimate of number of signal and background pairs before cut application is needed to determine the BDT cut with maximum significance.
 - Signal (background) estimate for this plot: 300 (190 000)

BDT APPLICATION ON DATA

Heavy Flavor Tracker (HFT):

- inner tracking system composed of three silicon detectors – the PIXEL made of two layers of Monolithic Active Pixel Sensors, Intermediate Silicon Tracker (IST) and Silicon Strip Detector (SSD),
- excellent DCA_{xy} and DCA_z resolution: 30 μ m for kaons at $p_T = 1.5$ GeV/*c*,
- installed for data taking in years 2014-2016.

ANALYSIS METHOD

- About 350 million d+Au events at $\sqrt{s_{NN}} = 200$ GeV recorded in 2016 are used for this analysis.
- Hadronic decay channels are used for D⁰ reconstruction (D⁰ → K⁻π⁺, D⁰ → K⁺π⁻), whose branching ratio is (3.89 ± 0.04) %.

Event selection:

- Correlation of primary vertices reconstructed using TPC and Vertex Position Detector (VPD) $|V_{z,VPD} - V_{z,TPC}| < 6 \text{ cm} \rightarrow \text{pile-up rejection}$
- Vertex position in beam direction $|V_{z,TPC}| < 6 \text{ cm} \rightarrow \text{HFT}$ acceptance coverage

Track selection:

- Hits in both PIXEL layers and at least one of the IST or SSD layer
- At least 15 space points in the TPC for track reconstruction
- Track pseudorapidity $|\eta| < 1$
- Daughter $p_{\tau} > 0.15 \text{ GeV/}c$

BDT is applied on both correct (unlike) sign pairs and wrong (like) sign pairs from the data. → BDT response is calculated for every pair.

- Distribution of invariant mass of pairs that fulfill the **cut on BDT response** is used for significance calculation.
- Background (B) is estimated via wrong (like) sign combinations of daughter particles (K⁻π⁻, K⁺π⁺) and is subtracted from the correct (unlike) sign combinations.
- Invariant mass distribution of unlike-sign pairs after background subtraction is fitted by the combination of a Gaussian function for signal and a linear function for the residual background.
- Yield (Y) is extracted using the bin-counting method in the ±3σ region around the mean of the fitted Gaussian function with residual background subtracted.
- Set of cuts on BDT response is scanned.
- Intervals of pair p_{T} used for analysis:
 - 1–2, 2–3, 3–5 GeV/c,
 - BDT is trained separately in these intervals.
- Significance higher than 6 is achieved in all of the intervals.

CONCLUSIONS AND OUTLOOK

Particle identification:

- TPC d*E*/dx: $|n\sigma_{\pi}| < 3$, $|n\sigma_{\kappa}| < 2$
- TOF used only for tracks which have valid TOF information: $|1/\beta_{\rm theo.} 1/\beta_{\rm meas.}| < 0.03$

Topological reconstruction of D^o meson:

- Used topological properties of D⁰ decays are:
 - 1. decay length
 - 2. daughter $DCA_{\kappa \pi}$ to primary vertex (PV)
 - 3. DCA₁₂ between daughter particles
 - 4. reconstructed D⁰ candidate DCA_{D0} to primary vertex
 - 5. pointing angle θ between reconstructed D⁰ momentum and decay length vector
- Signal and background separation is optimized with the **Toolkit for Multivariate Data Analysis** (TMVA) package [3].

Primary Vertex

 \vec{P}

- D^o mesons are reconstructed via their hadronic decay channels in d+Au collisions with excellent precision thanks to the **Heavy Flavor Tracker at the STAR experiment**.
- Extraction of D⁰ signal from d+Au data has been optimized using the TMVA Boosted Decision Trees method in different intervals of p_τ bins.
- Evaluations of the efficiency corrections on D⁰ raw yields and systematic uncertainties are under way, to determine the invariant yield and nuclear modification factor R_{dAu} in d+Au collisions.

REFERENCES

[1] J. Adam et al. (STAR Collaboration), Phys.Rev. C99 (2019) no.3, 034908.
[2] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 118 (2017) 212301.
[3] A. Hocker et al., PoS ACAT, 040 (2007).

8th International Conference on New Frontiers in Physics

ACKNOWLEDGMENT

This work was also supported by the grants LM2015054 and LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.