¹ Measurements of ϕ production in Au+Au collisions at $\sqrt{s_{NN}} = 27$, 19.6, 14.6 and 7.7 GeV with STAR

Weiguang Yuan¹, Yan Huang¹ [1] Tsinghua University

⁴ The ϕ vector meson is the lightest bound state of hidden strangeness, consisting of a $(s\bar{s})$ ⁵ quark-antiquark pair. It has a long lifetime (46 fm/c) and relatively small hadronic interaction ⁶ cross section. Therefore, it is less susceptible to final-state effects and can be used to study the ⁷ early evolution of the system. In addition, coalescence model calculations indicate that the ⁸ Ω/ϕ yield ratio is sensitive to strange quark thermodynamic properties, and its dependence on ⁹ collision energy can potentially be used to probe the onset of deconfinement.

In this poster, we will present new measurements on transverse momentum (p_T) , rapidity (y), and centrality dependence of ϕ meson yields in Au+Au collisions at $\sqrt{s_{NN}} = 27$, 19.6, 14.6 and 7.7 GeV using data taken during Beam Energy Scan (BES) II by the STAR experiment. Resonance to non-resonance yield ratios (ϕ/K) will be shown as a function of centrality for various collision energies. The nuclear modification factor using the peripheral Au+Au collision as a reference for ϕ at $\sqrt{s_{NN}} = 7.7-27$ GeV will also be presented and the physics implications

3

¹⁶ will be discussed.